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Abstract: This paper presents a comparative performance study of several time domain features for voiced/non-voiced 

classification of speech. Five classification schemes have been developed by combining one or two features amongst: Energy 

(E), Zeros Crossing Rate (ZCR), Autocorrelation Function (ACF), Average Magnitude Difference Function (AMDF), Weighted 

ACF (WACF), and the Discrete Wavelet Transform (DWT).   The development of these classifiers was based on the selection of 

the lowest number of time domain features which allow voicing decision without the need of any frequency transformation or 

pre processing approaches. The performance of the classifiers has been evaluated on speech data extracted from the TIMIT 

database. Two different noise types: White and babble, taken from the NOISEX92 database have been incorporated to validate 

the developed classification schemes in noisy environments. An overall ranking of these classifiers for high and low Signal to 

Noise Ratios (SNRs) have been established based on the average value of the Percentage of classification accuracy (Pc).  
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1. Introduction 

Accurate and reliable voiced/non-voiced classification 
of speech is a crucial pre-processing step in many 
speech processing applications and it is essential in 
most analysis and synthesis systems. The essence of 
classification is to determine whether the speech 
production system involves vibration of the vocal folds 
or not. For example, voicing determination is a crucial 
step in pitch detection problem. The accuracy of 
detection can significantly improve the performance of 
a pitch detector [1, 2].   

Voiced speech consists of periodic or quasi periodic 
sounds made when there is a significant glottal activity 
(vibration of the vocal folds). Unvoiced speech is non 
periodic, random excitation sounds caused by air 
passing through a narrow constriction of the vocal 
track. Unvoiced sounds include the main classes of 
consonants which are voiceless fricatives, occlusives 
and stops. 

When both quasi-periodic and random excitations 
are present simultaneously (mixed excitation, such as 
voiced fricatives), the speech is classified voiced 
because the vibration of vocal folds is part of the 
speech act. In other contexts, the mixed excitation 
could be treated by itself as a different class [7]. The 
non-voiced region includes silence and unvoiced 
speech [4]. 

A variety of techniques for robust voiced/ non-
voiced classification have been reported in literature [3, 
4, 7, 11]. The majority of them use hybrid approaches 
for voicing decision which include time or frequency 
domain features.  

Several features have been used in the literature. 
We can mention, the Energy (E) of the signal, Zeros 
Crossing Rate (ZCR), Autocorrelation Function 
(ACF), Average Magnitude Difference Function 
(AMDF), Weighted ACF (WACF), Cepstral Function 
(CEP), Discrete Wavelet Transform (DWT) 
coefficients, first coefficient of a p

th
 order linear 

prediction analysis and harmonic measure [3, 4, 10]. 
The combination of evidence from multiple features 
can be done by using statistical models such as neural 
network, Gaussian Mixture Model (GMM) or hidden 
Markov model [3]. The combination of features can 
significantly offer an accurate classification which 
basically depends on the number of features 
incorporated in the model. On the other hand, the need 
for hardware implementation and real time 
applications requests the reduction of the features 
number which aims at decreasing the computational 
complexity. 

The performance of these classifiers in terms of 
percentage of classification accuracy in noisy 
environments depends on the choice of the suitable 
feature and on some pre and post processing 
approaches (such as clipping, resampling and 
smoothing).   The time domain acoustical features are 
widely used in practical implementations. They are 
generally preferred due to their low computation and 
precise estimation. 

The main purpose of this paper is to study 
separately the performance of several time domain 
features for voiced/non-voiced classification of speech 
in clean and noisy environment and to establish an 
overall ranking of these features.  
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To achieve our purpose, five classification schemes 

that use only one or two features have been developed 

without the need of pre- or post processing stages. The 

classifiers are given as follows: 

1. ACF. 

2. AMDF. 

3. WACF. 

4. ZCR. E. 

5. DWT. E. 

Manually segmented speech signals from TIMIT data 

base [5] are used to measure the success of the 

classification into voiced and non-voiced frames.  

The performance of the developed classifiers is 

evaluated by using an additive white and babble noises, 

extracted from the NOISEX 92 data base [13]. 

Different Signal to Noise Ratios (SNRs) of the input 

signal have been used. They are ranged from 30 to        

-5dB.      

