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Abstract: Cloud computing is the development of distributed computing, parallel computing and grid computing, or defined 

as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is 

related to task scheduling. Cloud task scheduling is an NP-hard optimization problem and many meta-heuristic algorithms 

have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and 

the types of tasks. In this paper, a cloud task scheduling policy based on Ant Colony Optimization (ACO) algorithm compared 

with different scheduling algorithms First Come First Served (FCFS) and Round-Robin (RR), has been presented. The main 

goal of these algorithms is minimizing the makespan of a given tasks set. ACO is random optimization search approach that 

will be used for allocating the incoming jobs to the virtual machines. Algorithms have been simulated using cloudsim toolkit 

package. Experimental results showed that cloud task scheduling based on ACO outperformed FCFS and RR algorithms.  
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1. Introduction 

Cloud computing is associated with a new paradigm for 

provisioning different computing resources, usually 

addressed from three fundamental aspects: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS) [20]. Due to 

fast growth of cloud computing in the IT landscape, 

several definitions have emerged. The cloud computing 

can be defined as a type of parallel and distributed 

system consisting of a collection of inter-connected and 

virtualized computers that are dynamically provisioned 

and presented as one or more unified computing 

resource(s) based on service-level agreements 

established through negotiation between the service 

provider and consumers [8]. With the support of 

virtualization technology cloud platforms enable 

enterprises to lease computing power in the form of 

virtual machines to users [6]. Because hundreds of 

thousands of Virtual Machines (VMs) are used, it is 

difficult to manually assign tasks to computing 

resources in clouds [17]. So, we need an efficient 

algorithm for task scheduling in the cloud environment. 

 A good task scheduler should adapt its scheduling 

strategy to the changing environment and the types of 

tasks [7]. Therefore, a dynamic task scheduling 

algorithm, such as Ant Colony Optimization (ACO), is 

appropriate for clouds. ACO algorithm is a random 

search algorithm [4]. This algorithm uses a positive 

feedback mechanism and imitates the behaviour of real 

ant colonies in nature to search for food and to connect 

to each other by pheromone laid on paths travelled. 

Many researchers used ACO to solve NP-hard problems 

such as travelling salesman problem, graph colouring 

problem, vehicle routing problem and scheduling 

problem [5, 8]. In this paper, we use ACO algorithm to 

find the optimal resource allocation for tasks in the 

dynamic cloud system to minimize the makespan of 

tasks on the entire system. Then, this scheduling 

strategy was simulated using the cloudsim toolkit 

package. Experimental results compared to First Come 

First Served (FCFS) and Round Robin (RR) showed 

the ACO algorithm satisfies expectation. The 

organization of paper is as following: Section 2 

introduces background and scans the related work. 

Cloudsim toolkit is presented in section 3. Section 4 

covers the basic ACO and the details of cloud 

scheduling based ACO algorithm. The implementation 

and simulation results are seen in section 5. Finally, 

section 6 concludes this paper. 

 

2. Background and Related Work 

2.1. Cloud Computing Environment  

Cloud computing is a virtual pool of resources which 

are provided to users. It gives users virtually unlimited  

pay-per-use  computing  resources  without  the burden 

of managing the underlying  infrastructure. The goal of 

cloud computing service providers is to use the 

resources efficiently and gain maximum profit [16]. 

This leads to task scheduling as a core and challenging 

issue in cloud computing. Cloud has an extra layer 

called virtualization layer. This layer acts as a creation, 

execution, management and hosting environment for 

application services [11]. The modelled VMs in the 

above virtual environment are contextually isolated 

but, still they need to share computing resources-
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processing cores, system bus etc., [21]. Hence, the 

amount of hardware resources available to each VM is 

constrained by the total processing powers such CPU, 

the memory and system bandwidth available within the 

host [21].  
 

2.2. Combinatorial Optimization Problem 

In combinatorial optimization problems, we are looking 

for an object from a finite or possibly countably infinite 

set. This object is typically an integer number, a subset, 

a permutation or a graph structure [15]. A combinatorial 

optimization problem P=(S, f) can be defined by:  

• A set of variables X ={x1, x2, …, xn}. 

• Variable domains D1, …, Dn. 

• Constraints among variables. 

