
The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015 129

Cloud Task Scheduling Based on Ant Colony

Optimization

Medhat Tawfeek, Ashraf El-Sisi, Arabi Keshk and Fawzy Torkey

Faculty of Computers and Information, Menoufia University, Egypt

Abstract: Cloud computing is the development of distributed computing, parallel computing and grid computing, or defined

as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is

related to task scheduling. Cloud task scheduling is an NP-hard optimization problem and many meta-heuristic algorithms

have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and

the types of tasks. In this paper, a cloud task scheduling policy based on Ant Colony Optimization (ACO) algorithm compared

with different scheduling algorithms First Come First Served (FCFS) and Round-Robin (RR), has been presented. The main

goal of these algorithms is minimizing the makespan of a given tasks set. ACO is random optimization search approach that

will be used for allocating the incoming jobs to the virtual machines. Algorithms have been simulated using cloudsim toolkit

package. Experimental results showed that cloud task scheduling based on ACO outperformed FCFS and RR algorithms.

Keywords: Cloud computing, task scheduling, makespan, ACO, cloudsim.

Received July 3, 2013; accepted September 2, 2013; published online April 23, 2014

1. Introduction

Cloud computing is associated with a new paradigm for

provisioning different computing resources, usually

addressed from three fundamental aspects:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS) [20]. Due to

fast growth of cloud computing in the IT landscape,

several definitions have emerged. The cloud computing

can be defined as a type of parallel and distributed

system consisting of a collection of inter-connected and

virtualized computers that are dynamically provisioned

and presented as one or more unified computing

resource(s) based on service-level agreements

established through negotiation between the service

provider and consumers [8]. With the support of

virtualization technology cloud platforms enable

enterprises to lease computing power in the form of

virtual machines to users [6]. Because hundreds of

thousands of Virtual Machines (VMs) are used, it is

difficult to manually assign tasks to computing

resources in clouds [17]. So, we need an efficient

algorithm for task scheduling in the cloud environment.

 A good task scheduler should adapt its scheduling

strategy to the changing environment and the types of

tasks [7]. Therefore, a dynamic task scheduling

algorithm, such as Ant Colony Optimization (ACO), is

appropriate for clouds. ACO algorithm is a random

search algorithm [4]. This algorithm uses a positive

feedback mechanism and imitates the behaviour of real

ant colonies in nature to search for food and to connect

to each other by pheromone laid on paths travelled.

Many researchers used ACO to solve NP-hard problems

such as travelling salesman problem, graph colouring

problem, vehicle routing problem and scheduling

problem [5, 8]. In this paper, we use ACO algorithm to

find the optimal resource allocation for tasks in the

dynamic cloud system to minimize the makespan of

tasks on the entire system. Then, this scheduling

strategy was simulated using the cloudsim toolkit

package. Experimental results compared to First Come

First Served (FCFS) and Round Robin (RR) showed

the ACO algorithm satisfies expectation. The

organization of paper is as following: Section 2

introduces background and scans the related work.

Cloudsim toolkit is presented in section 3. Section 4

covers the basic ACO and the details of cloud

scheduling based ACO algorithm. The implementation

and simulation results are seen in section 5. Finally,

section 6 concludes this paper.

2. Background and Related Work

2.1. Cloud Computing Environment

Cloud computing is a virtual pool of resources which

are provided to users. It gives users virtually unlimited

pay-per-use computing resources without the burden

of managing the underlying infrastructure. The goal of

cloud computing service providers is to use the

resources efficiently and gain maximum profit [16].

This leads to task scheduling as a core and challenging

issue in cloud computing. Cloud has an extra layer

called virtualization layer. This layer acts as a creation,

execution, management and hosting environment for

application services [11]. The modelled VMs in the

above virtual environment are contextually isolated

but, still they need to share computing resources-

130 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

processing cores, system bus etc., [21]. Hence, the

amount of hardware resources available to each VM is

constrained by the total processing powers such CPU,

the memory and system bandwidth available within the

host [21].

2.2. Combinatorial Optimization Problem

In combinatorial optimization problems, we are looking

for an object from a finite or possibly countably infinite

set. This object is typically an integer number, a subset,

a permutation or a graph structure [15]. A combinatorial

optimization problem P=(S, f) can be defined by:

• A set of variables X ={x1, x2, …, xn}.

