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Abstract: In this paper, a new econometric model of volatility is proposed using hybrid Support Vector machine for 
Regression (SVR) combined with Chaotic Genetic Algorithm (CGA) to fit conditional mean and then conditional variance of 
stock market returns. The CGA, integrated by chaotic optimization algorithm with Genetic Algorithm (GA), is used to 
overcome premature local optimum in determining three hyperparameters of SVR model. The proposed hybrid SVRCGA 
model is achieved, which includes the selection of input variables by ARMA approach for fitting both mean and variance 
functions of returns, and also the searching process of obtaining the optimal SVR hyperparameters based on the CGA while 
training the SVR. Real data of complex stock markets (NASDAQ) are applied to validate and check the predicting accuracy of 
the hybrid SVRCGA model. The experimental results showed that the proposed model outperforms the other competing models 
including SVR with GA, standard SVR, Kernel smoothing and several parametric GARCH type models. 
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1. Introduction 

Accurate forecasting of volatility is essential for 

investors and stock market players as the volatility is a 

key ingredient used for portfolio selection, option 

pricing, and for calculation of Value-at-Risk in risk 

management.  

Recently, many researchers have used machine 

learning technique, Neural Network (NN), to improve 

the prediction of the financial volatility [2, 8, 9]. 

However, the NN suffers from over-fitting problems 

and the algorithm may have difficulty in obtaining a 

stable solution [23]. Support Vector machine for 

Regression (SVR), developed by Vapnik and 

coworkers [25], is a novel NN algorithm and it can 

overcome the overfitting problem more successfully 

than NN. Another merit of SVR is that the SVR is 

trained as a convex optimization problem, which can be 

estimated as a global solution [23]. Hence, the SVR is 

good at approximating any (nonlinear) functions 

without prior assumptions on the data property. Also, 

SVR has been shown to exhibit excellent performance 

in financial time series prediction such as stock price 

index [4, 23, 24], and financial volatility [5, 10, 20, 22]. 

There are three key parameters such as the 

regularized parameter C, kernel parameter δ (for RBF 
kernel) and loss function parameter ε, playing a crucial 
role in the performance of SVR. Unfortunately, it is not 

known beforehand which (C, δ, ε) are the best for one 
problem. The common way to choose these parameters 

is using cross-validation based on grid-search 

techniques. But these methods are computationally 

expensive because the model must be evaluated at 

many points within the grid for each parameter and the 

number of actual SVR calculations would be further 

multiplied by the number of cross-validation folds (5 

or 10). For large models, this approach may be 

computationally infeasible. 

To avoid this disadvantage, Genetic Algorithm 

(GA) has been proposed to search for appropriate 

SVR parameters. GA, a stochastic search based on 

evolutionary theory, is better than the grid-search for 

solving parameter optimization problems [10, 12, 19]. 

Hybrid SVR models trained by GA (or SVRGA) have 

successfully been applied in system reliability 

forecasting [19]; in electricity load forecasting [17, 

18] and bankruptcy prediction [16]. Furthermore, Gu 

et al. [11] achieved more accurate result by using the 
SVRGA than by SVR combined with Grey model in 

the case of Chinese housing price forecasting. 

Nevertheless, there are two major drawbacks on the 

GA. For instance, the algorithm converges slowly and 

the solution reaches local optimum, which are mainly 

caused from the population diversity reduction. When 

the initial population is not well designed, the GA’s 

searches get trapped into local optimum. Therefore, 

evolutionary versions of the simple GA have been 

proposed to remove such disadvantages; for instance, 

the quantum GA, gene express programming and 

Chaotic Genetic Algorithm (CGA), to name a few. 

Interested researchers are referred to [13] for the 

promising performance of the quantum GA over the 
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simple GA, and [1] for the hybrid combination of 

ARMA model and Gene Expression Programming. 

The chaotic genetic algorithm, which was integrated 

from GA and Chaotic Optimization Algorithm (COA), 

was introduced by Yuan et al. [26] to solve the simple 
GA’s above-stated weakness. The CGA is a powerful 

tool for solving nonlinear and complex optimization 

problems. The basic idea of the CGA is to transform 

the variable of problems from the solution space to 

chaos’ space and then perform search to find out the 

solution by three characteristics (randomicity, 

Ergodicity and regularity) of the chaotic variables. 

