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Abstract: The problem in cryptanalysis can be described as an unknown and the neural networks are ideal tools for black-box
system identification. In this paper, a mathematical black-box model is developed and system identification techniques are
combined with adaptive system techniques, to construct the Neuro-Identifier. The Neuro-Identifier is discussed as a black-box
model to attack the target cipher systems. In this paper, a new addition in cryptography has been presented and the methods of
block Simplified DES (SDES) crypto systems are discussed. The constructing of Neuro-Ildentifier mode is to achieve two
objectives: The first is to emulator construction Neuro-model for the target cipher system, while the second is to
(cryptanalysis) determine the key from given plaintext-ciphertext pair.
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1. Introduction

Block cipher systems belong to symmetric
cryptographic systems, where the same key is used for
encryption and decryption process. The major
difference between block ciphers and other symmetric
cryptographic systems are that; block ciphers are
characterized by the fact that the decipherment of a bit
of data depends not only on the key but also on some
of the other bits of data. The principles behind the
design of most block ciphers are the concepts of
diffusion and confusion. The idea of confusion is to
make the relation between a cryptogram and the
corresponding key a complex one. This aims to make
it difficult for the statistics to point out the key as
having comes from any particular area of the key
space. The concept of diffusion is to spread the
statistics of message into statistical structure, which
involves long combinations of the letters in the
cryptogram, and hence whitening all the statistical
feature of the neutral language.

In this paper, a brief discussion of block ciphers
background, and techniques are presented. DES cipher
is chosen as a case study of block cipher because, it
was (and still) the challenge of most of the researchers
over the last 25 years. Security of cryptographic
systems is directly related to the difficulty associated
with inverting encryption transformations of the
system. The protection afforded by the encryption
procedure can be evaluated by the uncertainty facing

an opponent in determining the permissible keys [6].
The cryptanalysis problem can be described as an
identification problem, and the goal of the
cryptography is to build a cryptographic system that is
hard to identify [9, 10]. System identification is
concerned with inferring models from observation and
studying system behaviour and properties. System
identification deals with the problem of building
mathematical models of dynamical systems based on
observed data from the system [10, 13].

Artificial Neural Networks (ANN) are simplified
models of the central nervous system. They are
networks of highly interconnected neural computing
clements that have the ability to respond to input
stimuli. Among the capabilities of ANN, are their
ability to learn adaptively from dynamic environments
to establish a generalized solution through
approximation of the underlying mapping between
input and output [7, 14, 16]. Neural networks can be
regarded as a black-box that transforms an input vector
of m-dimensional space to an output vector in n-
dimensional space. This makes them ideal tools for
black-box system identification [15, 23].

In this paper, a simplified version of the DES block
cipher algorithm has been implemented. Naturally
enough, it is called SDES, and it is designed to have
the features of the DES algorithm but scaled down so
it is more tractable to understand. A survey of previous
cryptographic work especially for DES is presented.
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The proposed (Emulation and Cryptanalysis) models
using Neuro-Identifier (NID) against SDES is
described in detail with the results obtained during the

paper.

2. System Identification

There are two approaches for system identification
[10, 13] depending on the available information, which
describe the behaviour of the system. The first
approach is the State-Space approach (internal
description), which describes the internal state of the
system, and is used whenever the system dynamical
equations are available. The second approach is the
Black-Box approach (input-output description) which
is used when no information is available about the
system except its input and output [17]. Figure 1
illustrates an unknown system with xm input signals
and yn output signals. The central concept in
identification problems is identifiably [13]. The
problem is whether the identification procedure will
yield a unique value of the parameter (q), and/or
whether the resulting model (M) is equal to the true
system, i.e., a model structure is globally identified at:

O *if: MO =M@®*, O0EDM=>0=0*% )

Where M is a model structure; 0 is a parameter vector,
ranging over a set of values DM [23].

3. Input-Output Descriptions

The input-output description of a system gives a
mathematical relationship between the input and
output of the system. In developing this description,
the knowledge of the internal structure of a system
may be assumed to be unavailable; the only access to
the system is by means of the input and output
terminals [1, 10]. Under this assumption, a system may
be considered a Black-Box as shown in Figure 1.
Clearly what one can do to a black box is to apply
inputs and measure their corresponding outputs, and
then try to abstract key properties of the system from
these input-output pairs. An input-output model
assumes that the new system output can be predicted
by the past inputs and outputs of the system [4, 17].