• Variable domains D1, …, Dn.

• Constraints among variables.

• An objective function f to be minimized where,
 f: D1*…* Dn →R

+
.

The set of all possible feasible assignments is: S={s=

{(x1,v1), …, (xn,vn)}|vi ∈ Di, s satisfies all the constraints}

S is usually called a search (or solution) space, as each

element of the set can be seen as a candidate solution.

To solve a combinatorial optimization problem one has

to find a solution s* ∈ S with minimum objective

function value [15]. Examples for, combinatorial

optimization problems are the Travelling Salesman

Problem (TSP), the Quadratic Assignment Problem

(QAP), time tabling and scheduling problems. Due to

the practical importance of combinatorial optimization

problems, many algorithms to tackle them have been

developed. These algorithms can be classified as either

complete or approximate algorithms. Complete

algorithms are guaranteed to find for every finite size

instance of a combinatorial optimization problem an

optimal solution in bounded time. In approximate

methods we sacrifice the guarantee of finding optimal

solutions for the sake of getting good solutions in a

significantly reduced amount of time especially for

combinatorial optimization problems that are NP-hard

[18]. Among the basic approximate methods we usually

distinguish between constructive methods and local

search methods. Constructive algorithms generate

solutions from scratch by adding components to an

initially empty partial solution until a solution is

complete. Local search algorithms start from some

initial solution and iteratively try to replace the current

solution by a better solution in an appropriately defined

neighbourhood of the current solution [15]. In past, four

decades, a new kind of approximate algorithm has

emerged which basically tries to combine basic

heuristic methods in higher level frameworks aimed at

efficiently and effectively exploring a search space.

This class of algorithms includes ACO, simulated

annealing, tabu search and others [18]. A metaheuristic

is formally defined as an iterative generation process

which guides a subordinate heuristic by combining

intelligently different concepts for exploring and

exploiting the search space, learning strategies are

used to structure information in order to find

efficiently near-optimal solutions [18].

2.3. Related Work

Millions of user share cloud resources by submitting

their computing task to the cloud system. Scheduling

these millions of task is a challenge to cloud

computing environment. Optimal resource allocation

or task scheduling in the cloud should decide optimal

number of systems required in the cloud so that the

total cost is minimized. Cloud service scheduling is

categorized at user level and system level [6]. At user

level scheduling deals with problems raised by service

provision between providers and customers [17, 21].

The system level scheduling handles resource

management within data centers [8, 11, 16]. A novel

approach of heuristic-based request scheduling at each

server, in each of the geographically distributed data

centers, to globally minimize the penalty charged to

the cloud computing system is proposed in [1]. A

new fault tolerant scheduling algorithm MaxRe is

proposed in [23]. This algorithm incorporates the

reliability analysis into the active replication schema

and exploits a dynamic number of replicas for

different tasks. Scheduling based genetic algorithm is

proposed in [12, 14, 22]. This algorithms optimizes the

energy consumption, carbon dioxide emissions and

the generated profit of a geographically distributed

cloud computing infrastructure. The QoS Min-Min

scheduling algorithm is proposed in [10]. An

optimized algorithm for VM placement in cloud

computing scheduling based on multi-objective ant

colony system algorithm in cloud computing is

proposed in [8]. Scheduling in grid environment based

ACO algorithms are proposed in [13, 14, 19]. The

existing scheduling techniques in clouds, consider

parameter or various parameters like performance,

makespan, cost, scalability, throughput, resource

utilization, fault tolerance, migration time or

associated overhead. In this paper, cloud task

scheduling based ACO approach has been presented

for allocation of incoming jobs to VMs considering in

our account only makespan to help in utilizing the

available resources optimally, minimize the resource

consumption and achieve a high user satisfaction.

3. Cloudsim

Simulation is a technique where a program models the
behaviour of the system (CPU, network etc.,) by
calculating the interaction between its different entities
using mathematical formulas, or actually capturing and
playing back observations from a production system
[3]. Cloudsim is a framework developed by the
GRIDS laboratory of university of Melbourne which
enables seamless modelling, simulation and

Cloud Task Scheduling Based on Ant Colony Optimization 131

experimenting on designing cloud computing
infrastructures [3].