Our paper is organized as follows: In section 2 the 

detailed implementations of the five voiced/non-voiced 

classifiers are reviewed. In section 3, the performance 

evaluation of the classifiers is given.  Section 4 gives a 

conclusion and future perspectives.  

 

2. Voiced/ Non-Voiced Classifiers  

Five distinct classification schemes for voiced/ non-

voiced decision were investigated. The development of 

these classifiers was based on the selection of the 

lowest number of time domain features without the 

need of any frequency transformation. In the following, 

a detailed explanation of each classifier is provided.     

 

2.1. ACF 

The fist classifier is based on one acoustical feature 

which is the ACF. Figure 1 (i = 1) shows a block 

diagram of the classification scheme. The approach is 

based on frame by frame processing of the speech 

signal using a stationary rectangular window of 22.5ms 

duration. The used speech signal has a sampling 

frequency (Fs) of 16kHz. The frame x(n) is low pass 

filtered to 700Hz (A 20-point linear phase, Finite 

Impulse Response (FIR) digital filter) in order to 

eliminate the formant structure of the speech signal. 

The first stage of the processing is the computation of 

the ACF using equation 1: 

( ) ( ) ( )
N 1

1

n 0

1 2

1
x n x n

N

n : n

τ

ϕ τ τ

τ

− −

=

= +

=

∑                  (1) 

Where N, is the length of the frame which is equal to 

360. τ is a lag number. n1 and n2 represent the rang of 

ACF computation which corresponds to the frequency 

band of pitch [70 to 600Hz], n1 = 26, n2 = 200.  

The φ1 (τ) is characterized by a large peak for voiced 

frames which decreases for non-voiced frames. 

 
i = 1, ACF,   i = 3, WACF. 

Figure 1. Block diagram of the correlation classifiers. 

 

Theoretically, the ACF of unvoiced frames are not 

characterized by apparent peaks. However, the ACF of 

silence may include some peaks due to the spectral 

shape of silence regions which are comparable to 

voiced ones. Basically, they are distinguished by the 

peaks of their ACF (The largest peak of the ACF is 

very small for silence compared to voiced frames). 

The second stage of the processing is the extraction of 

the largest peak in the ACF which is called β1. Then, 

in the third stage, this peak is compared to a constant 

threshold β01. If β1 is greater than β01, the frame is 

classified voiced; otherwise, it is classified non-

voiced. It should be noticed that it is possible to use a 

normalized version of the autocorrelation function for 

voicing decision. In this case, we would be obliged to 

add a silence detector in order to eliminate the wrong 

decisions (silence frames classified as voiced ones) as 

presented in [8]. A non-normalized version of the 

ACF (with constant threshold) has been used in this 

study in order to reduce the number of features in the 

classification (no need for a silence detector for 

voiced/non-voiced classification). 

 

2.2. AMDF 

Figure 2 shows a block diagram of the classification 

based on the AMDF feature. It is clear that the 

classifier follows the same steps as the previous one, 

except for the function which is the AMDF given by 

equation 2: 
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Where N, is the length of the frame which is equal to 

360 and τ is a lag number.  

n1 and n2 represent the range of AMDF 

computation which corresponds to the frequency band 

of pitch [70 to 600Hz], n1 = 26, n2 = 200. 

The AMDF is a variation of the ACF where instead 

of correlating the input speech at various delays where 

multiplications and summations are formed at each 

value, a difference signal is formed between the 

delayed speech and the original, and at each delay 

No Yes 

LPF: 0-700Hz 

Speech frame 

Find max. peak « βi» 

Voiced Non-voiced 

φi(τ), τ=n1 : n2 

 

βi≥β0i 
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value, the absolute magnitude is taken. Unlike, ACF, 

however, the AMDF calculations require no 

multiplications, a desirable propriety of hardware and 

real time applications [14].  

The φ2 (τ) is characterized by several valleys which 

appear periodically for voiced speech. The global 

minimum valley point β2 is used in the decision.  If it is 

lower or equal than a constant threshold β02, the speech 

is classified voiced, otherwise, it is classified non-

voiced. The same as ACF classifier, only AMDF 

function is used in the classification process, and there 

is no need to detect silence regions. 