• An objective function f to be minimized where, 
 f: D1*…* Dn →R

+
. 

The set of all possible feasible assignments is: S={s= 

{(x1,v1), …, (xn,vn)}|vi ∈  Di, s satisfies all the constraints} 

S is usually called a search (or solution) space, as each 

element of the set can be seen as a candidate solution. 

To solve a combinatorial optimization problem one has 

to find a solution s* ∈  S with minimum objective 

function value [15]. Examples for, combinatorial 

optimization problems are the Travelling Salesman 

Problem (TSP), the Quadratic Assignment Problem 

(QAP), time tabling and scheduling problems. Due to 

the practical importance of combinatorial optimization 

problems, many algorithms to tackle them have been 

developed. These algorithms can be classified as either 

complete or approximate algorithms. Complete 

algorithms are guaranteed to find for every finite size 

instance of a combinatorial optimization problem an 

optimal solution in bounded time. In approximate 

methods we sacrifice the guarantee of finding optimal 

solutions for the sake of getting good solutions in a 

significantly reduced amount of time especially for 

combinatorial optimization problems that are NP-hard 

[18]. Among the basic approximate methods we usually 

distinguish between constructive methods and local 

search methods. Constructive algorithms generate 

solutions from scratch by adding components to an 

initially empty partial solution until a solution is 

complete. Local search algorithms start from some 

initial solution and iteratively try to replace the current 

solution by a better solution in an appropriately defined 

neighbourhood of the current solution [15]. In past, four 

decades, a new kind of approximate algorithm has 

emerged which basically tries to combine basic 

heuristic methods in higher level frameworks aimed at 

efficiently and effectively exploring a search space. 

This class of algorithms includes ACO, simulated 

annealing, tabu search and others [18]. A metaheuristic 

is formally defined as an iterative generation process 

which guides a subordinate heuristic by combining 

intelligently different concepts for exploring and 

exploiting the search space, learning strategies are 

used to structure information in order to find 

efficiently near-optimal solutions [18]. 

 

2.3. Related Work 

Millions of user share cloud resources by submitting 

their computing task to the cloud system. Scheduling  

these millions of task is a challenge to cloud  

computing environment. Optimal resource allocation  

or task scheduling in the cloud should decide  optimal  

number of  systems  required in the cloud so  that the 

total cost is minimized. Cloud service scheduling is 

categorized at user level and system level [6]. At user 

level scheduling deals with problems raised by service 

provision between providers and customers [17, 21]. 

The system level scheduling handles resource 

management within data centers [8, 11, 16]. A novel 

approach  of heuristic-based request scheduling at each 

server, in each of the  geographically distributed data 

centers, to globally minimize  the  penalty  charged  to  

the  cloud  computing system  is  proposed  in  [1]. A 

new fault tolerant scheduling algorithm MaxRe is 

proposed in [23]. This algorithm incorporates the 

reliability analysis into the active replication schema 

and exploits a dynamic number of replicas for 

different tasks. Scheduling based genetic algorithm is 

proposed in [12, 14, 22]. This algorithms optimizes the 

energy  consumption, carbon dioxide emissions and 

the generated profit of a geographically distributed 

cloud computing infrastructure. The QoS Min-Min 

scheduling algorithm is proposed in [10]. An 

optimized algorithm for VM placement in cloud 

computing scheduling based on multi-objective ant 

colony system algorithm in cloud computing is 

proposed in [8]. Scheduling in grid environment based 

ACO algorithms are proposed in [13, 14, 19]. The 

existing scheduling techniques in clouds, consider 

parameter or various parameters like performance, 

makespan, cost, scalability, throughput, resource 

utilization, fault tolerance, migration time or 

associated overhead. In this paper, cloud task 

scheduling based ACO approach has been presented 

for allocation of incoming jobs to VMs considering in 

our account only makespan to help in utilizing the 

available resources optimally, minimize the resource 

consumption and achieve a high user satisfaction.  

 

3. Cloudsim 

Simulation is a technique where a program models the 
behaviour of the system (CPU, network etc.,) by 
calculating the interaction between its different entities 
using mathematical formulas, or actually capturing and 
playing back observations from a production system 
[3]. Cloudsim is a framework developed by the 
GRIDS laboratory of university of Melbourne which 
enables seamless modelling, simulation and 
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experimenting on designing cloud computing 
infrastructures [3].  