3.1. Cloudsim Characteristics

Cloudsim can be used to model datacenters, host,

service brokers, scheduling and allocation policies of a

large scaled cloud platform. Hence, the researcher has

used cloudsim to model datacenters, hosts, VMs for

experimenting in simulated cloud environment [9].

Cloud supports VM provisioning at two levels:

1. At the host level: It is possible to specify how much

of the overall processing power of each core will be

assigned to each VM known as VM policy

Allocation.

2. At the VM level: The VM assigns a fixed amount of

the available processing power to the individual

application services (task units) that are hosted

within its execution engine known as VM

Scheduling [9].

In this paper, the ACO algorithm will be used for

allocation of incoming batch jobs to VMs at the VM

level (VM Scheduling). All the VMs in a data center

not necessary have a fixed amount of processing power

but, it can vary with different computing nodes, and

then to these VMs of different processing powers, the

tasks/ requests (application services) are assigned or

allocated to the most powerful VM and then to the

lowest and so on. Hence, the performance parameter

such as overall makespan time is optimized (increasing

resource utilization ratio) and the cost will be

decreased.

3.2. Cloudsim Data Flow

Each datacenter entity registers with the Cloud
Information Service registry (CIS). CIS provides
database level match-making services; it maps user
requests to suitable cloud providers. The data center
broker consults the CIS service to obtain the list of
cloud providers who can offer infrastructure services
that match application’s quality of service, hardware
and software requirements. In the case match occurs the
broker deploys the application with the cloud that was
suggested by the CIS [3].

3.3. The Cloudsim Platform

The main parts of cloudsim that are related to our

experiments in this paper and the relationship between

them are shown in Figure 1.

• CIS: It is an entity that registers data center entity

and discovers the resource.

• Data Center: It models the core infrastructure-level

services (hardware), which is offered by cloud

providers. It encapsulates a set of compute hosts that

can either be homogeneous or heterogeneous.

• Data Center Broker: It models a broker, which is

responsible for mediating negotiations between

SaaS and cloud providers.

• VM Allocation: A provisioning policy which is run

in data center level helps to allocate VMs to hosts.

• VM Scheduler: This is an abstract class

implemented by a host component that models the

policies (space-shared, time-shared) required for

allocating processor cores to VMs. It is run on

every host in data center.

• Host: It models a physical server.

• VM: It models a VM which is run on cloud host to

deal with the cloudlet.

• Cloudlet: It models the cloud-based application

services.

• Cloudlet Scheduler: This abstract class is extended

by the implementation of different policies that

determine the share (space-shared, time-shared) of

processing power among cloudlets in a VM [9].

Figure 1. Main parts of cloudsim related to our experiments.

4. Cloud Scheduling Based ACO

The basic idea of ACO is to simulate the foraging

behaviour of ant colonies. When an ants group tries to

search for the food, they use a special kind of chemical

to communicate with each other. That chemical is

referred to as pheromone. Initially, ants start search

their foods randomly. Once the ants find a path to food

source, they leave pheromone on the path. An ant can

follow the trails of the other ants to the food source by

sensing pheromone on the ground. As this process

continues, most of the ants attract to choose the

shortest path as there have been a huge amount of

pheromones accumulated on this path [4]. The

advantages of the algorithm are the use of the positive

feedback mechanism, inner parallelism and extensible.

The disadvantages are overhead and the stagnation

phenomenon, or searching for to a certain extent, all

individuals found the same solution exactly, can’t

further search for the solution space, making the

algorithm converge to local optimal solution [4]. It is

CIS

Data Center

Host

VM

Cloudlet

Data Center Broker

VM Allocation

VM Scheduler

Cloudlet Scheduler

1

n

1

n

1

n

132 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

clear that an ACO algorithm can be applied to any

combinatorial problem as far as it is possible to define:

1. Problem representation which allows ants to

incrementally build/ modify solutions.

2. The heuristic desirability η of edges.

3. A constraint satisfaction method which forces the

construction of feasible solutions.

4. A pheromone updating rule which specifies how to

modify pheromone trail τ on the edges of the graph.

5. A probabilistic transition rule of the heuristic

desirability and of pheromone trail [2].

In this section, cloud task scheduling based ACO

algorithm will be proposed. Decreasing the makespan

of tasks is the basic ideas from the proposed method.

