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1. Introduction 

An undirected graph G is an ordered pair (V, E) where 
V is a set of nodes and E is a set of non-directed edges 
between nodes. Two nodes are said to be adjacent if 
there is an edge between them. The graph coloring is a 
well-known problem [1, 2, 3, 4, 5]. Node coloring 
assigns colors to the nodes of the graph such that no 
two adjacent nodes have the same color. Edge coloring 
assigns colors to the edges of the graph such that no 
two adjacent edges have the same color. Two edges are 
said to be adjacent if they both share a node in 
common. General graph coloring algorithms are well 
known and have been extensively studied by 
researchers [1, 2, 5, 7, 8, 9, 11, 12, 13, 14, 16]. 

Exam scheduling is a challenging task that 
universities and colleges face several times every year. 
The challenge is to schedule so many exams of courses 
in a limited, and usually short, period of time. An 
Exam schedule should avoid conflicts, in the sense that 
no two or more exams for the same student are 
scheduled at the same time. Part of the challenge is to 
achieve fairness for the students. A fair schedule does 
not schedule more than two exams, for example for a 
student on one day. In the meantime, a fair schedule 
does not leave a big gap between exams for the 
students. The exam scheduling problem is defined as 
follows: "We first represent the courses by nodes of a 
graph, where 2 nodes are adjacent if the 2 
corresponding courses are registered by at least one 
student. Then, it is required to assign each course 
represented by a node a time slot, such that no two 
adjacent nodes have the same slot, in condition that a 
set of constraints imposed on the problem are also 
met." We solve this problem by using node graph 
coloring technique. 

This study provides a mechanism for automatic 
exam-schedule  generation  that  achieves  fairness, and  

 

minimizes the exam period. As a result, this paper 
presents a graph-coloring-based algorithm for the exam 
scheduling application which achieves the objectives 
of fairness, accuracy, and optimal exam time period. 
Numerous studies have considered the problem of 
exam scheduling [9, 10, 15, 17]. The main difference 
between various studies is the set of assumptions and 
constraints taken into consideration. Burke, Elliman 
and Weare [9], for example, followed a similar 
approach using graph coloring. However, in their 
algorithm, they addressed only the conflicts without 
any constraints. Moreover, the algorithm presented in 
[9] does not eliminate conflicts, and only aims at 
minimizing conflicts. In this paper, we consider few 
but important assumptions and constraints, closely 
related to the general exam scheduling, and mainly 
driven from the real life requirements collected 
through the experience at various universities. Such 
assumptions and constraints are distinct from those 
present in more general graph coloring problems. We 
summarize the main assumptions and constraints as 
follows: 

1. The number of exam periods per day (Time Slots 
(TS)) can be set by the user. TS depend on 
college/department specific constraints. For 
example, a university that uses a 2-hours exam 
period and begins the exam day at 8:00 am and 
finish at 8:00 pm, may set TS to 5.  

2. The number of concurrent exam sessions or 
concurrency level (Np) depends on the number of 
available halls, and the availability of faculty to 
conduct the exams. Np is determined by the 
registrar’s office. This paper assumes that Np is a 
system parameter and the scheduling algorithm has 
been examined with several Np values.  
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3. A student shall not have more than (y) exams per 
day (fairness requirement), and is treated as a 
system tunable parameter. 

4. A student shall not have a gap of more than (x) days 
between two successive exams, and this factor is to 
be determined by the college or department (another 
fairness requirement). 

5. The schedule shall be done in the minimal possible 
period of time, i.e., minimize the number of exam 
slots and/or number of exam days. The exam time      
period is an outcome of the scheduling algorithm.  

6. Next, we give some more definitions that are 
relevant to the underlined problem. Let C be a list of 
all courses to be scheduled. The length of this list is 
n. In other words, n is the number of courses in the 
list. A course at position i in the list C is referred to 
using an index ci. Let G be the graph that represents 
the list C of courses. We impose a weight wij to each 
edge of G, where wij is defined as the number of 
students present in both courses ci and cj. An edge eij 
exists between nodes ci and cj iff wij is not 0. We 
define a weight matrix W to be an nxn matrix, where 
n is the number of courses to be scheduled for the 
exams, and wij equals the weight of the edge eij that 
joins the courses ci and cj. Such a weight imposed on 
the edges of G represents the exam conflict 
complexity present in courses ci and cj. A multi-
section course is considered as one course. 
However, the number of sections per course is taken 
into consideration in the process of hall assignment. 

