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Abstract: To enable topical web crawling, link-context is the critical contextual information of anchor text for retrieving 
domain-specific resources. While some link-contexts may misguide topical web crawling and extract wrong web pages, 

because several relevant anchor texts become irrelevant or several irrelevant anchor texts become relevant after calculating 

the relevance between the link-contexts and the feature terms of the specific topic. In view of above, this paper presents a 

heuristic-based approach by selectively using link-context and implements DOM tree to locate the anchor text. Unlike 

previous crawling algorithms, which only zero in on link-context and ignore whether it is really needed or not. Our method 

cares both link-context and evaluating its necessity to correctly use link-context to guide topical crawling. Accordingly, our 

topical crawler can retrieve more relevant web pages. Experimental results indicate that this approach outperforms breadth-

first, best-first, anchor text only, link-context both in harvest rate and target recall.  
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1. Introduction 

The focused or topical crawlers, which attempt to 
download only those pages that are about a particular 
topic or theme, also carefully decide which URLs to 
scan and in what order to pursue based on previous 
downloaded pages information. Focused crawlers rely 
on the fact that pages about a topic tend to have links 
to other pages on the same topic. In reality, a host of 
pages for a specific topic are used as URL seeds. 

Anchor text is a key component of the web page. It 
is a powerful navigation for people browsing the 
Internet and it also helps search engines understand the 
relationship among web pages. For example, the link 
http://www.amazon.com/ is most likely to contain the 
word “amazon” in the anchor text. Many queries are 
similar to anchor texts because they both short topical 
description of web pages. Anchor text is not 
informative enough, so we expand it to link-context. 
We adopt a heuristic-based approach to deal with 
anchor text and the link-context to make the topic of 
out-link page clearer and more accurate. Although, 
there are many advantages using link-context to crawl 
the web pages, it is not known whether every anchor 
text should combine with several bytes link-contexts in 
a text window. Sometimes, some web page designers 
do  not  summarize  the  destination  web  pages  in  the 
anchor text. Instead, they use words such as “click 
here”, “here”, “read more”, “more”, “next” and so on 
to describe the texts around them in anchor text shown 
  * Corresponding author. 

     E-mail addresses: tpeng@jlu.edu.cn; taopeng@illinois.edu. 

in Figures 1-a and 1-b. However, if we calculate every 
similarity or relevance between link-context and 
feature term about a specific topic, we may also omit 
some web pages that are relevant indeed, or extract 
some web pages that are not relevant.  

 

 
a. An example of an anchor text fitting for extracting link-context. 

 
b. Another example of an anchor text fitting for extracting link-context. 

Figure 1. Instances of some anchor texts that fit for extracting link-
context. 

As Figure 2-a shown that, if we want to search “job” 
area and anchor text “Find Jobs with I-link” meets the 
requirement of relevance, but it becomes irrelevant 
after extracting link-contexts because the anchor text 
on the right of Figure 2-a does not belong to the “job” 
area. Then, we will miss the anchor text. Another kind 
of circumstance is shown in Figure 2-b. There are four 
anchor texts in Figure 2-b. Suppose we want to search 
“business” area, when we search the first anchor text, 
and we find out it does not belong to the “business” 
area. However, after combining its link-context, it 
belongs to “business” area, which leads to extract 
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wrong web pages. Motivated by these circumstances, 
selectively using link-context to enhance topical 
crawling for domain-specific resources is utilized to 
improve the efficiency and accuracy of topical 
crawlers. 

 
 

a. An example of an anchor text unfitting for extracting link-
context. 

 
b. Another example of an anchor text unfitting for extracting link-

context. 

Figure  2. Instances that do not fit for extracting link-context. 
 
Also, we crawl the web under the guidance of a 

classifier built by hundreds of the some specific topic 
web pages. We use DOM offset and HTML tag tree to 
expand the anchor text to make it more useful and 
apply it in two aspects in the process of focused 
crawling, the measurement and prediction. 

The outline of this paper is as follows. We review 
the related work in section 2. Section 3 illustrates how 
to selectively use link-context to guide the topic 
crawling and the metrics of relevance. The whole 
crawling procedure is proposed in section 4. Some 
comprehensive experiments are performed to evaluate 
the effectiveness and the efficiency of our proposed 
method in section 5 in which our classifier is also 
implemented. Section 6 draws the conclusions. 
 

