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Abstract: Natural neural networks greatly benefit from their parallel structure that makes them fault tolerant and fast in 

processing the inputs. Their artificial counterpart, artificial neural networks, proved difficult to implement in hardware where 

they could have a similar structure. Although, many circuits have been developed, they usually present problems regarding 

accuracy, are application specific, difficult to produce and difficult to adapt to new applications. It is expected that developing 

a software tool that allows automatic generation of neural hardware while using high accuracy solves this problem and make 

artificial neural networks a step closer to the natural version. This paper presents a tool to respond to this need: A software 

tool for automatic generation of neural hardware. The software gives the user freedom to specify the number of bits used in 

each part of the neural network and programs the selected FPGA with the network. The paper also presents tests to evaluate 

the accuracy of the implementation of an automatically built neural network against Matlab. 
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1. Introduction 

Natural Neural Networks are highly connected and 

largely parallel structures capable of performing several 

tasks that are very difficult to implement in a computer. 

The artificial imitation, Artificial Neural Networks 

(ANN), are structures composed of simplified neurons, 

connected in networks with a certain degree of 

parallelism that cannot be achieved in the sequential 

operation of a computer. As pointed out by [5]. The 

greatest potential of neural networks remains in the 

high-speed processing that could be provided through 

massively parallel VLSI implementations. 

To achieve this parallelism a hardware 

implementation is needed. Nevertheless the number of 

implementations present in the literature and their 

capacity for being generic is very low. This situation 

can be changed if a simple and fast alternative for 

implementing ANNs in hardware is supplied [1].  

A few attempts have been made in building such 

solutions [6, 10] but the proposed implementations are 

still very simple. In [6], we can find very simple blocks 

with low resolution and oversimplified activation 

functions. In [13], though using only Heaviside 

functions, we find a generic Simulink block for a 

neuron that can be translated by system generator. The 

most promising proposal found in the literature is in 

[10]. In this paper an IP Core is proposed for building 

synthesizable VHDL code for ANN but it only uses a 

simplified fuzzy prepared activation function that 

reduces the precision. 

More work has been done regarding the manual 

implementation of ANN. The difficulties for these 

implementations are well known: the non-linearity of 

the hyperbolic tangent; the number of bits necessary to 

obtain high precision; the difficulties of using floating 

or the limitations of fixed point notation and the 

resources needed to implement a true parallel solution.  

The implementation of the hyperbolic tangent as 

activation function received a large share of the 

attention in this area. The best solutions can be found 

in [4], where the Mean Square Error (MSE) in the 

hyperbolic tangent is 2.18×10
-5
 and in a control loop is 

5×10
-8
; in [2], the solution is based in a Taylor series 

which achieved an error of 0.51%; in [3], a piecewise 

linear implementation is proposed which obtained 

0.0254 of “standard deviation with respect to the 

analytic form,” in [11], a set of five polynomial 5th 

order approximations is proposed for a maximum 

error of 8×10
-5
, using the sigmoid function. It should 

be noted that these results are hardly comparable but 

they are presented here as they were published. 

In this paper we present a software tool for 

automatic generation of neural hardware: Automatic 

Neural Generator (ANGE). This software prepares and 

downloads the ANN to an FPGA with the 

characteristics defined by the user. ANGE tool uses 

Matlab and Simulink (from Mathworks) and 

Integrated Software Environment (ISE). Matlab and 

Simulink tools are widely used in the ANN field and 

ISE and System Generator are tools from the Xilinx 

Company to work with programmable hardware 
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which is the preferred solution for a large part of the 

ANN implementations due to the acceptable price for a 

reduced number of copies [7]. The initial part of this 

work was presented in [1, 9]. 

The rest of the paper is organized as follows: section 

2 describes ANN structure; section 3 describes shortly 

the neuron implementation developed; section 4 

introduces the main tool; section 5 shows some of the 

results obtained; section 6 draws the conclusions and 

section 6 points the directions for future work. 

