
196 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

Topical Web Crawling for Domain-Specific

Resource Discovery Enhanced by

Selectively using Link-Context

Lu Liu, Tao Peng and Wanli Zuo
 College of Computer Science and Technology, Jilin University, China

Abstract: To enable topical web crawling, link-context is the critical contextual information of anchor text for retrieving
domain-specific resources. While some link-contexts may misguide topical web crawling and extract wrong web pages,

because several relevant anchor texts become irrelevant or several irrelevant anchor texts become relevant after calculating

the relevance between the link-contexts and the feature terms of the specific topic. In view of above, this paper presents a

heuristic-based approach by selectively using link-context and implements DOM tree to locate the anchor text. Unlike

previous crawling algorithms, which only zero in on link-context and ignore whether it is really needed or not. Our method

cares both link-context and evaluating its necessity to correctly use link-context to guide topical crawling. Accordingly, our

topical crawler can retrieve more relevant web pages. Experimental results indicate that this approach outperforms breadth-

first, best-first, anchor text only, link-context both in harvest rate and target recall.

Keywords: Topical crawling, domain-specific resource retrieving, selectively using link context, DOM tree.

Received November 17, 2012; accepted May 19, 2013; published online April 23, 2014

1. Introduction

The focused or topical crawlers, which attempt to
download only those pages that are about a particular
topic or theme, also carefully decide which URLs to
scan and in what order to pursue based on previous
downloaded pages information. Focused crawlers rely
on the fact that pages about a topic tend to have links
to other pages on the same topic. In reality, a host of
pages for a specific topic are used as URL seeds.

Anchor text is a key component of the web page. It
is a powerful navigation for people browsing the
Internet and it also helps search engines understand the
relationship among web pages. For example, the link
http://www.amazon.com/ is most likely to contain the
word “amazon” in the anchor text. Many queries are
similar to anchor texts because they both short topical
description of web pages. Anchor text is not
informative enough, so we expand it to link-context.
We adopt a heuristic-based approach to deal with
anchor text and the link-context to make the topic of
out-link page clearer and more accurate. Although,
there are many advantages using link-context to crawl
the web pages, it is not known whether every anchor
text should combine with several bytes link-contexts in
a text window. Sometimes, some web page designers
do not summarize the destination web pages in the
anchor text. Instead, they use words such as “click
here”, “here”, “read more”, “more”, “next” and so on
to describe the texts around them in anchor text shown
 * Corresponding author.

 E-mail addresses: tpeng@jlu.edu.cn; taopeng@illinois.edu.

in Figures 1-a and 1-b. However, if we calculate every
similarity or relevance between link-context and
feature term about a specific topic, we may also omit
some web pages that are relevant indeed, or extract
some web pages that are not relevant.

a. An example of an anchor text fitting for extracting link-context.

b. Another example of an anchor text fitting for extracting link-context.

Figure 1. Instances of some anchor texts that fit for extracting link-
context.

As Figure 2-a shown that, if we want to search “job”
area and anchor text “Find Jobs with I-link” meets the
requirement of relevance, but it becomes irrelevant
after extracting link-contexts because the anchor text
on the right of Figure 2-a does not belong to the “job”
area. Then, we will miss the anchor text. Another kind
of circumstance is shown in Figure 2-b. There are four
anchor texts in Figure 2-b. Suppose we want to search
“business” area, when we search the first anchor text,
and we find out it does not belong to the “business”
area. However, after combining its link-context, it
belongs to “business” area, which leads to extract

Topical Web Crawling for Domain-Specific Resource Discovery Enhanced by Selectively using Link-Context 197

wrong web pages. Motivated by these circumstances,
selectively using link-context to enhance topical
crawling for domain-specific resources is utilized to
improve the efficiency and accuracy of topical
crawlers.

a. An example of an anchor text unfitting for extracting link-
context.

b. Another example of an anchor text unfitting for extracting link-

context.

Figure 2. Instances that do not fit for extracting link-context.

Also, we crawl the web under the guidance of a

classifier built by hundreds of the some specific topic
web pages. We use DOM offset and HTML tag tree to
expand the anchor text to make it more useful and
apply it in two aspects in the process of focused
crawling, the measurement and prediction.