2. Related Work 

Many researchers delve into a search engine that 
focuses on a specific topic of information. A less 
expensive approach to get web pages for this kind of 
engine is focused or topical crawling. Mouton and 
Marteau [15] developed an approach that exploited 
link analysis to determine what constitutes a good 
content analysis metric. The routing information 
encoded into backlinks also improved topical crawling. 
De-Assis et al. [5] described an approach to focused 
crawling that exploited not only content-related 

information but also, genre information presented in 
web pages to guide the crawling process. Zhang and 
Lu [24] presented an online semi-supervised clustering 
approach for topical web crawlers. Topical crawlers 
selected the most topic-related URL based on the 
scores of the URLs in the unvisited list. Arya and 
Vadlamudi [2] designed an ontology-based topical 
crawling algorithm to access hidden web content. Liu 
and Milios [13] proposed a probabilistic model for 
topical web crawling. They captured sequential 
patterns along paths leading to the targets and 
modelled the process of crawling by a walk along an 
underlying chain of hidden states. Torkestani [22] 
designed a focused crawler which took advantage of 
learning automata and learned the most relevant URLs 
and the promising paths leading to the target on-topic 
documents. Ali [1] proposed an approach for focused 
crawling that integrated evidence from both focused 
crawling and intelligent multi-agent technology. 

Due to the topic information and abstract that 
provided by anchor text, the hyperlink structures in 
web pages are utilized by many researchers to search 
the web [8]. McByan [14] built index in web crawler 
using anchor text. Duwairi and Al-Zubaidi [6] 
presented a classifier based on a modified version of 
the well known K-Nearest Neighbors classifier (K-
NN). The method was required to be compared with 
category representatives when classifying a new 
document. Iwazume et al. [10] combined anchor text 
and ontology theory in order to guide web crawler. 
Brin and page, the founders of google search engine, 
also used anchor text to build index for URLs [3]. Jung 
[11] proposed the context-based focused crawler 
architecture to discover local knowledge from 
interlinked systems and a knowledge alignment 
process to integrate the discovered local knowledge. 
Eiron and McCurley [7] presented a statistical study of 
the nature of anchor text and real user queries on a 
large corpus of corporate intranet documents. Tateishi 
et al. [21] evaluated web retrieval methods using 
anchor text. Li et al. [12] proposed a focused crawler 
guided by anchor texts using a decision tree. Nath and 
Bal [16] presented a novel crawler system based on 
filtering off non-modified pages for reducing load on 
the network, which employed mobile agents to crawl 
the pages. These mobile agent based crawlers retrieved 
the pages, processed them, compared their data to filter 
out pages that were not modified after last crawl and 
then compressed them before sending them to the 
search engine for indexing.  

SharkSearch applied not only anchor text but also its 
texts that appear in adjacent area to evaluate the benefit 
of crawling along the anchor text [9]. Chakrabarti et al. 
[4] obtained fixed bytes link-contexts around anchor 
text in their clever system. Through 5000 web pages 
test, they found out that “yahoo” was most likely to 
appear around the 50 byte range of anchor text 
corresponding to URL http://www.yahoo.com/. Pant 
[17] introduced a framework to study link-context 
derivation methods. The framework included a number 
of metrics to understand the utility of a given link-
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context. Yuvarani et al. [23] proposed a focused 
crawler called LSCrawler which took into account the 
semantic similarity between the keywords in the link 
and the surroundings text of the link. 
 

3. Selectively using Link-Context 

3.1. Extracting Link-Context from HTML Tag 

Tree 

Nowadays, links connecting pages and texts around 
links, which help people surf the internet, are key 
components of the web pages. Figure 3 shows a 
framework of a simple web consisting three web pages 
from the web crawler’s perspective. 
 

/jump.html

/acadamic

/sports

/jump.html

/courses

/news

/jump.html

/weather

/music

xxxx

x x xx

x x xx

x x xx

x x xx x x xx

x x xx

x x xx

x x xx x x xx

x x xx x x xx

www.illinois.com

cs.illinois.com www.cnn.com  
Figure 3. A simple web consisting three web pages. The arrows 
denote links between the pages. 