   

 

Figure 2. Block diagram of the AMDF classifier. 

 

2.3. WACF 

The WACF has been firstly proposed by Shimamura 

and Kobayashi [12] for pitch detection. Utilizing that 

the AMDF has similar characteristics to the ACF, the 

ACF is weighted by the reciprocal of the AMDF to 

form what is called WACF. It has been shown in [12] 

that this function has good performance for pitch 

detection in white noise environment.  The proposed 

approach for voicing decision is shown in the diagram 

block of Figure 1 (i = 3), where φ3 (τ) denotes the 

weighted ACF given by the following equation: 

( ) ( )
( )( )
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ϕ τ κ
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                          (3) 

Where τ is a lag number,  
φ1 (τ) is the ACF, 

φ2 (τ) is the AMDF,  

n1 and n2 represent the rang of WACF computation 

which correspond to the frequency band of pitch [70 

to 600Hz], n1 = 26, n2 = 200. 

κ is a constant number used to avoid divergence of 

the directly inversed φ2 (τ) at lag zero (because φ2 (0) 

= 0). In this study, this number is not significant 

since φ2 (τ) is computed between n1 and n2. It is set 

to 0.1. 

The voicing decision follows the same steps as in the 

ACF classifier. The largest peak β3 
is compared this 

time to the β03 threshold. 

2.4. ZCR. E 

One of the simplest ways to perform voiced/non-
voiced classification is based on the use of the ZCR 
and E of speech signal [9]. The ZCR is a measure of 
number of times in a given time interval in which the 
amplitude of speech signals passes through a value of 
zero. 

The Fs determines the time resolution of zeros 
crossing rates. In our study, Fs is set to 16kHz. The 
ZCR can be computed by using the following 
equation: 

( )( ) ( )( )
N

n 1

1
ZCR sgn x n sgn x n 1

2=

= − −∑          (4) 

Where x (n) is the speech frame, N is the frame length, 
sgn is a function which gives the sign of the sample. It 
takes 0 for null values, -1 for negative ones and 1 for 
positive values.    

Basically, unvoised speech exhibits a higher ZCR 
than voiced speech or silence. Therefore, the 
voiced/silence speech distinction needs another feature 
to accomplish a correct voiced/non-voided decision. 
Generally, the E of the speech is used as second 
feature. It provides a convenient representation that 
reflects the variation of the amplitude of a speech 
frame. The average energy of a given silence frame is 
much lower than that of voiced and unvoiced ones. 
Furthermore, it can be observed that the E of voiced 
frames can be higher than unvoiced ones. The average 
energy is computed as follows:    

( )
N 1

2

n 0

1
E x n

N

−

=

= ∑                         (5)  

Figure 3 shows the block diagram of the developed 
classifier. After frame acquisition using a stationary 
rectangular window of 22.5 ms duration (N = 360), the 
average energy of the frame is computed. Then, this 
latter is compared to a constant threshold E0. If the 
computed energy E is lower or equal to E0, then the 
frame is classified non-voiced. Otherwise, the ZCR is 
computed and compared to a constant threshold ZCR0. 
If ZCR is lower or equal to ZCR0, the speech frame is 
classified voiced; if not, it is classified non-voiced.   

 

 
Figure 3. Block diagram of ZCR.E classifier. 
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2.5. DWT. E 

Several approaches for voicing decision that use the 
DWT are reported in the literature. For example, we 
have the Johnson algorithm [6], which is able to 
classify the speech signal into three main categories: 
voiced, unvoiced and mixed speech. Basically, the 
Johnson algorithm, does not detect silence regions. 
Thus, in this study, a modified version of the previous 
algorithm is proposed to perform voiced/non-voiced 
classification. The modification is achieved by using 
the average energy as second feature. 

In the classification process as shown in Figure 4, 
the signal is fragmented into frames of 22.5ms duration 
by using a rectangular window. The algorithm starts by 
computing the average E of the frame using equation 5. 

 

 
Figure 4.  Block diagram of DWT. E classifier. 