The outline of this paper is as follows. We review
the related work in section 2. Section 3 illustrates how
to selectively use link-context to guide the topic
crawling and the metrics of relevance. The whole
crawling procedure is proposed in section 4. Some
comprehensive experiments are performed to evaluate
the effectiveness and the efficiency of our proposed
method in section 5 in which our classifier is also
implemented. Section 6 draws the conclusions.

2. Related Work

Many researchers delve into a search engine that
focuses on a specific topic of information. A less
expensive approach to get web pages for this kind of
engine is focused or topical crawling. Mouton and
Marteau [15] developed an approach that exploited
link analysis to determine what constitutes a good
content analysis metric. The routing information
encoded into backlinks also improved topical crawling.
De-Assis et al. [5] described an approach to focused
crawling that exploited not only content-related

information but also, genre information presented in
web pages to guide the crawling process. Zhang and
Lu [24] presented an online semi-supervised clustering
approach for topical web crawlers. Topical crawlers
selected the most topic-related URL based on the
scores of the URLs in the unvisited list. Arya and
Vadlamudi [2] designed an ontology-based topical
crawling algorithm to access hidden web content. Liu
and Milios [13] proposed a probabilistic model for
topical web crawling. They captured sequential
patterns along paths leading to the targets and
modelled the process of crawling by a walk along an
underlying chain of hidden states. Torkestani [22]
designed a focused crawler which took advantage of
learning automata and learned the most relevant URLs
and the promising paths leading to the target on-topic
documents. Ali [1] proposed an approach for focused
crawling that integrated evidence from both focused
crawling and intelligent multi-agent technology.

Due to the topic information and abstract that
provided by anchor text, the hyperlink structures in
web pages are utilized by many researchers to search
the web [8]. McByan [14] built index in web crawler
using anchor text. Duwairi and Al-Zubaidi [6]
presented a classifier based on a modified version of
the well known K-Nearest Neighbors classifier (K-
NN). The method was required to be compared with
category representatives when classifying a new
document. Iwazume et al. [10] combined anchor text
and ontology theory in order to guide web crawler.
Brin and page, the founders of google search engine,
also used anchor text to build index for URLs [3]. Jung
[11] proposed the context-based focused crawler
architecture to discover local knowledge from
interlinked systems and a knowledge alignment
process to integrate the discovered local knowledge.
Eiron and McCurley [7] presented a statistical study of
the nature of anchor text and real user queries on a
large corpus of corporate intranet documents. Tateishi
et al. [21] evaluated web retrieval methods using
anchor text. Li et al. [12] proposed a focused crawler
guided by anchor texts using a decision tree. Nath and
Bal [16] presented a novel crawler system based on
filtering off non-modified pages for reducing load on
the network, which employed mobile agents to crawl
the pages. These mobile agent based crawlers retrieved
the pages, processed them, compared their data to filter
out pages that were not modified after last crawl and
then compressed them before sending them to the
search engine for indexing.

SharkSearch applied not only anchor text but also its
texts that appear in adjacent area to evaluate the benefit
of crawling along the anchor text [9]. Chakrabarti et al.
[4] obtained fixed bytes link-contexts around anchor
text in their clever system. Through 5000 web pages
test, they found out that “yahoo” was most likely to
appear around the 50 byte range of anchor text
corresponding to URL http://www.yahoo.com/. Pant
[17] introduced a framework to study link-context
derivation methods. The framework included a number
of metrics to understand the utility of a given link-

Anchor Text

Featured Services and Resources

Rumors and Realities

Paths

Anchor Text

Our Staff and Student
blog addressing the

Myths and Facts about
Majors and Career

-Find Jops with I
Link

Engineeringof College

College of Education

BusinessCollege of

College of Applied Health, Aging and Disability

 Anchor
 Text

Center on Health Aging and Disability

Bureau of Economic and Business Research

Education Research

Engineering Research

198 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

context. Yuvarani et al. [23] proposed a focused
crawler called LSCrawler which took into account the
semantic similarity between the keywords in the link
and the surroundings text of the link.

3. Selectively using Link-Context

3.1. Extracting Link-Context from HTML Tag

Tree

Nowadays, links connecting pages and texts around
links, which help people surf the internet, are key
components of the web pages. Figure 3 shows a
framework of a simple web consisting three web pages
from the web crawler’s perspective.