 

3.1. Cloudsim Characteristics 

Cloudsim can be used to model datacenters, host, 

service brokers, scheduling and allocation policies of a 

large scaled cloud platform. Hence, the researcher has 

used cloudsim to model datacenters, hosts, VMs for 

experimenting in simulated cloud environment [9]. 

Cloud supports VM provisioning at two levels: 

1. At the host level: It is possible to specify how much 

of the overall processing power of each core will be 

assigned to each VM known as VM policy 

Allocation.  

2. At the VM level: The VM assigns a fixed amount of 

the available processing power to the individual 

application services (task units) that are hosted 

within its execution engine known as VM 

Scheduling [9]. 

In this paper, the ACO algorithm will be used for 

allocation of incoming batch jobs to VMs at the VM 

level (VM Scheduling). All the VMs in a data center 

not necessary have a fixed amount of processing power 

but, it can vary with different computing nodes, and 

then to these VMs of different processing powers, the 

tasks/ requests (application services) are assigned or 

allocated to the most powerful VM and then to the 

lowest and so on. Hence, the performance parameter 

such as overall makespan time is optimized (increasing 

resource utilization ratio) and the cost will be 

decreased. 

 

3.2. Cloudsim Data Flow 

Each datacenter entity registers with the Cloud 
Information Service registry (CIS). CIS provides 
database level match-making services; it maps user 
requests to suitable cloud providers. The data center 
broker consults the CIS service to obtain the list of 
cloud providers who can offer infrastructure services 
that match application’s quality of service, hardware 
and software requirements. In the case match occurs the 
broker deploys the application with the cloud that was 
suggested by the CIS [3].  
 

3.3. The Cloudsim Platform 

The main parts of cloudsim that are related to our 

experiments in this paper and the relationship between 

them are shown in Figure 1. 

• CIS: It is an entity that registers data center entity 

and discovers the resource. 

• Data Center: It models the core infrastructure-level 

services (hardware), which is offered by cloud 

providers. It encapsulates a set of compute hosts that 

can either be homogeneous or heterogeneous. 

• Data Center Broker: It models a broker, which is 

responsible for mediating negotiations between 

SaaS and cloud providers. 

• VM Allocation: A provisioning policy which is run 

in data center level helps to allocate VMs to hosts. 

• VM Scheduler: This is an abstract class 

implemented by a host component that models the 

policies (space-shared, time-shared) required for 

allocating processor cores to VMs. It is run on 

every host in data center. 

• Host: It models a physical server. 

• VM: It models a VM which is run on cloud host to 

deal with the cloudlet. 

• Cloudlet: It models the cloud-based application 

services. 

• Cloudlet Scheduler: This abstract class is extended 

by the implementation of different policies that 

determine the share (space-shared, time-shared) of 

processing power among cloudlets in a VM [9]. 

 

 
     

Figure 1. Main parts of cloudsim related to our experiments. 

 

4. Cloud Scheduling Based ACO 

The basic idea of ACO is to simulate the foraging 

behaviour of ant colonies. When an ants group tries to 

search for the food, they use a special kind of chemical 

to communicate with each other. That chemical is 

referred to as pheromone. Initially, ants start search 

their foods randomly. Once the ants find a path to food 

source, they leave pheromone on the path. An ant can 

follow the trails of the other ants to the food source by 

sensing pheromone on the ground. As this process 

continues, most of the ants attract to choose the 

shortest path as there have been a huge amount of 

pheromones accumulated on this path [4]. The 

advantages of the algorithm are the use of the positive 

feedback mechanism, inner parallelism and extensible. 

The disadvantages are overhead and the stagnation 

phenomenon, or searching for to a certain extent, all 

individuals found the same solution exactly, can’t 

further search for the solution space, making the 

algorithm converge to local optimal solution [4]. It is 
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clear that an ACO algorithm can be applied to any 

combinatorial problem as far as it is possible to define: 

1. Problem representation which allows ants to 

incrementally build/ modify solutions. 

2. The heuristic desirability η of edges. 

3. A constraint satisfaction method which forces the 

construction of feasible solutions. 