1. Problem Representation: The problem is represented

as a graph G=(N, E) where the set of nodes N

represents the VMs and tasks and the set of edges E

the connections between the task and VM as shown

in Figure 2. All ants are placed at the starting VMs

randomly. During an iteration ants build solutions to

the cloud scheduling problem by moving from one

VM to another for next task until they complete a

tour (all tasks have been allocated). Iterations are

indexed by t, 1< t< tmax, where tmax is the

maximum number of iterations allowed.

Figure 2. Problem representation of task scheduling based ACO.

2. Heuristic Desirability: A very simple heuristic is
used the inverse of expected execution time of the
task i on VM j.

3. Constraint Satisfaction: The constraint satisfaction
method is implemented as a simple, short-term
memory of the visited VM, in order to, avoid visiting
a VM more than once in one ACO procedure and
minimize time of the assigned couplings (task and
VM).

4. Pheromone Updating Rule: It is the one typical of
ant system as shown in Equations 3, 4, 5, 6 and 7.
Pheromone evaporates on all edges and new
pheromone is deposited by all ants on visited edges;
its value is proportional to the quality of the solution
built by the ants.

5. Probabilistic Transition Rule: The probabilistic
transition rule, called random proportional, is the one
typical of ant system as shown in Equation 1.

The pseudo code of the proposed ACO algorithm and
scheduling based ACO algorithm are shown in
Algorithms 1 and 2 respectively.

The main operations of the ACO procedure are
initializing pheromone, choosing VM for next task
and pheromone updating as following:

Algorithm 1: ACO algorithm

Input: List of Cloudlet (Tasks) and List of VMs

Output: The best solution for tasks allocation on VMs Steps:

 1. Initialize:

 Set Current_iteration_t=1.

 Set Current_optimal_solution=null.

 Set Initial value τij(t)=c for each path between tasks and VMs.

2. Place m ants on the starting VMs randomly.

3. For k:=1 to m do

 Place the starting VM of the k-th ant in tabuk.

 Do ants_trip while all ants don't end their trips

 Every ant chooses the VM for the next task according to

 Equation 1.

 Insert the selected VM to tabuk.

 End Do

4. For k:=1 to m do

 Compute the length Lk of the tour described by the k-th ant

 according to Equation 4.

 Update the current_optimal_solution with the best founded

 solution.

5. For every edge (i, j), apply the local pheromone according to

 Equation 5.

6. Apply global pheromone update according to Equation 7.

7. Increment Current_iteration_t by one.

8. If (Current_iteration_t < tmax)

 Empty all tabu lists.

 Goto step 2

 Else

 Print current_optimal_solution.

 End If

9. Return

Algorithm 2: Scheduling based ACO algorithm

Input: Incoming Cloudlets and VMs List

Output: Print “scheduling completed and waiting for more

Cloudlets”Steps:

 1. Set Cloudlet List=null and temp_List_of_Cloudlet=null

 2. Put any incoming Cloudlets in Cloudlet List in order of their

arriving time

 3. Do ACO_P while Cloudlet List not empty or there are more

 incoming Cloudlets

 Set n= size of VMs list

 If (size of Cloudlet List greater than n)

 Transfer the first arrived n Cloudlets from Cloudlet List

 and put them on temp_List_of_Cloudlet

 Else

 Transfer all Cloudlets.from Cloudlet List and put them on

 temp_List_of_Cloudlet

 End If

 Execute ACO procedure with input temp_List_of_Cloudlet

 and n

 End Do

 4. Print “scheduling completed and waiting for more Cloudlets”

5. Stop

4.1. Initializing Pheromone

The amount of virtual pheromone trail τij(t) on the
edge connects task i to VMj. The initial amount of
pheromone on edges is assumed to be a small positive

Tasks

T1

T2

Tn

.

.

.

T3

VM1

VMn

.

.

.

VM2

VMs

Cloud Task Scheduling Based on Ant Colony Optimization 133

constant τ0 (homogeneous distribution of pheromone at
time t=0).

4.2. VM Choosing Rule for Next Task

During an iteration of the ACO algorithm each ant k,
k=1, ..., m (m is the number of the ants), builds a tour
executing n (n is number of tasks) steps in which a
probabilistic transition rule is applied. The k-ant
chooses VMj for next task i with a probability that is
computed by Equation 1.