Hong et al. [12], combined SVR with hybrid CGA for 
tourism demand forecasting. The result showed that the 

SVRCGA model obtained by applying the CGA to 

search for optimal hyperparameters of SVR 

outperforms other competing models.  

Inspired by the superior performance of the 

SVRCGA, in this work, we propose a new econometric 

model of volatility using the SVRCGA to fit 

conditional mean and then approximate conditional 

variance. The proposed hybrid SVRCGA volatility 

model is achieved with several steps as shown in the 

methodology section which include the selection of 

input variables by ARMA approach for fitting both 

mean and variance functions of returns, and the 

searching process of the optimal SVR hyperparameters 

based on the CGA while training the SVR. By using 

real data of NASDAQ Composite Index, we test the 

validity of our proposed model and we also compare 

this model with the volatility models by SVRGA (SVR 

with GA), the standard SVR using grid-search, Kernel 

smoothing model described in [3] and parametric 

models (GARCH, EGARCH, GJR and FIGARCH). 

The experimental results conducted in this study 

showed that the predicting accuracy of this SVRCGA 

approach is superior to the other volatility models.  

The paper is organized as follow: Section 2 presents 

a methodology of the hybrid volatility model. In section 

3, empirical results based on real data sets are 

discussed. Section 4 is reserved for conclusion. 

 

2. The Research Method 

2.1. Volatility Modelling by Hybrid SVRCGA 

Let stock return at time t denotes: 

     tttt zy σµ +=                   (1) 

2 2 2
t t 1 t 1 t q t q t 1 t pf [( y ), ..., ( y ), , ..., ]σ µ µ σ σ− − − − − −= − −   (2) 

          
t t 1 t kg ( y , ..., y )µ − −=                  (3) 

The new volatility model is obtained by using 

SVRCGA to approximate these two functions f and g in 
equations 2 and 3, respectively. The procedure is as 

follow: 

• Step 1:  We  run  AR(k)  process  to  yt  to  obtain the 

optimal value of k based on Akaike’s Information 
Criterion (AIC). 

• Step 2: Then we make regression on yt against (yt-1, 
..., yt-k(optimal)) using SVR algorithm, whose 

hyperparameters are selected by the CGA, as 

shown in the next section in steps 1-6, to obtain an 

estimate ĝSVRCGA of g. Then calculate µt such that:  

t SVRCGA t 1 t k ( optimal )ĝ ( y , ..., y )µ − −=         (4) 

• Step 3: We run ARMA(p,q) process to 
2
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suggested in [20] to achieve the optimal values of 

(p, q) using the AIC.  

• Step 4: We fit again the SVRCGA to 
2
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variables obtained in step 3, say: 
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The achieved model is called econometric volatility 

based on hybrid SVRCGA. In this volatility model, 

there is a relation between the conditional mean and 

conditional variance. Hence it refers to the idea of 

Merton [15] stated that risk and return should be 

related. 

 

2.2. Support Vector Regression  

The SVR is nonlinear kernel based approach, 

formulated as follow. For a given data { }n
iii zxD
1

),( ==  

where xi is input vector, zi is output, and n is total 
number of data. The SVR approximates a nonlinear 

function of the form f(x) = (w.φ(x)) + b where w is 
weight, b is a constant, φ(x) denotes a mapping 
function in the feature space and (w.φ(x)) describes the 
dot product in the feature space F. The weight vector 
(w) and constant (b) can be estimated by minimizing 
the following regularized risk function: 
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ε   is 

ε-insensitive loss function and 
2

2

1
w  is the 

regularized term which controls the trade-off between 

the complexity and the approximation accuracy of the 

regression model to ensure that the model posses an 

improved generalized performance; C is the 

regularization constant used to specify the trade-off 
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between the empirical risk and regularization term. 

Introducing two slack variables ξi and 
*

iξ  i = 1, ..., n 
the following problem is obtained: 
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By using Lagrangian multipliers and Karush-Kuhn-

Tucker conditions, the following dual problem can be 

formulated as:  
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The solution of the above problem can obtained as:  
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Where K(x,xi) is called the kernel function defined as 
K(xi, xj) = (φ(xi) ⋅ φ(xj)); any kernel satisfied Mercer’s 
condition can be used as the SVR kernel. See [6, 25] 

for detail. 