/jump.html

/acadamic

/sports

/jump.html

/courses

/news

/jump.html

/weather

/music

xxxx

x x xx

x x xx

x x xx

x x xx x x xx

x x xx

x x xx

x x xx x x xx

x x xx x x xx

www.illinois.com

cs.illinois.com www.cnn.com
Figure 3. A simple web consisting three web pages. The arrows
denote links between the pages.

In one web page, texts and links about the same
topic are usually grouped into one content block. The
size of the content block is varied. The big one may
cover the whole web page, while the small one only
takes 1/8 or 1/16 of the web page’s total space and the
smallest one is an anchor text. The anchor text is the
visible, clickable text in a hyperlink [7]. Including
information provided by the same content block where
the link appears is an effective way to enrich the
context of the anchor text. Gautam Pant presented two
link-context derivation techniques in [17]. We use the
method of deriving link-context from aggregation
nodes, with some modifications. We tidy the HTML
page into a well-formed one web page beforehand
using HTML TIDY tool (http://www.w3.org/People/
Raggett/tidy/) because many web pages are badly
written. We insert missing tags and reorder tags in the
“dirty” pages to make sure that we can map the context
onto a tree structure with each node having a single
parent and all text tokens that are enclosed between
<text>…</text> tags appear at leave nodes on the tag
tree. This pre-processing simplifies the analysis.

If we want to extract the link-context of an anchor
text, then first, we locate the anchor. Next, we treat
each node, which is on the path from the root of the
tree to the anchor, as a potential aggregation node as

shown in Figure 4. From these candidate nodes, we
choose the parent node of anchor, which is the
grandparent node of the anchor text as the aggregation
node. Then, all of the texts in the sub-tree rooted at the
node are retrieved as the contexts of the anchor showed
in rectangle of Figure 4. If one anchor appears in many
different blocks, combine the link-context in every
block as its full link-context.

<html>
<head>
<title>CS@Illinois | Department of Computer Science at Illinois</title>
</head>
<body>
<h1 class="cs">Department of Computer Science</h1>

<text>Overview</text>
<p>
<text>History</text>
<text>have a look at awards
<text>Read more</text></text>
<h3>Connect with Us</h3>
</p>
</body>
</html>

html

head

title

body

h1 a p

text a text h3

atext

text

Figure 4. An HTML page and its corresponding tag tree.

Compared with [17], we fixed the aggregation node.

In fact, for each page, we have an optimal aggregation
node that provides the highest context similarity for the
corresponding anchor with different aggregation node.
It is very labor-some to tidy up web pages every time
we analyze the web pages. Large size contexts may be
too “noisy” and burdensome for some systems. Too
small contexts, like single anchor texts, provide limited
information about the topic. We set a trade off on
quantity and quality.

Although, we set a trade off on quantity and quality,
we might make many mistakes when extracting every
link-context of its anchor. One kind of mistakes is that
we may extract a host of web pages that are irrelevant
to the specific domain, because the anchor text itself is
irrelevant, however, it becomes relevant after
combining with its link-context by mistake. Another
kind of mistakes is that a host of relevant web pages
are not extracted still caused by extracting link-context
inappropriately. Our approach, which selectively
makes use of link-context, can solve this problem quite
well. Before extracting every anchor’s link-context, we
compute the relevance of anchor text first. If it meets
the relevance requirement, then the corresponding
URL is added into the waiting queue or frontier. There
is no need to calculate the relevance of its link-context.
As for the irrelevant anchor texts, we just extract their
corresponding link-contexts to judge whether or not
they indeed link to relevant pages. In addition, all the

Topical Web Crawling for Domain-Specific Resource Discovery Enhanced by Selectively using Link-Context 199

anchors are picked up to compute their relevance, so
another process is that our link-contexts do not contain
anchor texts, instead, they are pure texts. The
explanatory texts are more likely to be the pure texts
rather than anchor texts. To some extent, it does not
only improves the efficiency, but also reduces the risk
of making mistakes. The pseudo-code for topical
crawling enhanced by selectively using link-context is
shown as follows.