In one web page, texts and links about the same 
topic are usually grouped into one content block. The 
size of the content block is varied. The big one may 
cover the whole web page, while the small one only 
takes 1/8 or 1/16 of the web page’s total space and the 
smallest one is an anchor text. The anchor text is the 
visible, clickable text in a hyperlink [7]. Including 
information provided by the same content block where 
the link appears is an effective way to enrich the 
context of the anchor text. Gautam Pant presented two 
link-context derivation techniques in [17]. We use the 
method of deriving link-context from aggregation 
nodes, with some modifications. We tidy the HTML 
page into a well-formed one web page beforehand 
using HTML TIDY tool (http://www.w3.org/People/ 
Raggett/tidy/) because many web pages are badly 
written. We insert missing tags and reorder tags in the 
“dirty” pages to make sure that we can map the context 
onto a tree structure with each node having a single 
parent and all text tokens that are enclosed between 
<text>…</text> tags appear at leave nodes on the tag 
tree. This pre-processing simplifies the analysis. 

If we want to extract the link-context of an anchor 
text, then first, we locate the anchor. Next, we treat 
each node, which is on the path from the root of the 
tree to the anchor, as a potential aggregation node as 

shown in Figure 4. From these candidate nodes, we 
choose the parent node of anchor, which is the 
grandparent node of the anchor text as the aggregation 
node. Then, all of the texts in the sub-tree rooted at the 
node are retrieved as the contexts of the anchor showed 
in rectangle of Figure 4. If one anchor appears in many 
different blocks, combine the link-context in every 
block as its full link-context. 

<html>
<head>
<title>CS@Illinois | Department of Computer Science at Illinois</title>
</head>
<body>
<h1 class="cs">Department of Computer Science</h1>
<a href="http://cs.illinois.edu/csillinois/overview">
<text>Overview</text></a>
<p>
<a href="/csillinois/history"><text>History</text></a>
<text>have a look at awards<a href="/csillinois/awards">
<text>Read more</text></a></text>
<h3>Connect with Us</h3>
</p>
</body>
</html>

html

head

title

body

h1 a p

text a text h3

atext

text

 
Figure  4. An HTML page and its corresponding tag tree. 

 
Compared with [17], we fixed the aggregation node. 

In fact, for each page, we have an optimal aggregation 
node that provides the highest context similarity for the 
corresponding anchor with different aggregation node. 
It is very labor-some to tidy up web pages every time 
we analyze the web pages. Large size contexts may be 
too “noisy” and burdensome for some systems. Too 
small contexts, like single anchor texts, provide limited 
information about the topic. We set a trade off on 
quantity and quality. 

Although, we set a trade off on quantity and quality, 
we might make many mistakes when extracting every 
link-context of its anchor. One kind of mistakes is that 
we may extract a host of web pages that are irrelevant 
to the specific domain, because the anchor text itself is 
irrelevant, however, it becomes relevant after 
combining with its link-context by mistake. Another 
kind of mistakes is that a host of relevant web pages 
are not extracted still caused by extracting link-context 
inappropriately. Our approach, which selectively 
makes use of link-context, can solve this problem quite 
well. Before extracting every anchor’s link-context, we 
compute the relevance of anchor text first. If it meets 
the relevance requirement, then the corresponding 
URL is added into the waiting queue or frontier. There 
is no need to calculate the relevance of its link-context. 
As for the irrelevant anchor texts, we just extract their 
corresponding link-contexts to judge whether or not 
they indeed link to relevant pages. In addition, all the 
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anchors are picked up to compute their relevance, so 
another process is that our link-contexts do not contain 
anchor texts, instead, they are pure texts. The 
explanatory texts are more likely to be the pure texts 
rather than anchor texts. To some extent, it does not 
only improves the efficiency, but also reduces the risk 
of making mistakes. The pseudo-code for topical 
crawling enhanced by selectively using link-context is 
shown as follows. 

Algorithm 1: Topical Crawling Enhanced by Selectively using 

Link-Context (TCESULC) (seed URLs) 

url_queue=seedURLs //append element at the end of queue 

for each (url in url_queue) 

    { 

         url=dequeue(url_queue) //remove the element at the 

beginning of queue and return it 

    Page=crawl url and get the corresponding web page 

    If (page is relevant) 

        { 

       put page into relevance_pageDB 

        } 

     temp_queue=extract all anchor texts 

         for each (url in temp_queue) 

        { 

        judge each anchor text in temp_queue 

       if (anchor text is relevant) 

         { 

       enqueue its url into url_queue 

           dequeue url in temp_queue 

        } 

     else 

        { 

         extract link-context of the corresponding  

         anchor  text 

       if (link-context is relevant) 

           { 

         enqueue its url into url_queue 

           } 

                     dequeue url in temp_queue 

        } 

         } 

      reorder url_queue according to the priority weight 

    } 

 

3.2. Estimation Metrics of Relevance 

In our focused crawler, we compute the weight of each 
term in the anchor text or link-context (contain its 
anchor text) based on tfc weighting scheme Equation 1 
[20] after pre-processing which includes removing stop 
words and stemming. 
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Where, fki is the frequency of word i in text unit k 
(anchor text or link-context), N is the number of text  
units in the collection, M is the number of all the 
features. ni is the number of documents where word i 
occurs. 