 

2. ANN Structure 

In this work we focus only in ANN of the feed forward 

type as shown in Figure 1, where there are no lateral nor 

feedback connections. 
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Figure 1. Example of a feedforward ANN. 

 

A Feedforward Neural Network (FNN) is a layered 

structure, which can include non-linearity [12]. The 

basic element of a FNN is the neuron that is shown 

schematically in Figure 2. 
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Figure 2. Neuron structure. 
 

The neuron implements the general equation: 
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Where usual functions for F are sigmoidal, linear and 

hard limit. 

A FNN is composed of an input layer, one or more 

hidden layers with one or more neurons and an output 

layer where frequently the neurons are linear.  

The multi input single output FNN in Figure 1 

implements the following general equation: 
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3. Neuron Implementation 

The objective of this part of the work is to provide a 

way to implement a neuron in an automated way. We 

have chosen to do this using simulink and system 

generator. This allows designing blocks and test them 

with a friendly interface and, in the last stage, 

download and test the developed solutions within a 

FPGA. As a consequence of using system generator 

the circuit will be implemented in fixed point notation. 

The neuron is created as a subsystem that can be 

configured using a mask. The mask used for our 

neuron block can be seen in Figure 3. 

 

 
Figure 3. Mask for selecting the neuron parameters. 

 

The parameters used in this mask are: the number 

of inputs, number of bits for the inputs, the position 

for the fixed point and the number of values for the 

Look Up Table (LUT) that implements the hyperbolic 

tangent activation function. 

This mask hides the Matlab code that is responsible 

for placing the components in a simulink model and 

connect them in order to complete the desired system. 

An example of a simulink model for a neuron with 

four inputs can be seen in Figure 4. 

 

 
Figure 4. Simulink model for a neuron with four inputs. 

 

Most of the blocks in this figure are common 

blocks. The FuncAtiv block holds the LUT that 

represents part of the hyperbolic tangent. Since it is an 

odd function, this block transforms the partial 

implementation in order to supply all the values 

necessary. 

The configuration windows of the ROM that 

implements the LUT can be seen in Figure 5. The 

upper part shows a ROM with 10000 values and the 

choice of the values that fill the memory. The lower 

part shows the use of 32 bits, with only one for the 

integer part. 
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Figure 5. Configuration of the ROM that implements the LUT. 

 

• Neuron Tests 

To analyse the precision of the solution developed a 

neuron with a single input, represented in Figure 6, was 

tested against the Matlab hyperbolic tangent function.  

The subsystem block was connected as shown in 

Figure 7 so that an input of 100000 points was supplied 

to compare with the Matlab implementation of the 

hyperbolic tangent. 

 

 
Figure 6. Single input neuron. 

 

Using this topology several tests were performed 

such as the one shown in Figure 8. These tests include 

different number of bits for the input, different number 

of points in the ROM and different number of bits for 

each value stored in the ROM. 

The different format for inputs and outputs should 

be understood by the fact that the range of values for 

each situation is different. The choice made here was 

to try to use only the number of bits that are really 

necessary for the integer part to implement the 

maximum value.  
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Figure 7. Single input neuron subsystem connected. 

 

The example of Figure 8 is the one with fewer 

values in the LUT and with less number of bits used as 

input and output. It was chosen because it is the only 

one where a small difference between Matlab and 

LUT can be seen. 

Table 1 shows MSE for these tests, where the 

format is marked as (total number of bits, number of 

bits of the decimal part). 

Also, interesting is the distribution of the error 

against the input values. This is shown for one of the 

examples in Figure 9. 

As can be seen from Figure 9, the error is larger in 

the regions where the slope of the hyperbolic tangent 

is steeper. This analysis makes us propose a test with 

the hyperbolic tangent proposed in [6], which we will 

do as further work. 

Considering Table 1, the values of the error 

introduced seem to be low enough not to introduce 

drastic changes in the ANN behaviour if 16 or more 

bits are used with a minimum of 1000 points in the 

LUT though 5000 would be preferable. We must not 

forget that the error introduced in each neuron is 

propagated to other neurons in the network and can 

cause a larger change than expected. 
 