There are several popular SVR kernel functions 

including Radial Basis Function (RBF), Linear, 

Polynomial and Sigmoid kernels. Among them, the 

RBF kernel defined as K(xi, xj) = exp(-δ║xi - xj ║2) is a 
reasonable first choice [7]. Therefore, for the whole 

work, we employ the RBF kernel function to train 

SVR. Three parameters such as the regularized 

parameter C, kernel parameter δ and loss function 
parameter, ε, play an important role in the performance 
of SVR.  Thus proper selection of these parameters is 

needed to be considered. Next section, we will discuss 

about CGA used to train the SVR parameters. 

 

2.3. Training SVR Parameters by Chaotic 

Genetic Algorithm  

Chaotic sequence could often be represented by one-

dimension base defined as equation 10: 
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Where t(i) 
is the value of the chaotic variable t at the ith

 

iteration, τ is the so-called bifurcation parameter of the 
system, τ∈[0,4]. The following presents the steps:  

• Generating Initial Population by Chaotic 
Optimization: For ith

 iteration, )i(
kT , k = C, δ, ε 

represent values of three parameters of SVR.  Set    

i = 0: 

 εδ ,,),/()( )()( CkabaTt kkk
i

k
i
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This means that the three parameters are mapped 

via equation 11 among the intervals (ak,bk) into 

chaotic variable )(i
kt  located in the interval (0,1). 

Where ak = Min(k) and bk = Max(k). 
Apply equation 10 with τ = 4 to compute )1( +i

kt  and 

then obtain:  

          )()1()1(

kk
i
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i
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After this transformation, the three parameters     

(C, δ, and ε) are encoded into a binary format, and 
represented by a chromosome that is composed of 

“genes” of binary numbers. Each chromosome has 

three genes, which represent three parameters. Each 

gene has 40bits. For instance, if each gene contains 

40bits, a chromosome contains 120bits. More bits 

in a gene correspond to finer partition of the search 

space.  

• Evaluating Fitness: Evaluate the fitness (or 
forecasting errors) of each chromosome. We use 

RMSE as the fitness function which defined as 

equation 13: 

                          ∑
=

−=
n

1i

2
ii )fa(

n
1

RMSE                (13) 

Where ai and fi represent the actual and forecast 

values, and n is the number of forecasting periods.  
• Selection: According to the fitness function, 
chromosomes with the highest fitness values have 

chance to produce offspring in the next generation. 

The roulette wheel selection principle is applied to 

choose chromosomes for reproduction.  

• Crossover: In crossovers, chromosomes are paired 
randomly. The single-point-crossover principle is 

employed herein. Segments of paired chromosomes 

between two determined break-points are swapped. 

Finally, decode the crossover three parameters in a 

decimal format.  

• Annealing Chaotic Mutation: For the ith 
iteration:

  

    
( i )

( i ) k k
k

k k

ˆ(T a )
t̂ ,

( b a )

k = C,  and i = 1, 2, ..., I

−
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Where )(ˆ i
kT  and )(ˆ i

kt  denote ith
 iteration crossover 

population and crossover chaotic variable 

respectively. )(~ i
kt  is chaotic mutation variable, I is 

maximum evolutional generation of population and 

ϑ the annealing operation. 

(8) 
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Finally, the chaotic mutation variable obtained in 

interval [0, 1] is mapped to the solution interval (ak,bk) 

by definite probability of mutation (pk) and completes a 

mutative operation:  

 ( i ) ( i )
k k k k kT a t ( b a )= + −% %        (16) 

• Stop Criterion: If the number of generation is equal 
to a given scale, then the best chromosomes are 

presented as a solution, otherwise go back to step 2.  

 

3. The Data 

We use real data set of NASDAQ Composite Index. 

The data are taken for the period from January 2001 to 

December 2010. The continuously compounded daily 

returns at time t are calculated as yt = 100 (ln Pt - ln    
Pt-1), where Pt is the index price at time t. Before 
modelling volatility, the whole data are divided into 

three subsets: training data (2001-2006), validation data 

(2007-2008) and testing data (2009-2010) sets.  

