
148 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

Simplified Neural Model for the Software
Development Team Optimization

Madhu S. Nair and Jaya Vijayan
Rajagiri School of Computer Science, Rajagiri College of Social Sciences , India.

Abstract: A simplified neural model to optimize a project team and to attain maximum throughput as well as to obtain high
quality software has been proposed here. A novel approach, which uses the concept of Artificial Neural Networks, to train the
software professionals and make them perform at high level of standards, is adopted. In this approach, a high level of
communication among the professionals is achieved which will lead to good team work and finally produce quality software
that meets the required level of standard.

Keywords: Neural network, optimization, training, weights, acceptance.

Received August 8, 2006; accepted February 15, 2007

1. Introduction
The optimization of the project team in a software
development organization can be effectively performed
using an optimization process by applying Artificial
Neural Network (ANN) concept. The Supervised
learning method of ANN has been adopted in this
model to improve the performance of the project team
members. The following are the two important phases
involved in the training procedure adopted in the
model:

1. Team formation and project preparation phase.
2. Team optimization phase.

Out of the above two phases, the second phase uses the
proposed Project Team Optimization Model.

1.1. Team Formation and Project Preparation
Phase

This phase mainly consists of two major activities,
team formation, and project preparation and
scheduling.

1.1.1. Team Formation

Initial activity is categorization of recruited candidates
into different groups and formation of the team. Each
team will have a project leader to guide and control the
team. Team formation is an important activity since the
success of the project depends on the teamwork.
Following are the aspects that are taken into
consideration while the team formation takes place:

a) Level of skills of each trainee.
b) Level of background knowledge.
c) Area of interest (like analysis, design, coding,

testing etc.).
d) Soft skills.

The skill levels can again be categorized into high-
level, medium-level and low-level. This approach will
ensure that there is a mix and match of all the three
levels of skills in the project teams. Another objective
behind this approach is to make the total average skill
level of every team approximately the same.

1.1.2. Project Preparation and Scheduling

A project training set representing all categories of
projects that a particular organization is concentrating
on is prepared. Each project specified in the training
set should be a miniature of the real time projects. The
training set should also contain the description of all
projects & the minimum time period required for
completion as well as the excepted output value for
each project.

Once the training set and teams are formed the
schedule for training the teams are to be prepared. The
aspects that are to be considered while scheduling the
projects are:

• Duration of the training.
• Tools or resources that are to be provided for

training.

1.2. Team Optimization Phase
The proposed project team optimization model is
applied in this phase which will lead to improved
performance of the team members by making them
will versed in all categorized of projects. This phase is
initiated by assigning the projects specified in the train
set one by one and continued until the team gets
optimized. Once the team gets optimized by applying
the proposed model the team members can work
effectively and efficiently in all categorizes of real time
projects to obtain maximum throughput.

Simplified Neural Model for the Software Development Team Optimization 149

2. Project Team Optimization Model
The proposed model is a supervised learning model in
which different projects selected from the training set
is assigned to the corresponding team one by one, after
which the actual output of the project will be compared
with the expected output specified in the training set.
After the comparison if there is any deviation from the
expected output the team members have to rework on
the project by identifying the flaws in the development
activities, until the expected performance is attained.

After attaining the desired performance in a
particular type of project the team will be assigned the
next category of project from the training set. This
process is continued until the team gets optimized and
shows good performance in all the different categories
of projects specified in the training set.

2.1. Related Work
A similar neural network approach has been efficiently
used for software risk analysis [10]. After identifying
the key software risk factors responsible in achieving
successful outcome, a neural network approach has
been used to establish a model for minimizing the risks
attributed to failed projects. Inputs of the model are
software risk factors that were obtained through
interview, and output of the model describes the final
outcome of the project. The experimental result
indicates that the software risk analysis can be
improved through these methods and that the risk
analysis model is effective.

2.2. Optimization Model Architecture
The proposed optimization model uses single layer
feed forward perceptron topology. The architecture
consists of one input layer and one output layer. The
learning algorithm uses the training set prepared in the
project preparation phase. Based on the training set, the
weights have to be modified to make the model stable.
Once the model becomes stable, it can be utilized to
optimize the software project team using the
acceptance factor of the output layer, which indicates
the success rate of the project. The detailed
architecture is shown in Figure 1. The input layer of
the model consists of eight input nodes. Let X = {x1,
x2, x3, x4, x5, x6, x7, x8} be the input vector and W =
{w1, w2, w3, w4, w5, w6, w7, w8} be the weight vector
respectively.