Table 1. Summary of the tests performed to test the LUT’s input, output, and dimension. 

LUT 

Size 

MSE 

Input Format (8,4) 

MSE 

Input Format (16,12) 
MSE 

Input Format (32,28) 

Output Format (32,30) 
Output Format 

(8,6) 

Output Format 

(32,30) 

Output Format 

(16,14) 

Output Format 

(32,30) 

100 4,7763×10-5 3,9175×10-5 1,6488×10-5 1,6488×10-5 1,6483×10-5 

500 2,8570×10-5 2,2453×10-5 9,0789×10-7 9,0715×10-7 9,0794×10-7 

1000 2,8362×10-5 2,1960×10-5 2,1837×10-7 2,1811×10-7 2,1737×10-7 

5000 2,8322×10-5 2,1706×10-5 1,0574×10-8 1,0434×10-8 1,0103×10-8 

10000 2,8322×10-5 2,1704×10-5 2,3817×10-9 2,2174×10-9 1,8837×10-9 
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Figure 8. Hyperbolic tangent implementation using 100 points with 

4 bits for the integer part and 4 bits for the decimal part. 
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Figure 9. Distribution of the error against the input values. 

 

4. The Automatic Generation Tool-ANGE 

ANGE, in version 1.0, is prepared to work with multi-

layer perceptron or feedforward neural networks with 

linear activation functions or hyperbolic tangents.  

The hyperbolic tangent is implemented in its 

simplest way, although trying to maximize its 

performance and minimize the error obtained: using a 

LUT and reduced to the smallest part that can be used 

to represent the whole function. 

ANGE runs over Matlab R2007b, with system 

generator 10.1 and ISE 10.1 and is capable of 

configuring hardware in a Field Programmable Gate 

Array (FPGA) for an ANN as large as the FPGA 

available allows. ANGE main window is in Figure 10. 

As can be seen from Figure 10, the number of bits 

for the inputs, outputs and activation function can be 

selected by the user to accommodate the needs and 

capacity of the hardware available, using fields 3, 7 and 

11. The position of the binary point (system generator 

uses fixed point) can also be selected, using 4, 9, and 

13, in order to maximize the number of bits available 

after the point to increase the resolution. 

The weights can be uploaded to configure all the 

network at once and it is also possible to upload 

information about which of the Input/Output Blocks 

(IOB) to use and what to connect to each of them, 

providing the file name in 14 and pushing 15, 16 or 

both. 

After selecting the configuration and characteristics 

of the network, ANGE will automatically generate a 

simulink model file, similar to the one represented in 

Figure 11. The large blocks represented in this figure 

are the neurons, the inputs are identified by the word 

“In” and the weights are introduced using the constant 

blocks. As can be seen the ANN is implemented using 

full neurons and has a full parallel structure. 

 

 

Figure 10. ANGE main window. 

 

 

Figure 11. Example of an ANN generated by ANGE with the 

weights loaded. 

 

ANGE can also be used to create co-simulation 

blocks. These blocks can be inserted in a Simulink 

library and used in Simulink models, as shown in 

Figure 12, inserting the FPGA in the loop and 

approaching the simulation to the real functioning of 

the system. 

 

 

Figure 12. Example of an ANN generated by ANGE used as a co-

simulation block. 
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5. Results Obtained 

The ANN models must be inserted in a system to be 

tested. To test ANGE’s implementation and evaluate 

the error introduced by its fixed point notation, models 

from a reduced scale kiln were used. This kiln was 

prepared for the ceramic industry and further details 

can be seen in [11].  

For these tests two sets of models that represent a 

direct and an inverse model of the system were used in 

order to construct a Direct Inverse Control (DIC) loop, 

as represented in Figure 13. 

 

Plant
Inverse

Model

u(k)r(k+1) y(k+1)

 

Figure 13. Block diagram of the direct inverse control. 