 

3.1. Setting Parameters in CGA 

We set the population sizes (psize = 200), the maximum 
evolution generations of the population (I = 500), the 
probability of crossover (pc = 0.5), the probability of 
mutation (pm = 0.5) and the annealing operation 
parameter (ϑ = 0.9).  
Training and forecasting approach follows a rolling 

window scheme to implement and evaluate the model 

based volatility. Let T = R + P, where R denotes the 
rolling window, P denotes the rolling time and T is the 
sample observations. The rolling window scheme 

works in the following manner:  
At first, we use observations from 1 to R fed into 

SVRCGA model, and the structural risk minimization 
principle is employed to minimize the training error, 
then obtain one-step ahead forecasting point. In second 
step, data from 2 to R + 1 are used in the model and 
one-step ahead forecasting point is also obtained, and 
finally from R to R + P - 1. In this way, the rolling 
window R stays fixed and the forecasts do not overlap. 
Meanwhile, training error in this training stage is also 
obtained. While training errors improvement occurs, 
the three kernel parameters, (C, δ, ε) of SVRCGA 
model adjusted by CGA are employed to calculate the 
validation error. Then, the adjusted parameters with 
minimum validation error are selected as the most 
appropriate parameters. Finally, the obtained models 
are applied to forecast the test data. Note that the 
testing datasets are not used for modelling but for 
examining the accuracy of the forecasting models. The 
optimal parameters for SVRCGA and SVRGA models 
are shown in Tables 1 and 2, respectively. The 
experimental results of ARMA-GARCH, ARMA-
EGARCH, ARMA-GJR and AFIMA-FIGARCH and 
Smoothing Kernels models are not shown and available 
upon request. The forecasting results are illustrated in 
Table 3. 

Table 1. Optimal parameters of SVR tuned by CGA. 

Optimal Parameters Mean Equation Volatility Equation 

δ 0.539 3.741 

C 5.224×103 2.062×105 
ε 0.38 0.62 

Number of Inputs k=3 p = 2, q = 1 

Smallest RMSE 3.783 3.551 

 
Table 2. Optimal parameters of SVR tuned by GA. 

Optimal Parameters Mean Equation Volatility Equation 

δ 1.192 2.044 

C 8.052×103 4.268×105 
ε 0.21 0.81 

Number of Inputs k=3 p = 1, q = 2 

Smallest RMSE 3.896 3.775 

 
Table 3. Forecasting performance for test data. 

 RMSE NMSE QLIKE 

SVRCGA 3.8076 0.6304 1.2517 

SVRGA 3.8461 0.6432 1.2628 

SVR 3.8909 0.6583 1.3153 

Kernel Smoothing 3.9006 0.6610 1.3255 

GARCH 4.2140 0.7722 1.5096 

EGARCH 3.9054 0.6632 1.3276 

GJR 4.2363 0.7804 1.4851 

FIGARCH 4.1544 0.7505 1.3477 

 

3.2. Forecasting Results  

We use three different forecasting criteria: RMSE, 

NMSE and QLIKE to check the predicting accuracy 

of our proposed model: 

RMSE 2
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where squared return 2

ty  is treated as actual volatility 

and 2ˆ tσ  is volatility forecasted by each model.   

The experiment results showed that SVRCGA 
outperforms the other models for all cases as it can be 
seen from the Table 3 that the SVRCGA generated 
smallest values of RMSE, NMSE and QLIKE among 
all models in this study. Figure 1 shows the plots of 
volatility forecasts by the competing models against 
actual volatility. Graphical representation of the 
forecasts by SVRCGA exhibit more flexible and yield 
higher prediction performance than the parametric 
models. Therefore, it is feasible and effective to apply 
the SVRCGA for volatility prediction. 
 

NADAQ Volatility Forecasts 

 

Figure 1. Plot of out-of-sample volatility forecasts. 



Volatility Modelling and Prediction by Hybrid Support Vector Regression with Chaotic Genetic Algorithms                         291 

 

4. Conclusions 

This study proposed a new volatility model using 

hybrid SVRCGA algorithms to fit mean function and 

conditional variance of returns. Several conclusions can 

be made from this work. First, the hybrid volatility 

models (SVRCGA, SVRGA, and SVR) are valid for 

forecasting complex stock market volatility and they 

generate better forecasting results than GARCH, two 

asymmetric volatility models (EGARCH and GJR) and 

long memory model, FIGARCH. Second, the Chaotic 

nonlinear algorithm of CGA is an excellent tool for 

searching optimal parameters of SVR and it performs 

better than the standard GA and grid-search technique. 

Third, as SVR algorithm has a high-powered ability to 

approximate any (nonlinear) functions without prior 

assumptions on the underlying data generating process, 

the combination of SVR and CGA makes the hybrid 

SVRCGA as the most efficient tool for modelling and 

predicting the stylized characteristics of complex stock 

market returns and volatility. Finally, the proposed 

model is recommended for volatility stock market 

researchers. 
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