The degree di of a node ci is defined as the number of 
edges connected to a node. A large degree of a node ci 
indicates that there is a large number of students 
registered in this course and di other courses. The 
degree di is also a measure of conflict complexity. An 
example of a weighted graph G and the corresponding 
weight matrix W is given in Figure 1 and Table 1, 
respectively. In Figure 1, c2 and c5 both have degree 3. 
In Table 1, the weight of the edge e15 is 4. 

 

2. The Coloring Scheme 

The coloring scheme for the exam-scheduling problem 
uses a double indexed color (RIJ), where the index (I) 
represents the day of the exam and (J) represents the 
exam time slot on a given day. The range of (J), i.e., 
the number of exam time slots is determined by the 
registrar and/or the faculty. 

The range of the index (I) is a parameter generated 
as an outcome by the algorithm. Minimizing the index 
(I) is one objective of the algorithm. The parameter I 
can also be set by the registrar and/or the faculty. It is 
bound by the absolute minimal number of colors for 
the given graph. However, finding the absolute 
minimal is known to be NP complete. The algorithm 
presented in this paper is claimed to achieve near 
optimal performance (close to minimal number of 
colors) in polynomial time. 

 
 

Table 1. A weight matrix W of the graph. 
 

 C1 C2 C3 C4 C5 

C1 0 2 0 0 4 

C2 2 0 1 0 3 

C3 0 1 0 4 0 

C4 0 0 4 0 3 

C5 4 3 0 3 0 

 
We define the weight of a color to be W (RIJ) = (I-

1)*k + J; k is the range of J. A color RIJ is said to be 
smaller than color RGH if the weight W (RIJ) is smaller 
than W (RGH). The coloring scheme allows two or more 
non-adjacent nodes to have the same color (RIJ). The 
number of nodes having the same color provides the 
number of concurrent exam sessions, which is bounded 
by the number of available halls and the maximum 
allowable concurrent sessions by the registrar and/or 
the faculty. In general graph coloring problems, there 
is no restriction on the assignment of the same color to 
non-adjacent nodes in the graph. The exam-scheduling 
problem as explained above imposes a constraint on 
the maximum number of nodes assigned the same 
color. The scheduling algorithm (provided in the next 
section) allows the user to impose a maximum limit on 
the number of available instances of color RIJ. The 
number of instances of a color RIJ is referred to as the 
concurrency limit of the color RIJ denoted CL (RIJ). 
Note that a course with multiple sections is assigned 
one color. However, the multiple sections will 
consume multiple instances of the same color, 
assuming that each section will make the exam in a 
separate hall. 

 
2.1. Fairness of the Algorithm 

In order to achieve fairness, as discussed in the 
introduction, the algorithm defines the following 
parameters: 
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Figure 1. A weighted graph G. 
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1. Internal distance (D1): This is the distance between 
two colors (RIJ) and (RIK) with the same index (I) 
and indexes J and K, and defined by  

                     D1 = |K-J|                                       (1) 

D1 represents the exam scattering on the same day I 
for the same set of students. 

2. External distance (D2): This is the distance between 
two colors (RIJ) and (RKL), and defined by 

      D2 = |K-I|                                        (2) 

D2 represents the exam scattering across different 
days. 

3. The total distance between colors (RIJ) and (RKG) is 
given by  

                     D = γ * D2+ D1,                               (3) 

or  

              D= γ *(|K-I|) +|G-J|                          (4) 

The factor (γ) can be varied to provide a different 
coloring scheme. The distance D is a major design 
parameter of the algorithm. 