[()] * []

[()] * []
()

0

ij ij

k
k is isk
ij

t
if j allowed

ts allowed
p t

otherwise

α β

α β

τ η

τ η
∈

∑ ∈=

Where, τij(t) shows the pheromone concentration at the
t time on the path between task i and VMj, allowed
k={0,1,…,n-1}-tabuk express the allowed VMs for ant k
in next step and tabuk records the traversed VM by
ant k, and ηij=1/dij is the visibility for the t moment,
calculated with heuristic algorithm and dij which
expresses the expected execution time and transfer time
of the task i on VMj can be computed with Equation 2.

_

_ * _ _
ij

j j j

TL Task InputFileSizeid
Pe num Pe mips VM bw

= +

Where, TL_Taski is the total length of the task that has
been submitted to VMj, Pe_numj is the number of VMj
processors, Pe_mipsj is the MIPS of each processor of
VMj, InputFileSize is the length of the task before
execution and VM_bwj is the communication bandwidth
ability of the VMj. Finally, the two parameters α and β
in Equation 1 are used to control the relative weight of
the pheromone trail and the visibility information
respectively.

4.3. Pheromone Updating

After the completion of a tour, each ant k lays a quantity
of pheromone ∆ τij

k
(t) computed by Equation 3 on each

edge (i, j) that it has used.

(,) ()
() ()

0 (,) ()

k
k k
ij

k

Q
if i j T t

t L t

if i j T t

τ
∈

∆ =

∉

Where, T
k
(t) is the tour done by ant k at iteration t, L

k
(t)

is its length (the expected makespan of this tour) that is

computed by Equation 4 and Q is a adaptive parameter.

() argmax { ()}k

j J i IJ ij
L t sum d∈ ∈=

Where, ij is the set of tasks that assigned to the VMj.

After each iteration pheromone updating which is

applied to all edges is refreshed by Equation 5.

() (1) () ()ij ij ijt t tτ ρ τ τ= − + ∆

Where, ρ is the trail decay, 0< ρ< 1 and ∆τij(t) is
computed by Equation 6.

1() ()

km
kij ij

t tτ τ=∑∆ = ∆

When all ants complete a traverse, an elitist is an ant

which reinforces pheromone on the edges belonging to

the best tour found from the beginning of the trial (T
+
),

by a quantity Q/L
+
, where L

+
 is the length of the best

tour (T
+
). This reinforcement is called global

pheromone update and computed by Equation 7.

+
+

∈+= Tjiif
L

Q
tt ijij),()()(ττ

5. Implementation and Experimental

Results

We assume that tasks are mutually independent i.e.,

there is no precedence constraint between tasks and

tasks are not preemptive and they cannot be

interrupted or moved to another processor during their

execution.

5.1. Parameters Setting of Cloudsim

The experiments are implemented with 10 Datacenters

with 50 VMs and 100-1000 tasks under the simulation

platform. The length of the task is from 1000 Million

Instructions (MI) to 20000 MI. The parameters setting

of cloud simulator are shown in Table 1.

Table 1. Parameters setting of cloudsim.

Entity Type Parameters Value

Task (cloudlet)
Length of Task 1000-20000

Total Number of Task 100-1000

Virtual Machine

Total Number of VMs 50

MIPS 500-2000

VM Memory(RAM) 256-2048

Bandwidth 500-1000

Cloudlet Scheduler
Space_shared and

Time_shared

Number of PEs Requirement 1-4

Data Center

Number of Datacenter 10

Number of Host 2-6

VM Scheduler
Space_shared and

Time_shared

5.2. ACO Parameters Evaluation and Setting

We implemented the ACO algorithm and investigated

their relative strengths and weaknesses by

experimentation. The parameters (α, β, p, tmax, m the

number of ants and Q) considered here are those that

affect directly or indirectly the computation of the

algorithm. We tested several values for each parameter

while all the others were held constant on 100 tasks.