4. A pheromone updating rule which specifies how to 

modify pheromone trail τ on the edges of the graph. 

5. A probabilistic transition rule of the heuristic 

desirability and of pheromone trail [2]. 

In this section, cloud task scheduling based ACO 

algorithm will be proposed. Decreasing the makespan 

of tasks is the basic ideas from the proposed method. 

1. Problem Representation: The problem is represented 

as a graph G=(N, E) where the set of nodes N 

represents the VMs and tasks and the set of edges E 

the connections between the task and VM as shown 

in Figure 2. All ants are placed at the starting VMs 

randomly. During an iteration ants build solutions to 

the cloud scheduling problem by moving from one 

VM to another for next task until they complete a 

tour (all tasks have been allocated). Iterations are 

indexed by t, 1< t< tmax, where tmax is the 

maximum number of iterations allowed. 

 
Figure 2. Problem representation of task scheduling based ACO. 

 

2. Heuristic Desirability: A very simple heuristic is 
used the inverse of expected execution time of the 
task i on VM j. 

3. Constraint Satisfaction: The constraint satisfaction 
method is implemented as a simple, short-term 
memory of the visited VM, in order to, avoid visiting 
a VM more than once in one ACO procedure and 
minimize time of the assigned couplings (task and 
VM). 

4. Pheromone Updating Rule: It is the one typical of 
ant system as shown in Equations 3, 4, 5, 6 and 7. 
Pheromone evaporates on all edges and new 
pheromone is deposited by all ants on visited edges; 
its value is proportional to the quality of the solution 
built by the ants. 

5. Probabilistic Transition Rule: The probabilistic 
transition rule, called random proportional, is the one 
typical of ant system as shown in Equation 1. 

The pseudo code of the proposed ACO algorithm and 
scheduling based ACO algorithm are shown in 
Algorithms 1 and 2 respectively. 

The main operations of the ACO procedure are 
initializing pheromone, choosing VM for next task 
and pheromone updating as following: 

Algorithm 1:  ACO algorithm 

Input: List of Cloudlet (Tasks) and List of VMs  

Output: The best solution for tasks allocation on VMs Steps: 

 1. Initialize:  

     Set Current_iteration_t=1. 

     Set Current_optimal_solution=null. 

     Set Initial value τij(t)=c for each path between tasks and VMs. 

2.  Place m ants on the starting VMs randomly. 

3.  For k:=1 to m do 

   Place the starting VM of the k-th ant in tabuk. 

   Do ants_trip while all ants don't end their trips 

                Every ant chooses the VM for the next task according to 

                Equation 1. 

               Insert the selected VM to tabuk. 

   End Do 

4. For k:=1 to m do  

          Compute the length Lk of the tour described by the k-th ant 

          according to Equation 4. 

          Update the current_optimal_solution with the best founded  

          solution. 

5. For every edge (i, j), apply the local pheromone  according to 

    Equation 5. 

6. Apply global pheromone update according to Equation 7. 

7. Increment Current_iteration_t by one. 

8. If (Current_iteration_t < tmax)   

        Empty all tabu lists. 

        Goto step 2 

    Else 

        Print current_optimal_solution. 

    End If 

9. Return 

Algorithm 2: Scheduling based ACO algorithm 

Input: Incoming Cloudlets and VMs List 

Output: Print “scheduling completed and waiting for more 

Cloudlets”Steps: 

 1. Set Cloudlet List=null and temp_List_of_Cloudlet=null 

 2. Put any incoming Cloudlets in Cloudlet List in order of their 

arriving time  

 3. Do ACO_P while Cloudlet List not empty or there are more  

     incoming Cloudlets 

     Set n= size of VMs list 

     If (size of Cloudlet List greater than n) 

           Transfer the first arrived n Cloudlets from Cloudlet List 

           and put them on temp_List_of_Cloudlet 

     Else 

           Transfer all Cloudlets.from Cloudlet List and put them on 

           temp_List_of_Cloudlet 

     End If 

          Execute ACO procedure with input temp_List_of_Cloudlet  

          and n 

     End Do 

 4. Print “scheduling completed and waiting for more Cloudlets” 

5.  Stop 

4.1. Initializing Pheromone 

The amount of virtual pheromone trail τij(t) on the 
edge connects task i to VMj. The initial amount of 
pheromone on edges is assumed to be a small positive 
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constant τ0 (homogeneous distribution of pheromone at 
time t=0). 