The activation function used in the model is non-
polynomial continuous bounded function (tauber-
wiener) particularly non-linear hyperbolic tangent
(sigmoid) function. Let O be the activation value of the
output scalar and let b be the bias value of the model.
The activation function for the above architecture
using forward computing is given in Equation 1.

Input Layer

Figure 1. Feed forward perceptron model.

8

1
()i i

i
O S w x b

=

= +∑ (1)

The training sample for the pth project in the training
set is given by (xp, dp), where xp is the input pattern and
dp is the desired output pattern. Let Op be the actual
output pattern obtained using the activation function
given above. A supervised, sequential, error driven,
linearly separable and generalized delta rule for back
propagation learning is used in this model. The
objective of learning is to obtain the incremental values
so as to minimize the sum square error.

2()p pE O d= − (2)

If η is the learning rate then

()i p p iw d O xη∆ = − (3)

The weights can then be modified using the following
equation:

i
old
i

improved
i www ∆+= (4)

2.2.1. Input Layer

The input layers of the proposed model consist of 8
input nodes which accept values from different phases
of software development as inputs. These values are
inturn used to compute the acceptance factor of output
layer, which gives an indication to the success rate of
the project.

System Design
x4

Requirements Analysis
x3

S()

Acceptance
Factor (AF)

Output Layer

w1

w2

w3

w4

w5

w6

w7

w8

x1

x2

x5

Coding
x6

x7

x8

Tools

Detailed Design

Testing

Implementation

Effort

150 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

a. Effort

The first input parameter to the model is the effort.
Effort is estimated using the formula, E= a×
(KDLOC)b, where a and b depends on the type of the
project.

The projects are categorized into three types
organic, semidetached and embedded [2]. Organic
projects are used in an area in which the organization
has considerable experience and requirements are less
stringent. Semidetached systems include developing a
new Operating System (OS), Database Management
System (DBMS) etc.,. Embedded projects are used in
an area in which the organization has little experience
and stringent requirements for aspects such as interface
and reliability. The constants a and b for different
systems are given in Table 1.

Table 1. Effort metric.

System a b
Organic 3.2 1.05

Semidetached 3.0 1.12
Embedded 2.8 1.20

b. Tools

The second input parameter to the model is the type of
the tool used for the development. The use of software
tools is categorized as very low , low, nominal, high and
very high. The effort multipliers for tools are given in
Table 2.

Table 2. Effort multipliers for tools.

Rating

Very
Low Low Nominal High Very

High

Tools 1.24 1.10 1.00 0.91 0.83

c. Requirements Analysis

Optimization model uses requirements analysis as the
third input parameter. The most commonly used metric
in the requirements analysis phase is the Function
Point metric (FP) [3].

FP are derived using an empirical relationship based
on countable measures of software information domain
and assessments of software complexity. The original
formulation for computing the function point used the
count of five different parameters namely number of
user inputs, number of user outputs, number of user
inquiries, number of files and number of external
interfaces. The five parameters are determined and
counts are provided in the appropriate table location.
The count total is determined by summing up the count
for each parameter. The weighting factor for each
parameter is shown in the Table 3.

Table 3. Weight factor for FP metric.

Weighting Factor
Parameter

Simple Average Complex

No. of User Inputs 3 4 6

No. of User Outputs 4 5 7

No. of Inquiries 3 4 6

No. of Files 7 10 15

No. of External
Interfaces 5 7 10

d. System Design

The fourth input to the optimization model is the
system design parameter. The metric total number of
modules [5] is the simplest and the commonly used
metric in the system design phase.

The metric value can be easily obtained from the
design by using an average size of a module. From this
metric the final size in Lines Of Code (LOC) can be
estimated [4]. Alternatively, the size of each module
can be estimated, and then the total size of the system
will be estimated as the sum of all the estimates. As a
module is a small and clearly specified programming
unit, estimating the size of a module is relatively easy.

e. Detailed Design

The proposed model accepts detailed design parameter
as the fifth input. The metric widely used in the
detailed design phase is the information flow metric
[8].