  

Assuming that, the discrete samples of the signal are 
normalized between -1 and 1. The frame is classified 
silence if its corresponding E does not exceed a 
constant threshold E0. If it is not, the approximation    
(A (k)) and detail (D (k)) coefficients are computed 
using Haar Wavelet as follows: 
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Where x (n) is the speech frame with length N. h0 (n) is 

the low pass filter associated to the Haar Wavelet. h1 (n) 

is the associated high pass filter and M is its length. 
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In the second step, the energies of level one 
approximation (Eapp) and detail (Edet) coefficients are 
computed and normalized by the sum of both energies.  

Considering that the global energy represents 
100%. If the percentage of the normalized energy 
concentrated in level one approximation coefficients 
(EA) is less than a constant threshold Thr, then,  the 
segment is classified non-voiced, otherwise, it is 
classified voiced.  

Several solutions have been reported in the 
literature to find the optimal thresholds used in the 
proposed classifiers. For instance, we have: the 
average value, the median value or a constant 
percentage of a set of values which correspond to each 
feature in the utterance [1].  

The optimal thresholds selection used in this study 
will be discussed in the performance evaluation 
section.   

 

3. Performance Evaluation 

3.1. Criteria of the Test  

The performance of the five classifiers were tested on 
speech database which was hand labeled into 
voiced/non-voiced regions. Three measures of 
performance were used [1, 4]: 

1. Voiced speech classified as non-voiced (VNV 
error). 

2. Non-voiced speech classified as voiced (NVV 
error). 

3. Percentage of classification accuracy (Pc): 

 
c

P 1 (A VNV B NVV )= − × + ×               (10) 

Where A and B represent the percentage of voiced and 
non-voiced frames in the speech utterance, 
respectively. 

The two types of error listed above occurred during 
the initial speech classification into voiced and non-
voiced regions, where non-voiced speech was 
considered as voiced or voiced speech misclassified as 
non-voiced.  

 

3.2. Speech Data  

The developed classifiers are evaluated on the TIMIT 
database [5]. Speech underwent extensive manual 
labeling before it could be used.  

The spoken material consists of a set of 26 rich 
English sentences from TIMIT database (13 female 
and 13 male) that contain several dialects and acoustic 
forms (weak voiced speech, rapid voiced non-voiced 
transition).  

The percentage of voiced speech samples in each of 
the utterance is maintained at 50% (A and B equal to 
0.5 in equation 10) by appending required duration of 
silence. Two experienced persons performed the 
manual classification of the spoken material. The 
original time waveform was used as the primary tool, 
with spectrograph utilized only in few cases where the 
waveform was insufficient to make the decision. 

Compute 

A(k) and D(k) 

No 
Yes 

Speech frame 

Compute the EA 

Compute the E 

E≥E0 

No 

Voiced Non-voiced 

Yes EA≥Thr 
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3.3. Performance of the Classifiers 

The classification schemes developed in this paper are 
defined as threshold-based classifiers. The 
classification performance is directly related to the 
optimal choice of the thresholds given as follows: 

• β01 for ACF. 
• β02 for AMDF. 
• β03 for WACF. 
• E0  and ZCR0 for ZCR. E. 
• E0  and Thr for DWT. E. 

The main purpose of this study is to assess each time 
domain feature by using an optimal decision level for 
voicing classification of English. Consequently, an 
optimal threshold for each feature is needed to evaluate 
the global performance of the classifiers.   

A practical approach is to seek a value that gives the 
optimal classification for each utterance in clean 
environment and then, to use it in noisy environment.  
The optimal thresholds are obtained after the 
computation of the requested feature for each frame. 
The median value is taken as threshold. This procedure 
is used to extract: β01, β02, β03 and ZCR0 which are 
respectively the median values of β1, β2, β3 

and ZCR. 
This computation is performed for the entire frames of 
each utterance. For instance, β01 is obtained by 
calculating the median value of a set of β1 

values 
calculated for each frame in an utterance.  It is updated 
for every utterance in the database. The same procedure 
is performed for the remained features. 

The silence threshold (E0) used in ZCR. E and DWT. 
E classifiers, is empirically set to 0.05 which is 
considered as silence decision level for a frame length 
of 22.5ms. The Thr threshold used in the DWT. E 
classifier is set to 77%.   