The default value of the parameters was α=1, β=1,

ρ=0.5, Q=100, tmax=150 and m=8. In each experiment

only one of the values was changed, The values tested

were: α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, β ∈ {0, 0.5, 1.5, 2,

2.5, 3}, ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, Q ∈ {1, 100, 500,

1000}, tmax ∈ {50, 75, 100, 150} and m ∈ {1, 5, 8, 10,

15, 20}. We also use the time in the cloudSim to

record the makespan. The ACO performance for

(1)

(2)

(3)

(4)

(5)

(6)

(7)

134 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

different values of parameters (α, β, p, tmax, m the

number of ants and Q) has been evaluated. The ACO

performance for different values of parameters (m: The

number of ants, tmax, Q, ρ, α and β) are shown from

Figures 3 to 8. It can be seen that the best value of α is

0.3, the best value of β is 1, the best value of ρ is 0.4,

the best value of Q is 100, the best value of tmax is 150

and the best values of m is 10. In the following

experiments we select the best value for α, β, ρ, Q and

m parameters but, the value 100 is selected for the tmax

parameter to reduce the overhead of the ACO

algorithm. Table 2 shows the selected best parameters

of ACO.

Figure 3. ACO performance for different values of ant numbers.

Figure 4. ACO performance for different values of tmax.

Figure 5. ACO performance for different values of Q.

Figure 6. ACO performance for different values of RHO.

Figure 7. ACO performance for different values of alpha.

Figure 8. ACO performance for different values of beta.

Table 2. Selected parameters Of ACO.

Parameter α β ρρρρ Q m tmax

Value 0. 3 1 0.4 100 10 100

5.3. Implementation Results of ACO, FCFS

and RR

The following experiments, we compared the average

makespan with different tasks set. The average

makespan of the ACO, RR and FCFS algorithms are

shown in Figure 9. It can be seen that, with the

increase of the quantity task, ACO takes the time less

than RR and FCFS algorithms. This indicates that

ACO algorithm is better than RR and FCFS

algorithms.

Figure 9. Average makespan of FCFS, RR and ACO.

In statistics and probability theory, standard

deviation (σ) shows how much variation or dispersion

exists from the average (mean), or expected value. A

low standard deviation indicates that the data points

tend to be very close to the mean; high standard

deviation indicates that the data points are spread out

over a large range of values (solving stagnation

problem). Since, the standard deviation of never drops

117
104

83
77 76 80

0

20

40

60

80

100

120

140

1 5 8 10 15 20

M
ak

es
p

an

M

α=1, β=1, r=0.5, Q=100, and tmax=200.

87

80

75
76

74

65

70

75

80

85

90

50 75 100 125 150

M
ak

es
p

an

tmax

α=1, β=1, r=0.5, Q=100 and m=10.

74

73

75

73

72

72.5

73

73.5

74

74.5

75

75.5

1 100 500 1000

M
ak

es
p

an

Q

α=1, β=1, r=0.5, tmax=100 and m=10.

118

87

103

71 70.5
84

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5

M
ak

es
p

an

α=1, β=1, Q=100, tmax=100 and m=10.

ρ

74.98 73 75
67

73.29

100

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5

M
ak

es
p

an

β=1, ρ=0.4, Q=100, tmax=100 and m=10.

α

100

73
67 72 73

67

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

M
ak

es
p

an

α=0.3, ρ=0.5, Q=100, tmax=100 and m=10.

β

0

200

400

600

800

1000

1200

M
ak

es
p

an

Number of Tasks

FCFS

RR

ACO

Cloud Task Scheduling Based on Ant Colony Optimization 135

to zero, we are assured that the algorithm actively

searches solutions which differ from the best-so-far

found, which gives it the possibility of finding better

ones. Figure 10 shows the evolution of the standard

deviation of the ACO over 10 runs.

Figure 10. Standard deviation of ACO over 10 runs.

The Degree of Imbalance (DI) measures the

imbalance among VMs, which is computed by

Equations 8 and 9.

 jj

i
mipsPenumPe

TasksTL
T

*

_
=

Where, TL_Tasks is the total length of tasks which are

submitted to the VMi.

max min

avg

T T
DI

T

−
=

Where, Tmax, Tmin and Tavg are the maximum, minimum

and average Ti respectively among all VMs. The

average DI of each algorithm with the number of tasks

varying from 100 to 1000 is shown in Figure 11. It can

be seen that the ACO can achieve better system load

balance than RR and FCFS algorithms.

Figure 11. Average DI of FCFS, RR and ACO.

6. Conclusions and Future Work

In this paper, ACO algorithm for achieving cloud

computing tasks scheduling has been presented. Firstly,

the best values of parameters for ACO algorithm,

experimentally determined. Then, the ACO algorithm

in applications with the number of tasks varying from

100 to 1000 evaluated. Simulation results demonstrate

that ACO algorithm outperforms FCFS and RR

algorithms. In future work the effect of precedence

between tasks and load balancing will be considered.