 
2.2. Specific Considerations 

The scheduling problem has its own peculiarities, 
which have to be taken into consideration at the 
implementation level. For example, the node with a 
large degree represents a course in which many 
students are registered to many other courses (different 
group of students may be registered to different 
courses). Also, nodes with large degrees have large 
number of students as well. In order to have an 
efficient schedule; the nodes with larger degrees 
should be colored first. Giving priority to the nodes 
with the larger degrees is in line with typical university 
schedules which tend to schedule the university 
required courses early in the exam period. The nodes 
representing university and college requirement 
courses have large degrees. 

The weight of an edge indicates the number of 
common students registered at both courses (nodes) 
connected to that edge. Giving priority in the coloring 
algorithm to nodes connected to a large weight-edge 
will enable a solution optimization geared towards the 
larger groups of students. Another point to consider 
before we describe the algorithm is the multi-section 
courses. Multi-sections of a multi-sections course 
should be scheduled at the same time, and thus the 
corresponding nodes should have one color. Also, they 
typically occupy several halls. The number of halls 
used by a course has an impact on the concurrency 
level per time slot. When such multi-sections are 
scheduled for a time slot, i.e. assigned a color, the 
concurrency level is to be reduced by the number of 
sections for that course. For implementation purposes, 
we augment the nodes of the graph with a value equal 
to the number of sections in the course; we shall call 
this value the course concurrency level CL (ci). Thus, 

we assign a concurrency limit for each color Np (CIJ). 
After assigning a color to a node Ci, we reduce the 
concurrency limit of the color by CL (ci). The 
concurrency limit is set by the registrar and depends on 
the number of available halls, and staff to monitor the 
exams. 

 

3. Algorithm Color Schedule 

The algorithm consists of two major steps. The first 
step builds the weight matrix and graph. The second 
step assigns colors to the nodes of the graph. 

 
3.1.The Algorithm 

A. Build Weight Matrix and Graph 

1. Locate the files for students’ listings in all the 
courses, which need to be scheduled for the 
exam. Each course corresponds to a node in the 
matrix. Set the concurrency level of each node to 
the number of sections for the given course.  

2. For each node (course) find the set of adjacent 
nodes, and the weight of the edges connecting 
the node to its adjacent nodes. Fill the weight 
matrix W with weight values w. 

3. Create an undirected graph using the weight 
matrix. 

4. Find the degree for each node. 
  
B. Color the Graph 

    Sort the nodes in the weight matrix in a descending     
order based on the degree of nodes. Nodes with 
similar degrees are ordered based on the largest 
weight w in its adjacency list. Nodes with similar 
degrees d and weights w are ordered based on their 
node ID (smallest ID first). 

    Set C = The sorted list of nodes mentioned   
    in Step 1.  
    Set No-Of-Colored-Courses = 0 

for i = 1 to C-length do 
  Begin 
    If No-Of-Colored-Courses = No-Of-  
    Courses then exit loop and finish 
   If ci  is not colored then 
     Begin 
       If i = 1 then 
       Begin 
          Rab = get-First-Node-Color (ci ) 
          If Rab = null then Exit and finish,  
         {No schedule is possible.} 
       End 
       Else 
       Begin 
        Rab = get-Smallest-Available-Color (ci) 
      End 
    If Rab != null then 
     Begin 
       Set Color (ci) = Rab 

              No-Of-Colored-Courses = No-Of-  
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             Colored-Courses + 1 
            CL (Rab) = CL (Rab)  -  CL (ci) 
         End 
      End 
       Set Array M = get-Ordered-Adjacency-    
         Courses-Of-ci () 
      For j = 1 to No-Of-Courses-In-Array-M do  
        Begin 
          If Mj is not colored then 
            Begin 
             Rcd = get-Smallest-Available-Color (Mj) 
             If Colorcd != null then 
               Begin 
                Set Color (Mj) = Rcd 
                No-Of-Colored-Courses = No-Of- 
                Colored-Courses + 1 
                CL (Rcd) = CL (Rcd) - CL (Mj) 
            End 
          End 
       End 
     End 
 