Algorithm 1: Topical Crawling Enhanced by Selectively using

Link-Context (TCESULC) (seed URLs)

url_queue=seedURLs //append element at the end of queue

for each (url in url_queue)

 {

 url=dequeue(url_queue) //remove the element at the

beginning of queue and return it

 Page=crawl url and get the corresponding web page

 If (page is relevant)

 {

 put page into relevance_pageDB

 }

 temp_queue=extract all anchor texts

 for each (url in temp_queue)

 {

 judge each anchor text in temp_queue

 if (anchor text is relevant)

 {

 enqueue its url into url_queue

 dequeue url in temp_queue

 }

 else

 {

 extract link-context of the corresponding

 anchor text

 if (link-context is relevant)

 {

 enqueue its url into url_queue

 }

 dequeue url in temp_queue

 }

 }

 reorder url_queue according to the priority weight

 }

3.2. Estimation Metrics of Relevance

In our focused crawler, we compute the weight of each
term in the anchor text or link-context (contain its
anchor text) based on tfc weighting scheme Equation 1
[20] after pre-processing which includes removing stop
words and stemming.

2

1

log

log

ki

i
ki

M

kr
r

r

N
f

n
x

N
f

n=

×

=

∑ ×

 
 
 

  
  

  

Where, fki is the frequency of word i in text unit k
(anchor text or link-context), N is the number of text
units in the collection, M is the number of all the
features. ni is the number of documents where word i
occurs.

The relevance of anchor text, link-text and web
pages is computed using our classifier [19]. Suppose

we build a text classifier by applying the SVM
algorithm on a training data set, including positive and
negative data. The vector space model is used to
represent the documents, which has the advantage of
being a simple and intuitively appealing framework for
implementing term weighting, ranking and relevance
feedback. In this model, documents are assumed to be
part of an m-dimensional vector space, where m is the
number of index words (also called features or items)
in the vocabulary. That is, m is the size of the
vocabulary. So, a document di is represented by a
vector of index terms as di=(xi1, xi2, ..., xim) and xij
represents the weight value for document di of the j

th
feature. A document collection is represented as a
matrix of feature weights, where each row corresponds
to a feature vector.

1 11 1

1

m

ij

n n nm

d x x

collection x

d x x

= =

  
  
  

   

…

⋮ ⋮ ⋮

…

Based on the above representation, an appropriate form
of the term weighting must be determined in the vector
space model. In fact, many different weighting
schemes have been tried over the years, most of which
are variations on TFIDF weighting, which is the most
common weighting method used to describe
documents in the vector space model and weights each
feature vector component on the following basis.

 logki ki

i

N
x f

n
= ×

 
 
 

As we know, TFIDF can effectively reflect the
importance of the term in the entire document set, in
which all documents play the same roles (such as text
clustering, IR). In contrast, if the documents play
different roles (e.g., the text classifier positive and
negative training set), TFIDF has certain defects.

For example, given a training set for text classifier
contains 20 training documents (10 positive and 10
negative training documents), in which term t occurs in
ten documents. According to TFIDF as shown in
Equation 2, ni=10, that is, all the Inverse Document
Frequency (IDF) weights of term t is log(20/10) in the
collection. But, consider two cases, term t occurs in 5
positive and 5 negative examples and term t occurs in 9
positive and 1 negative examples. Obviously, term t
reflects different importance in positive and negative
examples in the two cases. Consequently, TFIDF does
not take into account the difference of term IDF
weighting, which in the positive or in the negative
example sets. Motivated by this, we present an
improved TFIDF term weighting method, Term
Frequency Inverse Positive-Negative Document
Frequency (TFIPNDF).

The weighting method named TFIPNDF, presented
in this paper is based on statistical term frequency and
IDF components from positive and negative training
examples, respectively. Compared with TFIDF, term
frequency component of TFIPNDF is the same with

(1)

(2)

200 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

TFIDF. However, when weighting IDF component,
TFIPNDF method calculates the Inverse Positive
Document Frequency (IPDF) and Inverse Negative
Document Frequency (INDF) weight values in the
positive and negative training examples, according to
the distribution of the terms, respectively. In other
words, IPNDF (or IPDF and INDF) reflects the
importance of the term in the positive and negative
training examples respectively. More comparison
experiments are detailed in our research work on PU
classification [18]. Therefore, TFIPNDF is composed
of two parts:

 logi
ki

P i

P N
TFIPDF f

S n
= × ×

 
 
 

 logi
ki

N i

N N
TFINDF f

S n
= × ×

 
 
 

The effects of these two weights are combined by
limiting the scope of the training set, i.e.,

log ()

log ()

i
ki k

P i

i
ki k

N i

P N
f document P

S n
TFIPNDF

N N
f document N

S n

∈

∈

× ×

=

× ×

  
  
  


 
   

Where,
ki
f is the frequency of word i in document k, N

is the number of documents in the collection, ni is the
number of documents where, word i occurs in the
collection, Pi is the number of positive documents
where word i occurs, Ni is the number of negative
documents where word i occurs, SP and SN are the
numbers of positive and negative documents in the
collection, respectively.