Also, the comparison between our approach and other

metaheuristics approaches will be performed.

References

[1] Boloor K., Chirkova R., Salo T., and Viniotis

Y., “Heuristic-Based Request Scheduling

Subject to a Percentile Response Time SLA in

a Distributed Cloud,” in Proceedings of the

IEEE International Conference on Global

Telecommunications Conference, Florida, USA,

pp. 1-6, 2010.

[2] Bonabeau E., Dorigo M., and theraulaz G.,

Swarm Intelligence: From Natural to Artificial

Intelligence, Oxford University Press, New

York, USA, 1999.

[3] Buyya R., Ranjan R., and Calheiros N.,

“Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim

Toolkit: Challenges and Opportunities,” in

Proceedings of the 7
th
 High Performance

Computing and Simulation Conference, Leipzig,

Germany, pp. 1-11, 2009.

[4] Dorigo M. and Blum C., “Ant Colony

Optimization Theory: A Survey,” in Theoretical

Computer Science, vol. 344, no. 2, pp. 243-278,

2005.

[5] Dorigo M., Birattari M., and Stutzel T., “Ant

Colony Optimization,” IEEE Computational

Intelligence Magazine, vol. 1, no. 4, pp. 28-39,

2006.

[6] Fangzhe C., Ren J., and Viswanathan R.,

“Optimal Resource Allocation in Clouds,” in

Proceedings of the 3
rd

 International Conference

on Cloud Computing, Florida, USA, pp. 418-

425, 2010.

[7] Gao K., Wang Q., and Xi L., “Reduct Algorithm

Based Execution Times Prediction in

Knowledge Discovery Cloud Computing

Environment,” the International Arab Journal of

Information Technology, vol. 11, no. 3, pp. 268-

275, 2014.

[8] Gao Y., Guan H., Qi Z., Hou Y., and Liu L., “A

Multi-Objective Ant Colony System Algorithm

for Virtual Machine Placement in Cloud

Computing,” Journal of Computer and System

Sciences, vol. 79, no. 8, pp. 1230-1242, 2013.

[9] Ghalem B., Tayeb F., and Zaoui W.,

“Approaches to Improve the Resources

Management in the Simulator Cloudsim,” in

Proceedings of the Conference on Interaction

and Confidence Building Measures in Asia,

Lecture Notes in Computer Science, Istanbul,

Turkey, pp. 189-196, 2010.

[10] Hsu C. and Chen T., “Adaptive Scheduling

Based on Quality of Service in Heterogeneous

Environments,” in Proceedings of the IEEE

International Conference on Multimedia and

0

1

2

3

4

5

6

7

S
ta

n
d
ar

d
 D

ev
ia

ti
o

n

Number of Tasks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
eg

re
e

o
f

Im
b

al
a
n
ce

 (
D

I)

Number of Tasks

FCFS

RR

ACO

(9)

(8)

136 The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015

Ubiquitous Engineering, California, USA, pp. 1-

6, 2010.

[11] Ijaz S., Munir E., Anwar W., and Nasir W.,

“Efficient Scheduling Strategy for Task Graphs in

Heterogeneous Computing Environment,” the

International Arab Journal of Information

Technology, vol 10, no. 5, pp. 486-492, 2013.

[12] Kessaci Y., Melab N., and Talbi E., “A Pareto-

Based GA for Scheduling HPC Applications on

Distributed Cloud Infrastructures,” in

Proceedings of the IEEE International

Conference on High Performance Computing and

Simulation, Istanbul, Turkey, pp. 456-462, 2011.

[13] Lorpunmanee S., Sap M., Abdul A., and

Chompoo C., “An Ant Colony Optimization for

Dynamic Job Scheduling in Grid Environment,”

in Proceedings of World Academy of Science,

English and Technology, 2007.

[14] Mahamud K. and Nasir H., “Ant Colony

Algorithm for Job Scheduling in Grid

Computing,” in Proceedings of the 4
th
 Asia

International Conference on Mathematical/

Analytical Modelling and Computer Simulation,

Kota Kinabalu, Malaysia, pp. 40-45, 2010.

[15] Nemhauser G. and Wolsey A., Integer and

Combinatorial Optimization, John Wiley and

Sons, New York, USA, 1988.