C.  Color the neighbor 

1. Description of Sub-routine “get-First- 
        Node-Color”: 
       Input   : The course ci that needs to be  
       Colored. 
      Output: The color assigned to ci or null. 
      Algorithm: 
     For j = 1 to Max-Schedule-Days do: 
       For k = 1 to No-Of-Time-Slots do: 
         If CL (Colorjk)) ≥ CL (ci) then return Colorjk  
          return null 
   
    2. Description of Sub-routine “get-Smallest- 
        Available-Color”: 
        Input:   The course ci that needs to be  
        colored. 
        Output: The color assigned to ci or null. 
        Algorithm: 
        get AL(ci), the Adjacency-List of ci 
       For j = 1 to Max-Schedule-Days do 
        Begin 
          For k = 1 to No-Of-Time-Slots do: 
            Begin 
               Set valid = true  
               For r = 1 to Length (AL (ci)) do 
                  Begin 
                    Ref = Color (ALr) 
                    If Ref! = null then 
                      Begin 
                         If e! =j or f! =k then 
                          Begin 
                            If D2 {(Ref), (Rjk)} = 0 then 
                              Begin 
                                If D1 {(Ref), (Rjk)} <= 1 then 
                                  Begin 
                                     Valid = false 
                                    Exit loop 
                                  End 

                              End 
                        If CL (Rjk) <= CL (ci) then  
                           Begin 
                             Valid = false 
                             Exit loop 
                           End 
                       If Check-3Exams-Constraint (ci, Rjk , j) =  
                        False then 
                          Begin 
                            Valid = false 
                            Exit loop 
                         End 
                       End 
                       Else  
                            Begin 
                               Valid = false 
                               Exit loop 
                            End 
                      End 
                Else Exit the current iteration of loop 
              End 
      If valid = true then Return Rjk 

   End 
 End 
return null 

 

3. Description of Sub-routine  
   “Check-3Exams-Constraint”: 
    Input   : The course ci that needs to be  
    colored. 
    The color Rjk that needs to be tested. 
    The day j for Colorkd  
    Output: returns true if color is valid,  
    Otherwise it returns false 
    Algorithm: 
    get a list of students Si registered in course  
    ci  
    For r = 1 to Length (Si) do: 
     Begin 
       Set Counter = 0 
       For q=1 to No-Of-Time-Slots do: 
        Begin 
          Get a list of courses CRS assigned to Rjq 
          For u = 1 to Length (CRS) do: 
            Begin 
              Get a list of students Su registered in  
              course cu 
              If Sir exists in list Su then  
               Begin 
                  Counter = Counter + 1 
                  If Counter = 2 then return false 
              End 
            End 
         End 
       End 

     return true 
 
3.2. Complexity Analysis 

A. Assume the largest degree d = d1; and that node v1 
has degree K1 
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A.1. The first step assigns the smallest color, say c1 
to node v1. The total number of steps required 
to color all the nodes in the neighbor list of v1 
is  

             1+2+3+ … + d1 = (d1
2
+ d1)/2 = O (d1

2
)       (5) 

A.2. Repeat the coloring procedure for the next 
node v2 with degree d2. The number of steps 
required to color all the nodes adjacent to 
node v2 is  

             1+2+3+ … + d2 = (d2
2
+ d2)/2 = O (d2

2
)       (6) 

B. In general, the number of steps required to color all 
the nodes in the neighbor list of any node vi with 
degree di is  

     (di
2
+ di)/2 = O (di

2
)                                  (7) 

C. Let the average degree of nodes be ρ. Then the 
average number of steps required to color the 
neighbors of node vi with degree ρ is O(ρ

 2
)  

C.1. Repeat the coloring procedure in steps 1 and 2 
until all nodes are colored.  

C.2. Since each coloring step colors on the average 
ρ nodes, the coloring procedure will be 
repeated on the average (n/ρ), where n is the 
number of nodes. 