A Black-Box model of system identification
assumes no prior knowledge about the system except
it’s input and output, i.e., no matter what analysis is
used, it always lead to the same input-output
description. Moreover, a Black-Box model allows
finite-dimensional identification techniques to be
applied, which may require in nonlinear system
identification. In developing the input-output
description, before an input is applied, the system must
be assumed to be relaxed or at rest, and that the output
is excited solely and uniquely by the input applied
thereafter and the system is said to be causal if the
output of the system at time k does not depend on the

input applied after time k .

described as follows:

The system can be

Yk =Hx (2

Where H is some function that specifies uniquely the
output y in terms of the input x of the system.
Although the subject of system identification is well
developed for linear systems, the same is not true for
the nonlinear case. However, linearization of nonlinear
systems can be obtained by several methods, among
them is the approximate linearization technique for
nonlinear systems [10, 17, 19]. For Single-Input
Single-Output  (SISO), the input-output model
identification problem is to devise a mathematical
model which, when excited with the input sequence
[x(k), k=1,2,..., m ], will produce an estimated output
(k), k=1,2,..., n ], such that:

YR)=f (k1) y(k-2), ...y (k-n), x(k-1), x(k-2), ... X (k-m) 3)

Where [x (k), y (k)] representing the input-output pairs
of the system at time %, », and m are positive integers
representing the number of past outputs and the
number of past inputs respectively. F is a static
nonlinear function which maps the past inputs and
outputs to a new output. fis called describing function.
That means; for any discrete-time, unknown nonlinear
system there would be suitable positive integers (m
and n) and a multidimensional mapping f'(.) in such a
way that the system output at a given instant could be
approximated by equation 3. If a system is linear f is a
linear function, and equation 3 can be rewritten as [7,
9, 10]:

Y(k)=ayy (k-1)+a;yk-2), ...+ ayy(k-n) + f x (k-1) +f3,x (k-
2) .t B, x (k-m) 4

Where o; (I=1,2,...,n) and £; (I=1,2,...,m) are real
constants. Equation 4 can be rewritten in matrix
notation:

k)= ak(y=1)+Y B k(x=j) )
i=0 j=0
For Multi-Input Multi-Output (MIMO), y(k) and x(k)

are of dimensions m and p respectively, equation 5 can
be rewritten as [10]:

Y(k)= Y Ak(y=1)+ Y B k(x— ) ©)
Where 4; and B; an (mxm) and (m>p) matrices,
respectively.
X1 —p v
X2 —
system A > system s
X —>yn

Figure 1. System with m inputs and n outputs.
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4. Cryptographic System

An encryption algorithm is a single parameter family
of invertible transformations (mappings) of the
message space (M) into the cryptogram (ciphertext)
space (C) using finite length key k from key space (K).
See a reversible encryption algorithm [18, 19] in
equation 2:

Ek-. M —> C
Such that: E, (m) =c, k €K, me M, ceC (7)

An inverse decryption algorithm:

D,=E% :DpCoM ®)
Such that:  Dy(c) =Dk [E, (m)] =m
The keys should uniquely define the enciphered
message:

ie, Ey(m) #En (m)  ifk; #k; ©

According to the previous discussion of the properties
of the system, and the definition of a cryptographic
system, it might be concluded that: a cryptographic
system is, relaxed, causal, time invariant, and
nonlinear system.

5. Neuro-Identifier

Identification of a system consists of finding a model
relationship.  Consider the system described in
equation 3. Identification then consists of determining
the system orders and approximation of the unknown
function by neural network model using a set of input
and output data [5, 11, 12].

The procedure begins with the choice of neural
model which is defined by its architecture and an
associated learning algorithm. This choice can be
made through trial and error. Once the neural model is
chosen, and system input-output data are available,
learning can begin. Different structures are trained and
compared using learning set and simulation set of data,
and a criterion (error goal) [21, 24]. The optimal
structure then, is the one having the fewest units
(neurons) for which the criterion is met. Neuro-
Identifiers (NID) are basically Multi-Layer Feed-
Forward (MLFF). Artificial neural networks with an
input layer (buffer layer), a single or multiple
nonlinear hidden layer with biases, and a linear/or
nonlinear output layer [17, 22]. The results of research
have shown that linear identifiers are not capable of
identifying nonlinear systems. Hybrid identifiers can
identify simple nonlinear systems but not complex
ones [8, 20, 22]. Figure 2 illustrates the structure of the
multi-layer feed-forward neural network identifier
NID, with two nonlinear hidden layers, which is used
in this research. The size of the neural network is
crucial in designing the whole structure. There is no
mathematical formulation to calculate the optimal size
of such networks. However, with many free units the
NID will learn faster, avoid local minima, and exhibit

a better generalization performance [7, 23]. The
essential constraint on increasing the size of hidden
layers is the limitation of the hardware architecture
used in the experimental work.