The relevance of anchor text, link-text and web 
pages is computed using our classifier [19]. Suppose 

we build a text classifier by applying the SVM 
algorithm on a training data set, including positive and 
negative data. The vector space model is used to 
represent the documents, which has the advantage of 
being a simple and intuitively appealing framework for 
implementing term weighting, ranking and relevance 
feedback. In this model, documents are assumed to be 
part of an m-dimensional vector space, where m is the 
number of index words (also called features or items) 
in the vocabulary. That is, m is the size of the 
vocabulary. So, a document di is represented by a 
vector of index terms as di=(xi1, xi2, ..., xim) and xij 
represents the weight value for document di of the j

th 
feature. A document collection is represented as a 
matrix of feature weights, where each row corresponds 
to a feature vector. 
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Based on the above representation, an appropriate form 
of the term weighting must be determined in the vector 
space model. In fact, many different weighting 
schemes have been tried over the years, most of which 
are variations on TFIDF weighting, which is the most 
common weighting method used to describe 
documents in the vector space model and weights each 
feature vector component on the following basis. 

                        logki ki

i

N
x f

n
= ×
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As we know, TFIDF can effectively reflect the 
importance of the term in the entire document set, in 
which all documents play the same roles (such as text 
clustering, IR). In contrast, if the documents play 
different roles (e.g., the text classifier positive and 
negative training set), TFIDF has certain defects. 

For example, given a training set for text classifier 
contains 20 training documents (10 positive and 10 
negative training documents), in which term t occurs in 
ten documents. According to TFIDF as shown in 
Equation 2, ni=10, that is, all the Inverse Document 
Frequency (IDF) weights of term t is log(20/10) in the 
collection. But, consider two cases, term t occurs in 5 
positive and 5 negative examples and term t occurs in 9 
positive and 1 negative examples. Obviously, term t 
reflects different importance in positive and negative 
examples in the two cases. Consequently, TFIDF does 
not take into account the difference of term IDF 
weighting, which in the positive or in the negative 
example sets. Motivated by this, we present an 
improved TFIDF term weighting method, Term 
Frequency Inverse Positive-Negative Document 
Frequency (TFIPNDF). 

The weighting method named TFIPNDF, presented 
in this paper is based on statistical term frequency and 
IDF components from positive and negative training 
examples, respectively. Compared with TFIDF, term 
frequency component of TFIPNDF is the same with 

(1) 

(2) 
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TFIDF. However, when weighting IDF component, 
TFIPNDF method calculates the Inverse Positive 
Document Frequency (IPDF) and Inverse Negative 
Document Frequency (INDF) weight values in the 
positive and negative training examples, according to 
the distribution of the terms, respectively. In other 
words, IPNDF (or IPDF and INDF) reflects the 
importance of the term in the positive and negative 
training examples respectively. More comparison 
experiments are detailed in our research work on PU 
classification [18]. Therefore, TFIPNDF is composed 
of two parts: 
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The effects of these two weights are combined by 
limiting the scope of the training set, i.e., 
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Where, 
ki
f  is the frequency of word i in document k, N 

is the number of documents in the collection, ni is the 
number of documents where, word i occurs in the 
collection, Pi is the number of positive documents 
where word i occurs, Ni is the number of negative 
documents where word i occurs, SP and SN are the 
numbers of positive and negative documents in the 
collection, respectively. 

A document collection may contain documents of 
many different lengths. It is useful to use normalized 
weight assignments. A vector length normalization of 
TFIPNDF is defined as: 
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Where, M is the number of all the features. 
 