C.3. The total number of coloring steps required to 
color all nodes, on the average is  

O ((n/ ρ). (p 2) = O (n. ρ)                             (8) 

             The   complexity   equation   (above)   can   be 
             expressed as 

         ∑
=

n

i 1

ρ , where ρ P= ( ∑
=

n

i

id
1

)/n.                      (9) 

 
3.3. Algorithm Efficiency Analysis 

Our algorithm has a linear complexity, except when (ρ 
= n-1) and hence a polynomial solution of the second 
degree. We prove the following: 
Lemma: The algorithm described above achieves 
minimal number of colors, when the upper bound of 
colors is given by the clique (largest completely 
connected sub-graph). 
Proof: A completely connected graph with size K 
requires K+1 color. The algorithm detects the clique in 
the graph. The algorithm also detects the clique related 
to each node in the graph starting from the node with 
the largest degree. Then, the algorithm colors the 
largest completely connected sub-graphs first, thus 
utilizing the minimal available colors to color the sub-
graphs. For each node, the algorithm will not use more 
colors than those required by the largest completely 
connected sub-graph. Thus the largest number of 
colors used by the algorithm is only that required by 
the largest sub-graph, which is the absolute minimal 
possible number of colors.  

 
 

4. Performance Analysis 

The algorithm Color Schedule was applied to a course 
list of a university. The number of courses in the test 
bed is 546 with an average of 2 sections per course, for 
a total of 1092 exam sessions to schedule. The graph 
produced for the courses has an avergae degree of 54 
and a maximum degree of 434. The coloring algorithm 
completed in 90 seconds (almost the same for all runs). 
We ran the algorithm with different paramters. The 
variables are the number of exam slots per day (3, 4, 5, 
6, 7). The concurrency limit is varied between 10 and 
100. The constraint is that a student will not have more 
than 2 exams per day. The results for the varius runs of 
the algorithm are plotted in Figure 2 below. The 
registrar office can use the plots to decide on the 
number of days and number of exam sessions per day 
for the schedule. For eample, with 7 exam slots per 
day, the exam period can be copleted in 12 days with 
50 sessions per day. Note that the registrar office can 
produce several schedules in a short period of time (90 
seconds per schedule)  and select the appropriate 
schedule. Figure 3 shows the time analysis 
performance of the algorithm. Note that the execution 
time is a linear function of the number of courses. The 
average degree of the graph is also shown in the figure. 
The avergae degree does not increase at the same rate 
as the number of courses. This is typical of university 
courses. Furthermore, we have tested our algorithm 
against 5 samples of the 13 Toronto data sets collected 
from 13 institutions. In this test, we took two factors 
into account, namely the number of slots and the 
penalty. With respect to the former factor, their results 
slightly outperform ours. With respect to the later 
factor, close results are obtained, where our algorithm 
have beated in some sets, and has been beated in some 
other sets. The results are shown in Table 2, and 
plotted in Figures 4 and 5, respectively. Still some 
comments are in order. In Toronto case, there was 
nothing mentioned about the maximum possible 
concurrent exams per time slot, which means that they 
did not impose a constraint on that issue. In our case 
we did. Also, in Toronto case, there is nothing 
mentioned about the number of days, they only use 
number of time slots. So, when we run to compare with 
respect to this factor, we have counted the number of 
time slots used in all days of our algorithms to get the 
total number of time slots used by the schedule. 
 

 
 
 
 
 
 
 
         

 
 
 

Figure 2. Algorithm color_schedule performance. 
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Figure 3. Execution time performance of the color schedule 
algorithm. 

 
Table 2. Results of our algorithm against toronto results. 

 

 

 
 

         Figure 4. Results with respect to the number of slots. 
 

 
 

Figure 5. Results with respect to penalty. 

 

5. Conclusion and Future Work 

As discussed above, the number of concurrent exam 
sessions or concurrency level (Np) depends on the 
number of available halls, and the availability of 
faculty to conduct the exams. The value of Np is 
usually determined by the registrar’s office, and the 
paper assumes that Np is a system parameter, and we 

will run the scheduling algorithm with several Np 
values. In a later work, the actual distribution of exam 
sessions to halls will be included. Also, the algorithm 
presented in this paper is claimed to achieve near 
optimal performance (close to minimal number of 
colors) in polynomial time. We are currently 
investigating a modification of the algorithm, which 
will achieve the absolute minimal for a certain set of 
graphs. 
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