[16] Paul M. and Sanyal G., “Survey and Analysis of

Optimal Scheduling Strategies in Cloud

Environment,” in Proceedings of the IEEE

International Conference on Information and

Communication Technologies, Georgia, USA, pp.

789-792, 2012.

[17] Qiyi H. and Tinglei H., “An Optimistic Job

Scheduling Strategy based on QoS for Cloud

Computing,” in Proceedings of the IEEE

International Conference on Intelligent

Computing and Integrated Systems, Guilin,

China, pp. 673-675, 2010.

[18] Reeves C., Modern Heuristic Techniques for

Combinatorial Problems, Blackwell Scientific

Publishing, Oxford, England, 1993.

[19] Singh M., “GRAAA: Grid Resource Allocation

Based on Ant Algorithm,” the Journal of

Advances in Information Technology, vol. 1, no.

3, pp.133-135, 2010.

[20] Weiss A., “Computing in the Clouds,” Net

Worker on Cloud computing: PC functions move

onto the web, vol. 11, no. 4, pp. 16-25, 2007.

[21] Xu M., Cui L., Wang H., and Bi Y., “A Multiple

QoS Constrained Scheduling Strategy of Multiple

Workflows for Cloud Computing,” in

Proceedings of the IEEE International

Conference on Parallel and Distributed

Processing with Applications, Chendu and

JiuZhai Valley, China, pp. 629-634, 2009.

[22] Zhao C., Zhang S., Liu Q., Xie J., and Hu J.,

“Independent Tasks Scheduling Based on

Genetic Algorithm in Cloud Computing,” in

Proceedings of the IEEE International

Conference on Wireless Communications,

Networking and Mobile Computing, China, pp.

1-4, 2009.

[23] Zhao L., Ren Y., Xiang Y., and Sakurai K.,

“Fault-Tolerant Scheduling with Dynamic

Number of Replicas in Heterogeneous Systems,”

in Proceedings of the IEEE International

Conference on High Performance Computing

and Communications, Washington, USA, pp.

434-441, 2010.

[24] Zhu K., Song H., Liu L., Gao J., and Cheng G.,

“Hybrid Genetic Algorithm for Cloud

Computing Applications,” in Proceedings of the

IEEE International Conference on Asia-Pacific

Services Computing Conference, Jeju, Korea, pp.

182-187, 2011.

Medhat Tawfeek received the BSc

and MSc degrees in computers and

information from Menofia

University, Faculty of Computers

and Information in 2005 and 2010,

respectively. Currently, hold PhD

degree student in Faculty of

Computers and information, Menofia University. His

research interest includes cloud computing, smart card

security, distributed system, fault tolerance.

Ashraf El-Sisi received the BSc

and MSc degrees in electronic

engineering and computer science

engineering from Menofyia

University, Faculty of Electronic in

1989 and 1995, respectively and

received his PhD degree in

computer engineering and control from Zagazig

University, Faculty of Engineering in 2001. His

research interest includes cloud computing, privacy

preserving data mining, AI approaches in software

testing, intelligent agent, testing biometric security

algorithms and devices, and intelligent systems.

Arabi Keshk received the BSc

degree in electronic engineering and

MSc degree in computer science

and engineering from Menofia

University, Faculty of Electronic

Engineering in 1987 and 1995,

respectively and received his PhD

degree in electronic engineering from Osaka

University, Japan in 2001. His research interest

includes software testing, distributed system, data

mining and bioinformatics.

Cloud Task Scheduling Based on Ant Colony Optimization 137

Fawzy Torkey received the BSc

degree in industrial electronics in

1974 from the Faculty of Electronic

Engineering, Menoufia University,

Egypt. He received the MSc degree

in electrical engineering and

electronics, in 1980 from the Faculty

of Engineering, Cairo University, Egypt. He received

the PhD degree in computer engineering, Liverpool

University, England, in 1985. He was the Faculty Dean

in the period from 2001 to 2006, Faculty of Computers

and Information, Menoufia University, Egypt. He also

was the president of Kafrelsheikh University, Egypt, in

the period from 2006 to 2011. He is presently a

professor in the Department of Computer Science,

Faculty of Computers and Information, Menoufia

University, Egypt. His research interests include

computer architecture, parallel processing, database and

distributed systems.