 

4.2.  VM Choosing Rule for Next Task 

During an iteration of the ACO algorithm each ant k,    
k=1, ..., m (m is the number of the ants), builds a tour 
executing n (n is number of tasks) steps in which a 
probabilistic transition rule is applied. The k-ant 
chooses VMj for next task i with a probability that is 
computed by Equation 1. 
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Where,  τij(t) shows the pheromone concentration at the 
t time on the path between task i and VMj, allowed 
k={0,1,…,n-1}-tabuk  express the allowed VMs for ant k 
in next step and tabuk   records  the traversed VM by 
ant k, and ηij=1/dij  is the visibility for the t moment, 
calculated with heuristic algorithm and dij which 
expresses the expected execution time and transfer time 
of the task i on VMj can be computed with Equation 2. 

               
_

_ * _ _
ij

j j j

TL Task InputFileSizeid
Pe num Pe mips VM bw

= +  

Where, TL_Taski is the total length of the task that has 
been submitted to VMj, Pe_numj is the number of VMj 
processors, Pe_mipsj is the MIPS of each processor of 
VMj, InputFileSize is the length of the task before 
execution and VM_bwj is the communication bandwidth 
ability of the VMj. Finally, the two parameters α and β 
in Equation 1 are used to control the relative weight of 
the pheromone trail and the visibility information 
respectively. 

 

4.3. Pheromone Updating 

After the completion of a tour, each ant k lays a quantity 
of pheromone ∆ τij

k
(t) computed by Equation 3 on each 

edge (i,  j) that it has used. 
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Where, T
k
(t) is the tour done by ant k at iteration t, L

k
(t) 

is its length (the expected makespan of this tour) that is 

computed by Equation 4 and Q is a adaptive parameter. 

                      
( ) argmax { ( )}k

j J i IJ ij
L t sum d∈ ∈=  

Where, ij is the set of tasks that assigned to the VMj. 

After each iteration pheromone updating which is 

applied to all edges is refreshed by Equation 5. 

                       
( ) (1 ) ( ) ( )ij ij ijt t tτ ρ τ τ= − + ∆  

Where, ρ is the trail decay, 0< ρ< 1 and ∆τij(t) is 
computed by Equation 6. 

                          
1( ) ( )

km
kij ij

t tτ τ=∑∆ = ∆  

When all ants complete a traverse, an elitist is an ant 

which reinforces pheromone on the edges belonging to 

the best tour found from the beginning of the trial (T
+
), 

by a quantity Q/L
+
, where L

+
 is the length of  the best 

tour (T
+
). This reinforcement is called global 

pheromone update and computed by Equation 7. 

                      

+
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5. Implementation and Experimental 

Results 

We assume that tasks are mutually independent i.e., 

there is no precedence constraint between tasks and 

tasks are not preemptive and they cannot be 

interrupted or moved to another processor during their 

execution. 

 

5.1. Parameters Setting of Cloudsim 

The experiments are implemented with 10 Datacenters 

with 50 VMs and 100-1000 tasks under the simulation 

platform. The length of the task is from 1000 Million 

Instructions (MI) to 20000 MI. The parameters setting 

of cloud simulator are shown in Table 1. 

Table 1. Parameters setting of cloudsim. 

Entity Type Parameters Value 

Task (cloudlet) 
Length of Task 1000-20000 

Total Number of Task 100-1000 

Virtual Machine 

Total Number of VMs 50 

MIPS 500-2000 

VM Memory(RAM) 256-2048 

Bandwidth 500-1000 

Cloudlet Scheduler 
Space_shared and 

Time_shared 

Number of PEs Requirement 1-4 

Data Center 

Number of Datacenter 10 

Number of Host 2-6 

VM Scheduler 
Space_shared and 

Time_shared 

 
5.2.  ACO Parameters Evaluation and Setting 

We implemented the ACO algorithm and investigated 

their relative strengths and weaknesses by 

experimentation. The parameters (α, β, p, tmax, m the 

number of ants and Q) considered here are those that 

affect directly or indirectly the computation of the 

algorithm. We tested several values for each parameter 

while all the others were held constant on 100 tasks.  