4. Crawling Procedure 

The web crawler has two jobs: Downloading pages and 
finding URLs. The crawler begins with a group of seed 
URLs, which are provided to the crawler as starting 
parameters. In the process of crawling, once a web 
page is downloaded, we parse the page’s DOM tree 
after preprocessing (eliminating stopwords and 
stemming) and then the page will be classified by a 
conventional classifier with a high dimensional 
dictionary. The relevant pages are added into the 
relevant page set. Moreover, the page is parsed to pick 
up all the anchor texts. If the page linked by the anchor 
has been crawled or the anchor is in the queue of the 
crawling (frontier), then it is removed. The rest of 
anchor texts are computed to get the relevance, which 
is treated as priority. The selectivity of link-context is 
here: When the relevance of an anchor text meets the 
requirement, it is added into the url_queue or frontier. 
While once the relevance of the anchor text does not 
meet the requirement, its link-context needs to be 
extracted and calculate their relevance again. The 
unvisited URL that has highest priority will be first 
fetched to crawl. Whenever, a new batch of anchors is 
inserted into the waiting queue, the queue will be 
readjusted to create its new frontier. Figure 5 illustrates 
the architecture of our topical crawler. 

url_queue(frontier)

seedURLs

Thread1Thread2 Thread3

Priority Control

Retrieved Page
Set

Crawler

non-relevant
pages relevant pages

Classifier

Relevant Page
Set

extract all anchor texts
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Anchor Texts

relevance(anchor
 text)>¦Ã

reorder url_queue

Y

N

 Extract Link
 Context
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context)>¦Ã

Y
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context

N

 

Figure  5. The architecture of topical crawler enhanced by selectively using link-context. 
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5. Experiments and Results 

In this section, several tests have been used to verify 
whether a selectively using link-context technique 
holds for efficient topical crawling. In the experiment, 
we built crawlers as shown in Figure 6 that used 
different techniques to crawl the web and tested our 
method using multiple crawlers over 10 topics covering 
hundreds of thousands of pages. Under the guide of 
each method, crawler downloaded the pages according 
to the strategies of web page processing. 
 

 
Figure  6. Crawling system intereface (crawling instance on top: 
science: computer science: Artificial intelligence topic in ODP, 
http://www.dmoz.org/). 

 
5.1. Performance Metrics 

The two most common effectiveness measures, Harvest 
rate and Target recall, were introduced to summarize 
and compare search results. Intuitively, Harvest rate is 
the fraction of pages crawled that are relevant to the 
topic, which measures how well it is doing at rejecting 
irrelevant web pages. We make this decision by using 
our classifier [19] instead of manual relevance 
judgment, which is costly. Target recall is the fraction 
of relevant pages crawled, which measures how well it 
is doing at finding all the relevant web pages. However, 
the relevant set for any given topic is unknown in the 
web, so the true Target recall is hardly to measure. In 
view of this situation, we delineate a specific network, 
which is regard as a virtual WWW in the experiment. 
Given a set of seed URLs and a certain depth, the range 
can be reached by a crawler using breadth-first 
crawling strategy is the virtual web. We assume that the 
target set T is the relevant set in the virtual web, C(t) is 
the set of first t pages crawled. Therefore, we define 
Harvest rate and Target recall as follows: 

                  | ( ) |
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5.2. Data Sets 

Our crawler is multi-threaded and implemented in 
java, which provides for reasonable speed-up. We run 
our algorithm using 20 threads of execution starting 
from 100 relevant URLs (Seed URLs) on each topic 
picked from Open Directory Project (ODP), 
http://dmoz.org/. The ODP is a categorical directory of 
URLs that is manually edited and relatively unbiased 
by commercial motivations. The ODP provides the 
data contained in its directory in RDF format through 
its web site. We first download the RDF formatted 
content file from the ODP web site. The content file 
contains a list of ODP categories and the external 
URLs or ODP relevant set corresponding to each 
category. We treat ODP categories as potential topics 
for our crawling experiments. The ODP relevant set 
consists of URLs that have been judged relevant to the 
category by human editors of ODP. We randomly 
select 10 categories and the associated ODP relevant 
sets. These selected categories serve as topics for our 
crawling experiments. We further divide the ODP 
relevant set for a selected topic into two random 
disjoint subsets. The first set is the seeds (contain 100 
URLs), which are used to initialize the crawl. The 
second one serves to train our classifiers [19] used for 
evaluating the performance. 

5.3. The Comparison of Different Techniques 

In this experiment, we built focused crawlers using 
different techniques (Breadth-First, Best-First (full 
page), Anchor text only [21], Anchor text using 
decision tree [12], Link-context only [17] and 
Selectively using link-context), which are described in 
the following. 