 

This kind of loop, though very simple and easy to 

understand, requires the models to have a very good 

match and therefore is the best loop to be used when 

testing hardware implemented models because if the 

implementation reduces the quality of the models it will 

be seen directly on the control results. 

The two sets of models, though representing the 

same system, were trained under different conditions 

and are different in the number of neurons in the hidden 

layer. 

The ANNs were implemented using 16 bits for the 

inputs and representation of the hyperbolic tangent and 

32 bits for the output. The LUT that holds the 

hyperbolic tangent values contains 10000 values. 

The models were tested using two reference signals 

and they compare a result obtained implementing both 

models in Matlab with another one where the inverse 

model is implemented in an FPGA, using co-

simulation. Comparing the two DIC versions allows for 

an indirect measurement of the error introduced by the 

system generator implementation. 

Some of the results can be seen in Figures 14 and 15 

and they were measured in terms of Mean Square Error 

(MSE) and are summarized in Table 2. 

As can be seen, the maximum error introduced in the 

hardware implementation of the models was of 15, 

31%. This value is not very low but there are important 

aspects that should be mentioned: the control loop 

maintained stability and the error introduced seems to 

be almost constant and therefore represents a larger 

percentage when the error in Matlab is smaller. The 

error introduced results from using less bits, fixed point 

notation and a LUT to represent the hyperbolic tangent. 

Its maximum value can be derived by the number of 

bits truncated and the maximum step between 

consecutive values in the LUT. As a result the error 

introduced should be bounded and small and be 

reduced with the increase of the number of bits used in 

the solution. 

In hardware implementations besides precision, it is 

important that the final solution does not use too many 

resources. To evaluate this, Table 3 shows a resume of 

the resources used in proportion to the capacity of the 

FPGA, a Virtex 5 5VFX30TFF665-2S. The ANNs 

used are not very big (25fmd has 4 inputs and 8 

neurons, while fmdb1 has 4 inputs and 6 neurons) and 

the FPGA is a small Virtex 5, which means that with a 

more recent FPGA it is possible to implement an ANN 

more than 20 times larger than the ones used as 

example here. 
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Figure 14. Results of model fmd1b with reference 1. 
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Figure 15. Results of model 25fmd with reference 2. 

 
Table 2.  Mean square error in co-simulation and Matlab.  

Model and Reference Co-simulation Matlab Error Change 

Fmdb1 – Ref1 2,5155 2,5173 0,07% 

Fmdb1 – Ref2 72,4492 72,3548 0,13% 

25fmd – Ref1 0,01507 0,01307 15,31% 

25fmd – Ref2 8,1688 8,1542 0,18% 

 

Table 3. Resume of the resources used in the implementation of 
both neural models for LUT with 10000 values.  

Resources 
RAM16 

% of 68 

Registers 

% of 20480 

LUTS 

% of 20480 

DSP48ES 

% of 64 

25fmd 58 22 31 62 

fmdb1 44 17 22 46 
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6. Conclusions 

This paper presents ANGE, a tool for automatic 

generation of neural hardware and shows some of the 

results obtained with it. 

ANGE makes use of system generator, which works 

only with fixed point notation. The use of fixed point 

notation and a simplified LUT representation of the 

hyperbolic tangent introduce an error that must be 

analyzed in order to see if it is acceptable. 

Results of a test are presented with a small network 

with a medium resolution fitted in a small Virtex 5 

FPGA. The control loop shown presents an acceptable 

error with medium resolution and keeps the loop stable. 

With larger number of bits (possible with ANGE’s 

present version) and more accurate implementation of 

the hyperbolic tangent these results will be further 

improved. 

ANGE will allow fast prototyping using the 

preferred hardware target for the neural community: 

FPGA. It is expected to contribute to a new growth of 

hardware implementations of ANN. 

 

7. Further Work 

The work presented, although represents an important 

step, can be improved specially regarding the activation 

function. The next version of ANGE will have more 

options for the implementation of the hyperbolic 

tangent. 
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