The performance of the classifiers is reported in 
Table 1 for clean and noisy speech obtained at different 
SNRs of the input signal. The White and babble noises 
extracted from the NOISEX92 database [13] have been 
incorporated in the experiment.      

The entire classifiers have good performances in 
clean environment which are degraded according to the 
type and SNRs of the added noises. The WACF has the 
best performance in white noise environment. The 
noticed degradation is essentially related to the NVV 
errors (in low SNR levels) which increase by the 
diminution of the SNRs. The ACF has comparable 
performance to the previous classifier especially for 
SNRs higher or equal to 5dB. A serious degradation is 
noticed at lower SNRs.   

The ZCR. E and AMDF classifiers are seriously 
influenced by the addition of white noise. The Pc of the 
AMDF is reduced due to the detected high NVV errors. 
However, for the ZCR. E classifier, the degradation in 
the accuracy is related to the VNV errors.  

The ZCR. E performs better than the AMDF at high 
and low SNRs (30dB, 0 and -5dB). The performances 
are reversed for medium SNRs (20, 10 and 5dBs). The 
DWT. E classifier has a uniform performance 

evaluation, and assures better accuracy especially at 
low SNRs.  

The same as ZCR. E classifier, the Pc of the DWT. 
E is directly related to VNV errors especially at low 
SNRs. 

 
Table 1. Performance of voiced/non-voiced classification. 

 

 

 

SNR 

 

ACF 

 

AMDF 

 

WACF 

 

ZCR.E 

 