In the information flow metric, the complexity of a
module is considered as depending on the intra-module
complexity and inter-module complexity. The intra-
module complexity is approximated by the size of the
module in LOC. The inter-module complexity of a
module depends on the total information flowing in the
module (inflow) and the total information flowing out
of the module (outflow). The inflow of a module is the
total number of abstract elements flowing in the
module and outflow is the total number of abstract data
elements that are flowing out of the module. Module
design complexity:

Dc = Size × (inflow × outflow) 2 (5)

To identify modules that are extra complex, what
complexity number is normal has to be defined. The
complexity of modules in the design and highlight
modules that are relatively speaking more complex has
to be evaluated. One of the method used for
highlighting the modules are as follows: Let average
complexity be the average complexity of the modules
in the design being evaluated and let standard deviation
be the standard deviation in the design complexity of
the modules of the system. This method classifies the
modules into three categories: error prone, complex

Simplified Neural Model for the Software Development Team Optimization 151

and normal. If Dc is the complexity of a module, it is
classified as follows:

• Error Prone, if Dc > average complexity + standard
deviation.

• Complex, if average complexity < Dc < average
complexity + standard deviation.

• Normal, Otherwise.

f. Coding

The proposed model accepts coding parameter as the
sixth input, and the metric used for coding phase is
halstead measure [7]. A number of variables are
defined in the software science. These are n1 (number
of unique operators), n2 (number of unique operands),
N1 (total frequency of operators) and N2 (total
frequency of operands). As any programs must have at
least two operators, one for function call and one for
end of statements, the ratio n1/2 can be considered the
relative level of difficulty due to the larger number of
operators in the program. The ratio N2/n2 represents the
average number of times an operand is used. In a
program in which variables are changed more
frequently, this ratio will be larger. As such programs
are harder to understand, ease of reading or writing is
defined as

D = (n1 × N2) / (2 × n2) (6)

Halstead’s complexity measure focuses on the
internal complexity of a module. A module’s
connection with its environment is reflected in terms of
operands and operators. A call to another module is
considered an operator and all the parameters are
considered operands of this operator.

g. Testing

The seventh input to the optimization model is the
testing parameter. The metric Defects per Thousand
Delivered Lines of Code (KDLOC) or defects per
function point [2] can be applied to this node. This is a
rough measure of the reliability of the software as the
defect density directly impacts the reliability of the
software.

h. Implementation

The optimization model accepts implementation
parameter as the last input. The metric that can be
applied to this node is number of modules successfully
implemented. The metric is represented as follows:

dimplementebetoulesmodof.noTotal
dimplementelysuccessfululesmodof.NoM =

where M represents the success factor of the modules.

2.2.2. Output Layer

The output layer of the optimization mode architecture
computes the Acceptance Factor (AF) using the eight
inputs of the input layer. The AF value represents the
level of acceptance of the software developed by the
software project team. The different levels of
acceptance are shown in T able 4.

Table 4. Different levels of acceptance.

Range of AF
Values Level of Acceptance

0.67 – 1.00 Excellent (Can be Accepted)

0.33-0.66 Good (Can be Accepted)

0.01-0.32 Average (May be Accepted)

≤ 0 Poor (Cannot be Accepted)

Based on the AF values, the quality of the software
as well as the ability of the software project team
members can be determined. If the quality does not
meet the required standard, the team members can be
given proper guidance and a new project of similar
category can be given. Again at the end, the quality
will be tested using AF value and if succeeded, then
the team can be assigned the next type of project. This
process is continued until the team members get
trained in all different types of project, which the
organization concentrates on. The outcome of the
process will be an optimized software project team,
which in turn optimizes the project team members.

3. Case Study
To demonstrate the use of the model, a case study of
the students’ project evaluation has been considered. In
this study, only organic type projects have been
considered for the time being. No other metric
information has been considered in the case study. The
model takes eight input values from the input layer and
then evaluates the AF.

A sample training set has been formed to train the
model by using previous project evaluation data. The
accuracy of the model can be improved by adding
more data into the training set. In the study, organic
type projects, in the range 10 KDLOC to 50 KDLOC
are considered. After the completion of each project,
the different input parameter values are fed into the
input layer and the corresponding acceptance factor
will be evaluated. If the AF value indicates that the
project was successful, then the team will proceed to
next type of project in the training set. If the project
was not successful, as indicated by AF value, then the
problem occurred during the development phases has
to be thoroughly analyzed and a similar type project
has to be undertaken again from the training set. This
process is continued until the team gets optimized in
different types of projects.

(7)

152 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

For the case study a sample training set has been
formulated, consisting of input parameters and their
corresponding desired output value, of organic type
projects with a code size of 50 KDLOC maximum. For
simplicity, only four inputs among the eight inputs in
the input layer are considered. All other desired input
information like number of user inputs, number of user
outputs, number of inquires, number of files, no
number of external files, number of modules to be
implemented, coding method to be adopted to reduce
the complexity etc., has been given to the students in
advance. The four inputs considered in the case study
are effort, tools, testing and implementation. For the
testing input, the defect rate is used as the metric. If the
defect rate metric has value 0, then it indicates that no
defects have been identified. On the other hand, if the
metric has value 1 then it indicates that all lines of
code in the software are defective. For implementation
input, the metric number of modules successfully
implemented is used.