A document collection may contain documents of
many different lengths. It is useful to use normalized
weight assignments. A vector length normalization of
TFIPNDF is defined as:

2

1

2

1

log

()

log

log

()

log

i
ki

P i

k

M

r
kr

r P r

ki

i
ki

N i

k

M

r
kr

r N r

P N
f

S n
document P

P N
f

S n
x

N N
f

S n
document N

N N
f

S n

=

=

  
× ×  

  ∈


   × ×     
= 

  × ×  
  ∈

   
 × ×  
   

∑

∑

Where, M is the number of all the features.

4. Crawling Procedure

The web crawler has two jobs: Downloading pages and
finding URLs. The crawler begins with a group of seed
URLs, which are provided to the crawler as starting
parameters. In the process of crawling, once a web
page is downloaded, we parse the page’s DOM tree
after preprocessing (eliminating stopwords and
stemming) and then the page will be classified by a
conventional classifier with a high dimensional
dictionary. The relevant pages are added into the
relevant page set. Moreover, the page is parsed to pick
up all the anchor texts. If the page linked by the anchor
has been crawled or the anchor is in the queue of the
crawling (frontier), then it is removed. The rest of
anchor texts are computed to get the relevance, which
is treated as priority. The selectivity of link-context is
here: When the relevance of an anchor text meets the
requirement, it is added into the url_queue or frontier.
While once the relevance of the anchor text does not
meet the requirement, its link-context needs to be
extracted and calculate their relevance again. The
unvisited URL that has highest priority will be first
fetched to crawl. Whenever, a new batch of anchors is
inserted into the waiting queue, the queue will be
readjusted to create its new frontier. Figure 5 illustrates
the architecture of our topical crawler.

url_queue(frontier)

seedURLs

Thread1Thread2 Thread3

Priority Control

Retrieved Page
Set

Crawler

non-relevant
pages relevant pages

Classifier

Relevant Page
Set

extract all anchor texts

temp_queue

Anchor Texts

relevance(anchor
 text)>¦Ã

reorder url_queue

Y

N

 Extract Link
 Context

relevance(link
context)>¦Ã

Y

remove the anchor
text and its link

context

N

Figure 5. The architecture of topical crawler enhanced by selectively using link-context.

(3)

(4)

(5)

(6)

Topical Web Crawling for Domain-Specific Resource Discovery Enhanced by Selectively using Link-Context 201

5. Experiments and Results

In this section, several tests have been used to verify
whether a selectively using link-context technique
holds for efficient topical crawling. In the experiment,
we built crawlers as shown in Figure 6 that used
different techniques to crawl the web and tested our
method using multiple crawlers over 10 topics covering
hundreds of thousands of pages. Under the guide of
each method, crawler downloaded the pages according
to the strategies of web page processing.

Figure 6. Crawling system intereface (crawling instance on top:
science: computer science: Artificial intelligence topic in ODP,
http://www.dmoz.org/).

5.1. Performance Metrics

The two most common effectiveness measures, Harvest
rate and Target recall, were introduced to summarize
and compare search results. Intuitively, Harvest rate is
the fraction of pages crawled that are relevant to the
topic, which measures how well it is doing at rejecting
irrelevant web pages. We make this decision by using
our classifier [19] instead of manual relevance
judgment, which is costly. Target recall is the fraction
of relevant pages crawled, which measures how well it
is doing at finding all the relevant web pages. However,
the relevant set for any given topic is unknown in the
web, so the true Target recall is hardly to measure. In
view of this situation, we delineate a specific network,
which is regard as a virtual WWW in the experiment.
Given a set of seed URLs and a certain depth, the range
can be reached by a crawler using breadth-first
crawling strategy is the virtual web. We assume that the
target set T is the relevant set in the virtual web, C(t) is
the set of first t pages crawled. Therefore, we define
Harvest rate and Target recall as follows:

 | () |
 100%

| () |

C t T
Harvest rate

C t

∩
= ×

 | () |
 100%

| |

C t T
Target recall

T

∩
= ×

5.2. Data Sets

Our crawler is multi-threaded and implemented in
java, which provides for reasonable speed-up. We run
our algorithm using 20 threads of execution starting
from 100 relevant URLs (Seed URLs) on each topic
picked from Open Directory Project (ODP),
http://dmoz.org/. The ODP is a categorical directory of
URLs that is manually edited and relatively unbiased
by commercial motivations. The ODP provides the
data contained in its directory in RDF format through
its web site. We first download the RDF formatted
content file from the ODP web site. The content file
contains a list of ODP categories and the external
URLs or ODP relevant set corresponding to each
category. We treat ODP categories as potential topics
for our crawling experiments. The ODP relevant set
consists of URLs that have been judged relevant to the
category by human editors of ODP. We randomly
select 10 categories and the associated ODP relevant
sets. These selected categories serve as topics for our
crawling experiments. We further divide the ODP
relevant set for a selected topic into two random
disjoint subsets. The first set is the seeds (contain 100
URLs), which are used to initialize the crawl. The
second one serves to train our classifiers [19] used for
evaluating the performance.

5.3. The Comparison of Different Techniques

In this experiment, we built focused crawlers using
different techniques (Breadth-First, Best-First (full
page), Anchor text only [21], Anchor text using
decision tree [12], Link-context only [17] and
Selectively using link-context), which are described in
the following.

Breadth-First is a baseline crawler, the crawl
frontier of which is a FIFO queue. Each thread of the
crawler picks up the URL at the front of the queue and
adds new unvisited URLs to the end of it. The crawler
is multi-threaded as well as many pages are fetched
simultaneously. The crawler adds unvisited URLs to
the frontier only when the size of the frontier is less
than the maximum allowed. Best-First crawler treats a
web page as a set of words. It computes the similarity
of the page to the given topic and uses it as a score of
the unvisited URLs on the page. The URLs are then
added to the frontier that is maintained as a priority
queue using the scores. Each thread picks the best
URL in the frontier to crawl and inserts the unvisited
URLs at appropriate positions in the priority queue.
Anchor text is the ‘highlighted clickable text’ in the
web page, which appears within the bounds of an <A>
tag in source code. Since, the anchor text tends to
summarize information about the target page, it is a
good provider of the context of the unvisited URLs.
However, because of it is not informative enough,
anchor text only crawler, which guides the crawling
using anchor text, does not perform very well. Anchor
text using decision tree is an approach which uses a
decision tree on anchor texts of hyperlinks. Link-
context is a popular technique using link-context for

(7)

(8)

202 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

determining the priorities, which derives link-contexts
from HTML Tag Tree. The link context is a kind of
extended anchor text. By applying it in prioritizing the
unvisited URLs and guiding the crawling, the crawler’s
performance improves a lot. Selectively using link-
context is just described in this paper.

Figures 7 and 8 show the average Harvest rate and
average Target recall over ten topics in order to reflect
the comprehensive of our method. Breadth-First
without judging the unvisited URLs does not perform
well. Therefore, Breadth-First fetched large numbers of
irrelevant pages. It depends heavily on the localization
of the relevant pages and web sites. Best-First predicts
the relevance of the potential URLs by referring to the
whole context of the visited web page. It only groups
the unvisited URLs based on the page picked up from,
and there is no difference within each group. So, it has
low accuracy when there is a lot of noise in the page or
the page has multiple topics. Only analyzing the anchor
text may omit much useful textual information because
it is short and not informative enough. However,
extracting its link-contexts every time can not only
reduce the efficiency but also cause multiple mistakes.
Their weakness can be just overcome by our method. In
summary, the topical crawler enhanced by selectively
using link-context shows significant performance
improvement over the crawlers mentioned above.

A
ve
ra
ge
 H
ar
ve
st
 R
at
e

Number of Crawled Pages

Figure 7. Dynamic plot of harvest rate versus number of crawled
pages. Performance is average across topics and standard error bars

are also shown. The error bars correspond to ± standard error.