DWT.E 

W
h
it
e
 n
o
is
e
 

Clean 

Pc 

VNV 

NVV 

97.58 

2.20 

2.62 

95.92 

2.93 

5.23 

97.66 

2.37 

2.31 

97.12 

3.23 

2.52 

95.90 

0.99 

7.20 

30dB 

Pc 

VNV 

NVV 

97.11 

3.28 

2.49 

95.85 

2.89 

5.39 

97.62 

2.74 

2.01 

96.49 

5.75 

1.26 

95.87 

0.94 

7.30 

20dB 

Pc 

VNV 

NVV 

97.05 

3.43 

2.47 

95.63 

2.44 

6.30 

97.60 

2.86 

1.93 

91.51 

16.74 

0.24 

95.53 

1.31 

7.62 

10dB 

Pc 

VNV 

NVV 

96.52 

3.60 

3.34 

83.90 

0.28 

31.91 

96.57 

5.25 

1.60 

73.55 

51.90 

1.00 

93.04 

12.92 

0.99 

5dB 

Pc 

VNV 

NVV 

93.97 

3.24 

8.81 

62.84 

0.04 

74.28 

95.28 

6.21 

3.21 

62.55 

73.91 

0.99 

84.75 

30.22 

0.27 

0dB 

Pc 

VNV 

NVV 

63.74 

0.21 

72.31 

50.00 

00.00 

100.0 

87.29 

7.71 

17.69 

54.22 

90.57 

0.97 

68.92 

62.15 

00.00 

-5dB 

Pc 

VNV 

NVV 

50.75 

0.04 

98.45 

50.00 

00.00 

100.0 

67.08 

4.55 

61.28 

51.18 

96.66 

0.97 

56.19 

87.61 

00.00 
 

B
a
b
b
le
 

30dB 

Pc 

VNV 

NVV 

96.92 

3.28 

2.87 

95.574 

2.74 

6.11 

97.46 

3.23 

1.84 

96.02 

3.72 

4.23 

95.56 

1.02 

7.84 

20dB 

Pc 

VNV 

NVV 

95.41 

2.92 

6.25 

80.92 

1.08 

37.07 

94.34 

5.55 

5.75 

85.97 

2.65 

25.40 

84.90 

0.58 

29.60 

10dB 

Pc 

VNV 

NVV 

54.92 

0.25 

89.89 

50.28 

00.00 

99.42 

68.95 

4.95 

57.14 

57.25 

1.11 

84.38 

55.46 

0.20 

88.86 

5dB 

Pc 

VNV 

NVV 

50.41 

00.00 

99.18 

50.00 

00.00 

100.0 

55.64 

2.80 

85.91 

56.10 

0.77 

87.01 

53.34 

0.07 

93.23 

0dB 

Pc 

VNV 

NVV 

50.00 

00.00 

100.0 

50.00 

00.00 

100.0 

50.75 

0.81 

97.70 

54.17 

0.67 

90.98 

51.60 

0.04 

96.76 

-5dB 

Pc 

VNV 

NVV 

50.00 

00.00 

100.0 

50.00 

00.00 

100.0 

50.74 

0.81 

97.69 

52.18 

0.55 

95.07 

50.56 

00.00 

98.87 

 
In babble noise environment, the WACF classifier 

has the best Pc at high SNRs (30, 20, and 10dBs). 
However, the ZCR. E has better performance at low 
SNRs (5, 0 and -5dB) among the studied classification 
schemes. The other classifiers have variable 
performances which depend on the used SNRs. It can 
be noticed that the main source of errors in babble 
noise environment is related to NVV errors. This 
remark is valid for the five classifiers.   

The overall ranking of the classification schemes is 
not a simple operation. The performance can show a 
discrepancy for each noise type and SNR level.  

In this study, the overall ranking is established for 
high and low SNRs based on the average value of Pcs 
respectively at (30, 20, 10 dB) and (5, 0, -5 dB). The 
results are reported in Table 2. 

In white noise environment, the WACF classifier 
ranks first with overall Pcs of 97.26 and 83.22% for 
high and low SNRs, respectively. The ACF ranks 
second at high SNRs followed, respectively by the 
DWT. E and AMDF. The ZCR. E remains in the last 
position. For low SNRs, the DWT. E classifier ranks 
second followed respectively by the ACF and ZCR. E. 
The AMDF classifier ranks last.  
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In babble environment, the WAFC is constantly in 
the first rank (Pc = 86.92%) for high SNRs followed by 
the ACF classifier. The ZCR. E and DWT. E classifiers 
rank, respectively in the third and fourth position.  The 
AMDF remains at the last rank. For low SNRs, the 
ZCR. E ranks first with overall Pcs of 54.15%. The 
WACF ranks second with a Pc lowered by 1.77%. The 
remained positions are for DWT. E, ACF and AMDF, 
respectively. 

 

Table 2. Average values of the percentage of classification 
accuracy. 

 SNR
* 

ACF AMDF WACF ZCR. E DWT. E 

W
h
it
e 
n
o
is
e High 96.89 91.79 97.26 87.18 94.81 

Low 69.48 54.28 83.22 55.98 69.95 

 

B
a
b
b
le
 High 82.42 75.59 86.92 79.75 78.64 

Low 50.14 50.00 52.38 54.15 51.83 

*High SNR: Average value of Pcs at (30, 20 and 10 dB) 

  Low SNR: Average value of Pcs at (5, 0 and -5 dB) 

  
4. Conclusions  

This paper reported the results of performance 

evaluation of five voiced/non-voiced classification 

schemes which use one or two features without any pre 

or post processing approaches. 

Based on a variety of error measurements, the 

performances of the studied classifiers for different 

noise environments (white and babble noise at high and 

low SNRs) were highlighted. It has been noticed that 

the degradation of the percentage of classification 

accuracy of the five classification schemes is 

proportionally related to the SNR level. While the 

performance degradation in white noise environment of 

ZCR. E and DWT. E is related to VNV errors, the 

ACF, AMDF and WACF performance is directly 

related to NVV errors in the same environment.  On the 

other hand, in babble noise environment, the 

performance degradation of the entire classifiers is 

directly related to the NVV errors. The overall ranking 

of the classification schemes is not a trivial problem; it 

depends on the application and the environment of the 

speech signal. In this study, the ranking of the 

classifiers was established based on the average values 

of the percentage of classification accuracy for each 

noise type. In white noise environment, the WACF 

ranks first for high and low SNRs. Conversely, in 

babble noise environment, the ZCR. E ranks first at low 

SNRs, and the WACF ranks first at high SNRs.  

The combination of correlation features (ACF, 

AMDF and WACF) with ZCR or DWT approximation 

coefficients will significantly improve the accuracy 

and reduce the VNV and NVV errors. However, the 

computation complexity will increase.    

In future works, the performance of the studied 

classification schemes will be evaluated in other noise 

types. Further, a two by two feature combination will 

be investigated for better accuracy.     
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