Using the training set consisting of the above-
mentioned inputs and desired output value, an
optimization model has been formulated here. In the
actual model, all the eight input values will be
considered to prepare the optimization model.

The graph representing the initial state of the model
(before training the model) is given in Figure 2.

Figure 2. Initial state of optimization model.

The graph showing the performance of the training
model is given in Figure 3 which shows that the model
has been optimized and it can be used for assessing the
acceptance of the project. Figure 4 represents the
model after optimization.

The weights associated with four inputs such as
effort, tools, testing and implementation, after training
the model are as follows:

w1 (Effort) = -0.0003
w2 (Tools) = 0.7836
w3 (Testing) = -0.3213
w4 (Implementation) = 0.0800.

Figure 3. Performance graph of the optimization model.

Figure 4. Graph representing the optimized model.

Using this model we can optimize the project team
of students by assessing the AF value. Based on the AF
value, the project leader or the concerned staff-in-
charge can decide whether to give the same type of
project again to improve their performance or to go to
the next type of organic type project. Again the model
is used to assess the AF value of the newly assigned
project. Based on the AF value, the necessary action
will be taken by the project leader or staff-in-charge.
This process is repeated until the team gets optimized
in all required categories of organic type projects.

4. Conclusion
This paper gives an insight into how neural model can
be used for software project team optimization. This
architecture uses basic metrics for accessing the quality
of the software developed by the team. This model can
be used by software organizations for effectively train
their newly recruited software trainees. The advantage
of this model over conventional training methods is
that the team members get well versed in all types of
projects, the organizations deals with.

The proposed neural model can be further improved
by incorporating advanced quality metrics in each
layer of the proposed neural model to enhance the
optimization of team members.

Simplified Neural Model for the Software Development Team Optimization 153

References
[1] Fairley R., Software Engineering Concepts,

McGraw Hill, 2000.
[2] Hyatt L. and Rosenberg L., “A Software Quality

Model and Metrics for Identifying Project Risks
and Assessing Software Quality,” 8th Annual
Software Technology Conference, Utah, 1996.

[3] Jalote P., An Integrated Approach to Software
Engineering, Narosa Publishing, 1998.

[4] Kaner C. and Bond W., “Software Engineering
Metrics: What Do They Measure and How Do
We Know?,” 10th International Software Metrics
Symposium, 2004.

[5] Mehrotra K., Ranka S., and Chilukuri M.,
Elements of Artificial Neural Networks, MIT
Press, 1997.

[6] Perampalam S., “Software Metrics,” http://www.
cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C05-01-
02/aswe12.pdf

[7] Roger S., Software Engineering: A Practitioner’s
Approach, McGraw Hill International Edition,
2001.

[8] VanDoren E., “Halstead Complexity Measures,”
http://www.sei.cmu.edu/str/descriptions/halstead_
body.html.

[9] Watson A. and McCabe T., “Code Complexity
Metrics,”http://www.softwaresafetynet/Metrics/.

[10] Yong H., Juhua C., Zhenbang R., Liu M., and
Kang X., “A Neural Networks Approach for
Software Risk Analysis,” Sixth IEEE
International Conference on Data Mining-
Workshops (ICDMW'06), pp. 722-725, 2006.

Madhu S. Nair is currently
working as lecturer at Rajagiri
School of Computer Science, Kochi.
He received his BSc in computer
applications (BCA) from Mahatma
Gandhi University with first rank
and his MS in computer applications

(MCA) from Mahatma Gandhi University with first
rank. He holds a post graduate diploma in client server
computing (PGDCSC) from Amrita Institute of
Technology. He had also qualified National Eligibility
Test (NET) for lectureship conducted by University
Grants Commission (UGC) and Graduate Aptitude
Test in Engineering (GATE) conducted by Indian
Institute of Technology (IIT). He had published papers
in national and international journals. He is also a life
member of Computer Society of India (CSI).

Jaya Vijayan is currently working
as lecturer at Rajagiri School of
Computer Science, Kochi. She
received her BSc degree in physics
from University of Kerala and
master degree in computer
applications (MCA) from

Manonmaniam Sundaranar University. She has around
eight years academic experience at the postgraduate
level. Her areas of interests are software engineering
and neural networks.