A
ve
ra
ge
 T
ar
ge
t
R
ec
al
l

Number of Crawled Pages

Figure 8. Dynamic plot of target recall versus number of crawled
pages. Performance is average across topics and standard error bars

are also shown. The error bars correspond to ± standard error.

In our experiment, we also set two counters to
calculate the times of combining link-contexts and the
times of using anchor text only, respectively. Besides,

the number of crawled pages is 5000 for each topic.
The comparison results as shown in Figure 9 show
that there are indeed some web pages can be judged
only using anchor text and harvest rate and target
recall as shown in Figures 7 and 8 also indicate the
improvement on the performance of topical crawlers.

 N
um

be
r
of
 P

ag
es

Ten Topics

Figure 9. The comparison results of using anchor text and link-
context in extracting web pages over ten topics.

6. Conclusions

With the flourish of WWW, people can have great
opportunity to benefit from the abundant information
in such an environment. Hence, it is an important task
to extract domain-specific web pages. In this paper, a
heuristic-based approach was presented focusing on
selectively using link-context to enhance topical
crawling. The approach this paper presented working
with the document object model tree as opposed to
raw HTML markup enables us to locate anchor text,
extract the corresponding link-context instead of the
whole page. tfc weighting scheme and our classifier
are implemented to calculate the relevance of the
anchor text or link-context. Treating anchor text and
its link-context respectively can both improve the
efficiency and bring the error rate down caused by the
misguidance of crawler. The comparison between
using anchor text and link-context also shows that
there are indeed many web pages can be retrieved only
using anchor text. The experimental using harvest rate
and target recall as performance measurement verified
that our approach significantly improved the focused
web crawling performance when dealing with web
pages in the complex web environment.

References

[1] Ali H., “Self Ranking and Evaluation Approach
for Focused Crawler Based on Multi-Agent
System,” the International Arab Journal of
Information Technology, vol. 5, no. 2, pp. 183-
191, 2008.

[2] Arya V. and Vadlamudi R., “An Ontology-
Based Topical Crawling Algorithm for
Accessing Deep Web Content,” in Proceedings
of the 3

rd
 International Conference on Computer

Topical Web Crawling for Domain-Specific Resource Discovery Enhanced by Selectively using Link-Context 203

and Communication Technology, Pradesh, India,
pp. 1-6, 2012.

[3] Brin S. and Page L., “The Anatomy of a Large-
Scale Hypertextual Web Search Engine,”
Computer Networks and ISDN Systems, vol. 30,
no.1, pp. 107-117, 1998.

[4] Chakrabarti S., Dom B., Gibson D., Kleinberg J.,
Raghavan P., and Rajagopalan S., “Automatic
Resource List Compilation by Analyzing
Hyperlink Structure and Associated Text,”
Computer Networks and ISDN Systems, vol. 30,
no. 1-7, pp. 65-74, 1998.

[5] De-Assis T., Laender F., Goncalves A., and Da
Silva A., “A Genre-Aware Approach to Focused
Crawling,” World Wide Web-interest and Web
Information Systems, vol. 12, no. 3, pp. 285-319,
2009.

[6] Duwairi R. and Al-Zubaidi R., “A Hierarchical K-
NN Classifier for Textual Data,” the International
Arab Journal of Information Technology, vol. 8,
no. 3, pp. 251-259, 2011.

[7] Eiron N. and McCurley S., “Analysis of Anchor
Text for Web Search,” in Proceedings of the 26th
ACM/SIGIR International Symposium on

Information Retrieval, Toronto, Canada, pp. 459-
460, 2003.

[8] Glover J., Tsioutsiouliklis K., Lawrence S.,
Pennock M., and Flake W., “Using Web Structure
for Classifying and Describing Web Pages,” in
Proceedings of the 11

th
 International Conference

on World Wide Web, Hawaii, USA, pp. 562-569,
2002.

[9] Hersovici M., Jacovi M., Maarek S., Pelleg D.,
Shtalhaim M., and Ur S., “The Shark-Search
Algorithm: An Application: Tailored Web Site
Mapping,” Computer Networks and ISDN

Systems, vol. 30, no. 1, pp. 317-326, 1998.
[10] Iwazume M., Shirakami K., Hatadani K., Takeda

H., and Nishida T., “Iica: An Ontology-Based
Internet Navigation System,” in Proceedings of
the 13

th
 National Conference on Artificial

Intelligence Workshop on Internet Based

Information Systems, USA, Oregon, pp. 65-71,
1996.