Hidden Layer Cutput layer

Input Layer

Figure 2. Multi-layer feed forward neuro-identifier architecture.

5.1. Training Algorithm

The Levenberg-Marquardt (LM) algorithm is MLFF,
the most idely used optimization algorithm. It
outperforms simple gradient descent and other
conjugate gradient methods in a wide variety of
problems. This document aims to provide an intuitive
explanation for this algorithm. The LM algorithm is
first shown to be a blend of vanilla gradient descent
and Gauss-Newton iteration. Subsequently, another
perspective on the algorithm is provided by
considering it as a trust-region method [10, 11].

Algorithm (LM)
1. Initialize network (Weights and Biases)
2. For each training pair 3-7 until performance criteria
3. Sums weighted input and apply activation function to compute
output.
hoi = X I=1 Xi Wij + bi
hi =f(hj)
4. Compute output of network
yy =bp +2'i=1 hi Wpi
=1

5. Calculate error term
6 = (y-yd)
6. Calculate correction term
Wb = [wilbl w2b2 ... wpbp |
AWb = (J'.J +qD)-1. (-J'.8)
7. Update biases and weights
Wij (new) = wij (old)+ A Wb
8. End

5.2. Using NID in Cryptanalysis

Cryptographic systems are a 2-input, 1-output systems,
it takes a plaintext character (or bit /block of bits), and
a key character to produce a ciphertext character.
Hence a 2-neurons input layer is used to present the
training data to the identifier, while a single neuron
output layer is used. The described neural network
identifier was used to identify cryptographic systems
in two approaches with the following objectives:

1. Emulation Approach: Construct of a neuro-model
for the target unknown cipher system [9].
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a. Encryption Cipher: Input data: TP, TK. Desired
output data: TC.

b. Decryption Cipher: Input data: TC, TK. Desired
output data: TP.

2. Cryptanalysis Approach: Input data: TP, TC.
Desired output data: TK.

The first objective is to construct a neuro-model which
imitates the internal (transfer) function of the
cryptographic system (hardware or software). After
training and on convergence, the constructed model
will resemble the target system completely. The
construction of such a model will be useful in studying
the behaviour of the unknown system and it can be
used as a real system in encryption and decryption in
cases where the real system cannot be.

The aim of the second objective is to obtain clearly
a pure cryptanalysis target (total break). This could be
done by introducing plaintext-cipher text as input to
the system, which yields the key as output. The
training data is built using the target cipher system
algorithm by applying selected input signals
(characters or bits) and collecting the output response
of the system. The resulting data are split into two
groups; the first group is used to train the neural
network, while the second group is used to test
(simulate) the trained network.

6. Block Ciphers

IBM initiated a cryptographic research concentrating
on nonlinear block ciphers in the late 1960°s, and has
produced several important cryptographic systems. In
January 1977, the National Bureau of Standard (NBS)
adopted one of these as the national data encryption
standard (DES). IBM systems have their roots in
Shannon’s  brilliant 1949  paper connecting
cryptography with information theory [2]. Shannon
suggested using product ciphers to build a strong
system out of simple, individually weak components.

He suggested wusing products of the form
B/M,b;M...,B,M, where M is a mixing transformation,
and Bi is simple cryptographic transformations. High-
speed electronic circuitry allows the product system to
be implemented almost as economically as single BM
pairs. The data are encrypted in number of “rounds”
(iterations) each consisting of a single pair B;M and
each using the same hardware. The same key is used in
encryption and decryption process. The fundamental
building block of DES is a single combination of
substitution followed by permutation (diffusion and
confusion) on the text based on the key. This is known
as a round. DES has 16 rounds; i.e., it applies the same
combination of substitution and permutation 16 times
[21]. The output of the i th round become the input to
the (i+7) round. Block ciphers probably of the most
important cryptographic primitives.

Although they are used for many different purposes,
their essential goal is to ensure confidentiality. This
paper is concerned by their quantitative security, that
is, by measurable attributes that reflect their ability to
guarantee this confidentiality. Well know results.
Starting with Shannon’s Theory of Secrecy, we move
to practical implications for block ciphers, recall the
main schemes on which nowadays block ciphers are
based, and introduce the Luby-Rackoff security model.
We describe distinguishing attacks and key-recovery
attacks against block ciphers [3].