Breadth-First is a baseline crawler, the crawl 
frontier of which is a FIFO queue. Each thread of the 
crawler picks up the URL at the front of the queue and 
adds new unvisited URLs to the end of it. The crawler 
is multi-threaded as well as many pages are fetched 
simultaneously. The crawler adds unvisited URLs to 
the frontier only when the size of the frontier is less 
than the maximum allowed. Best-First crawler treats a 
web page as a set of words. It computes the similarity 
of the page to the given topic and uses it as a score of 
the unvisited URLs on the page. The URLs are then 
added to the frontier that is maintained as a priority 
queue using the scores. Each thread picks the best 
URL in the frontier to crawl and inserts the unvisited 
URLs at appropriate positions in the priority queue. 
Anchor text is the ‘highlighted clickable text’ in the 
web page, which appears within the bounds of an <A> 
tag in source code. Since, the anchor text tends to 
summarize information about the target page, it is a 
good provider of the context of the unvisited URLs. 
However, because of it is not informative enough, 
anchor text only crawler, which guides the crawling 
using anchor text, does not perform very well. Anchor 
text using decision tree is an approach which uses a 
decision tree on anchor texts of hyperlinks. Link-
context is a popular technique using link-context for 

(7) 

(8) 
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determining the priorities, which derives link-contexts 
from HTML Tag Tree. The link context is a kind of 
extended anchor text. By applying it in prioritizing the 
unvisited URLs and guiding the crawling, the crawler’s 
performance improves a lot. Selectively using link-
context is just described in this paper. 

Figures 7 and 8 show the average Harvest rate and 
average Target recall over ten topics in order to reflect 
the comprehensive of our method. Breadth-First 
without judging the unvisited URLs does not perform 
well. Therefore, Breadth-First fetched large numbers of 
irrelevant pages. It depends heavily on the localization 
of the relevant pages and web sites. Best-First predicts 
the relevance of the potential URLs by referring to the 
whole context of the visited web page. It only groups 
the unvisited URLs based on the page picked up from, 
and there is no difference within each group. So, it has 
low accuracy when there is a lot of noise in the page or 
the page has multiple topics. Only analyzing the anchor 
text may omit much useful textual information because 
it is short and not informative enough. However, 
extracting its link-contexts every time can not only 
reduce the efficiency but also cause multiple mistakes. 
Their weakness can be just overcome by our method. In 
summary, the topical crawler enhanced by selectively 
using link-context shows significant performance 
improvement over the crawlers mentioned above. 
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Figure 7. Dynamic plot of harvest rate versus number of crawled 
pages. Performance is average across topics and standard error bars 

are also shown. The error bars correspond to ± standard error. 

 

A
ve
ra
ge
 T
ar
ge
t 
R
ec
al
l 

Number of Crawled Pages 

Figure 8. Dynamic plot of target recall versus number of crawled 
pages. Performance is average across topics and standard error bars 

are also shown. The error bars correspond to ± standard error. 

In our experiment, we also set two counters to 
calculate the times of combining link-contexts and the 
times of using anchor text only, respectively. Besides, 

the number of crawled pages is 5000 for each topic. 
The comparison results as shown in Figure 9 show 
that there are indeed some web pages can be judged 
only using anchor text and harvest rate and target 
recall as shown in Figures 7 and 8 also indicate the 
improvement on the performance of topical crawlers. 
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Figure 9. The comparison results of using anchor text and link-
context in extracting web pages over ten topics. 

6. Conclusions 

With the flourish of WWW, people can have great 
opportunity to benefit from the abundant information 
in such an environment. Hence, it is an important task 
to extract domain-specific web pages. In this paper, a 
heuristic-based approach was presented focusing on 
selectively using link-context to enhance topical 
crawling. The approach this paper presented working 
with the document object model tree as opposed to 
raw HTML markup enables us to locate anchor text, 
extract the corresponding link-context instead of the 
whole page. tfc weighting scheme and our classifier 
are implemented to calculate the relevance of the 
anchor text or link-context. Treating anchor text and 
its link-context respectively can both improve the 
efficiency and bring the error rate down caused by the 
misguidance of crawler. The comparison between 
using anchor text and link-context also shows that 
there are indeed many web pages can be retrieved only 
using anchor text. The experimental using harvest rate 
and target recall as performance measurement verified 
that our approach significantly improved the focused 
web crawling performance when dealing with web 
pages in the complex web environment. 
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