[11] Jung J., “Towards Open Decision Support
Systems Based on Semantic Focused Crawling,”
Expert systems with applications, vol. 36, no. 2,
pp. 3914-3922, 2009.

[12] Li J., Furuse K., and Yamaguchi K., “Focused
Crawling by Exploiting Anchor Text using
Decision Tree,” in Proceedings of the 14th
International Conference on World Wide Web,
Chiba, Japan, pp. 1190-1191, 2005.

[13] Liu Y. and Milios E., “Probabilistics for Focused
Web Crawling,” Computational Intelligence, vol.
28, no. 3, pp. 289-328, 2012.

[14] McBryan O., “GENVL and WWWW: Tools for
Taming the Web,” in Proceedings of the 1st

International Conference on the World Wide

Web, Geneva, Switzerland, pp. 79-90, 1994.
[15] Mouton A. and Marteau F., “Exploiting Routing

Information Encoded into Backlinks to Improve
Topical Crawling,” in Proceedings of

International Conference of soft computing and

pattern recognition, Malacca, Malaysia, pp. 659-
664, 2009.

[16] Nath R. and Bal S., “A Novel Mobile Crawler
System Based on Filtering off Non-Modified
Pages for Reducing Load on the Network,” the
International Arab Journal of Information

Technology, vol. 8, no. 3, pp. 272-279, 2011.
[17] Pant G., “Deriving Link-Context from HTML

Tag Tree,” in Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, CA, USA
2003.

[18] Peng T., Liu L., and Zuo W., “PU Text
Classification Enhanced by Term Frequency-
Inverse Document Frequency-Improved
Weighting,” Concurrency and Computation:
Practice and Experience, vol. 26, pp. 728-741,
2014.

[19] Peng T., Zuo W., and He F., “SVM Based
Adaptive Learning Method for Text
Classification from Positive and Unlabeled
Documents,” Knowledge and Information

Systems, Springer, vol. 16, no. 3, pp. 281-301,
2008.

[20] Salton G. and Buckley C., “Term Weighting
Approaches in Automatic Text Retrieval,”
Information Processing and Management, vol.
24, no. 5, pp. 513-523, 1988.

[21] Tateishi K., Kawai H., Akamine S., Matsuda K.,
and Fukushima T., “Evaluation of Web Retrieval
Method using Anchor Text,” in Proceedings of
the 3

rd
 NTCIR Workshop, Tokyo, Japan, pp. 25-

29, 2002.
[22] Torkestani A., “An Adaptive Focused Web

Crawling Algorithm Based on Learning
Automata,” Applied Intelligence, vol. 37, no. 4,
pp. 586-601, 2012.

[23] Yuvarani M., Iyengar N., and Kannan A.,
“LSCrawler: A Framework for an Enhanced
Focused Web Crawler Based on Link
Semantics,” in Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence,
Hong Kong, China, pp. 794-797, 2006.

[24] Zhang X. and Lu J., “SCTWC: An Online Semi-
Supervised Clustering Approach to Topical Web
Crawlers,” Applied Soft Computing, vol. 10, no.
2, pp. 490-495, 2010.

204 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

Lu Liu received her BS in computer
science from Jilin University in 2012.
She is currently a PhD student at the
College of Computer Science and
Technology, Jilin University. Her
research interests include Web
mining, information retrieval, and

machine learning. She was a visiting student at
University of Illinois at Urbana-Champaign in the
Department of Computer Science (2012-2013).

Tao Peng received his PhD and MSc
in computer science from Jilin
University in 2007 and 2004,
respectively. He is currently an
associate professor at the College of
Computer Science and Technology,
Jilin University. His research

interests include Web mining, information retrieval, and
machine learning. He was a postdoctoral researcher at
University of Illinois at Urbana-Champaign in the
Department of Computer Science (2012-2013).

Wanli Zuo is currently a professor at
the College of Computer Science and
Technology, and Key Laboratory of
Symbol Computation and
Knowledge Engineering of the
Ministry of Education, Jilin
University. His research interests

include database theory, data mining, Web mining,
machine learning, and web search engine.