The default value of the parameters was α=1, β=1, 

ρ=0.5, Q=100, tmax=150 and m=8. In each experiment 

only one of the values was changed, The values tested 

were: α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, β ∈ {0, 0.5, 1.5, 2, 

2.5, 3}, ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, Q ∈ {1, 100, 500, 

1000}, tmax ∈ {50, 75, 100, 150} and m ∈ {1, 5, 8, 10, 

15, 20}. We also use the time in the cloudSim to 

record the makespan. The ACO performance for 
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different values of parameters (α, β, p, tmax, m the 

number of ants and Q) has been evaluated. The ACO 

performance for different values of parameters (m: The 

number of ants, tmax, Q, ρ, α and  β) are shown from 

Figures 3 to 8. It can be seen that the best value of α is 

0.3, the best value of β is 1, the best value of ρ is 0.4, 

the best value of Q is 100, the best value of tmax is 150 

and the best values of m is 10. In the following 

experiments we select the best value for α, β, ρ, Q and 

m parameters but, the value 100 is selected for  the tmax 

parameter to reduce the overhead of the ACO 

algorithm. Table 2 shows the selected best parameters 

of ACO. 
 

 

Figure 3.  ACO performance for different values of ant numbers. 
 

 

Figure 4.  ACO performance for different values of tmax. 
 

 

Figure 5.  ACO performance for different values of Q. 

 

Figure 6.  ACO performance for different values of RHO. 

 

Figure 7.  ACO performance for different values of alpha. 

 

Figure 8.  ACO performance for different values of beta. 

 
Table 2. Selected parameters Of ACO. 

Parameter α β ρρρρ Q m tmax 

Value 0. 3 1 0.4 100 10 100 

 

5.3. Implementation Results of ACO, FCFS 

and RR  

The following experiments, we compared the average 

makespan with different tasks set. The average 

makespan of the ACO, RR and FCFS algorithms are 

shown in Figure 9. It can be seen that, with the 

increase of the quantity task, ACO takes the time less 

than RR and FCFS algorithms. This indicates that 

ACO algorithm is better than RR and FCFS 

algorithms. 
 

 
Figure 9. Average makespan of FCFS, RR and ACO. 

 

In statistics and probability theory, standard 

deviation (σ) shows how much variation or dispersion 

exists from the average (mean), or expected value. A 

low standard deviation indicates that the data points 

tend to be very close to the mean; high standard 

deviation indicates that the data points are spread out 

over a large range of values (solving stagnation 

problem). Since, the standard deviation of never drops 
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to zero, we are assured that the algorithm actively 

searches solutions which differ from the best-so-far 

found, which gives it the possibility of finding better 

ones. Figure 10 shows the evolution of the standard 

deviation of the ACO over 10 runs. 

 
Figure 10. Standard deviation of ACO over 10 runs. 

 

The Degree of Imbalance (DI) measures the 

imbalance among VMs, which is computed by 

Equations 8 and 9. 

                         jj

i
mipsPenumPe

TasksTL
T

_*_

_
=  

Where, TL_Tasks is the total length of tasks which are 

submitted to the VMi. 

                           

max min

avg

T T
DI

T

−
=  

Where, Tmax, Tmin and Tavg are the maximum, minimum 

and average Ti respectively among all VMs. The 

average DI of each algorithm with the number of tasks 

varying from 100 to 1000 is shown in Figure 11. It can 

be seen that the ACO can achieve better system load 

balance than RR and FCFS algorithms. 

 
Figure 11. Average DI of FCFS, RR and ACO. 

 

6. Conclusions and Future Work 

In this paper, ACO algorithm for achieving cloud 

computing tasks scheduling has been presented. Firstly, 

the best values of parameters for ACO algorithm, 

experimentally determined. Then, the ACO algorithm 

in applications with the number of tasks varying from 

100 to 1000 evaluated. Simulation results demonstrate 

that ACO algorithm outperforms FCFS and RR 

algorithms. In future work the effect of precedence 

between tasks and load balancing will be considered. 

Also, the comparison between our approach and other 

metaheuristics approaches will be performed. 
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