The system uses a transformation of the bits within
a block for the fixed mixing transformation T, and
substitution on four bits groups of the block for the
simple cryptographic transformation Si. Any k-bit S-
box can be implemented as 2k word memory with k-
bit words. The Neuro-Identifier (NID), as described
above, has been used in this research in block
cryptosystem identification, as a black-box model.

The objective of the attack, is to determine the key
from the given plaintext-ciphertext pair. Black-box
attack has been applied to SDES. SDES encryption
takes a 10 bit raw key (from which two 8 bit keys are
generated as described in the handout) and encrypts an
8 bit plaintext to produce an 8 bit ciphertext.
Implement the SDES algorithm in a class called
SDES.

Definitions:
K= (kOkl1......k9) where k1 € {0,1}  Key
M = (mOml......m7) where m1 € {0,1} Message
P4=(1,3,2,0) Shifting Sequence = (1,2)

P8 =(52,63,749.8) Pl0=(24,1,639,08.7,5)
IP= (1,52,0,3,7,4,6) IP-1=(3,02,4,6,1,7.,5)

1032 0123
3210 2013
SBO=1]0213 SB1=13010
3132 2103

Algorithm (Sdes):

1 P10 (K) = s = (s0s1s2s3s4) (s5565758s9)
2. Shift (s, 1) = t =(s152535450s6575859s5)
3. PS8 (1) = k1 = (t5t2t613t7t419t8) st subkey
4. Shift ¢, 2) = u =(12t3t4t0t1t7t8t9t5t6)
5. P8 (u) = k2 = (uSu2ubu3u7udu9u8) 2st subkey
6. IP (m) = m = (mIm5Sm2m0m3m7m4mo)
7. IP-1 n) = n = (n3nOn2n4n6nln7ns)
8. T (m) = m = (m4dmSmém7mIm2m3)
n7 n4 ns né

. Arrange n into a diagram D= n5 ns n7 ‘ n4

10. D+kl =
n7+kl0|\nd+kll n5+ki2

n6+ki3 p00 ‘ P01 p02 ‘ p 03

n5+ki4 \n6+kl5 n7+ki6 | n4+kl7 pl0 | pllpl2| pl3

11.  SBO [(p00p03), (p0Ip02)] = qOql. SBI [(pl0pl3),
(pllpi2)] = q24¢3.

12. P4 (q) =ql g3 q2q0

13. S1 (n,q) = (n0+ql, nl+q3, n2+q2, n3+q0,n4 ,n5,n6,n7)

13. Repeat steps 10-13 Using 2nd subkey k2 instead to form S2

15.  Encrypt (IP-1°S2°T°S1°IP)

16.  Decrypt (IP-1°S1°T°S2°IP)
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6.1. Training of SDES Cipher

During the training, the error goal (sum squared error)
is defined as (0.00001 =107), which gives 100%
accuracy. After the training process has finished and
the Neuro-Identifier has converged to the defined error
goal, the weights (W) and biases (B) matrices are
saved to be used later in the simulation phase. As an
experimental result obtained from this research,
emulation modes (encryption and decryption modes), a
sub set of the training data was sufficient to capture the
behaviour of the algorithm. Table 1 illustrates the
results of NID training for SDES cipher in both modes
(encryption and decryption modes). Table 2 illustrates
the results of NID training for SDES cipher in
Cryptanalysis modes. Figure 3 illustrates the error
curve of NID training for SDES cipher in encryption
of emulation mode. Figure 4 illustrates the error curve
of NID training for SDES cipher in Cryptanalysis
mode.

Table 1. the creation of emulation models in SDES cipher.

Trai NN No. No. of Exec.

Meth. Mode Set Size Epoch Flops Time sec.

4.871 ell 1.943¢ 4

Encry. 1024 32%32 1640
SDES

Decry. 1024 32%32 2861 9.735 ell 2932e5

Table 2. the creation of Cryptanalysis models in SDES.

Meth. Train NN No. No. of Execution
Set Size Epoch. Flops Time sec.
SDES 1024 32%32 7869 9.4887 el5 8.3243e 11

1 ;j: 1 1 L [ i

i} RO0D 1000 1500 2000 2500
Figure 3. Error curve of the emulation SDES cipher.

]f;i T T T T

1”1.”

0 1500 3000 A500 G000 7300

Figure 4. Error curve of the cryptanalysis SDES cipher.

6.2. Simulation of SDES Cipher

The simulation phase includes execution of the trained
neural identifier in both approaches (cryptanalysis and
emulation) using the saved weights (W) and biases
(B), and the simulation data set (SP, SK, SC).
Simulation of sdes cipher in both approaches
(cryptanalysis and emulation) gives 100% accuracy for
any length of key. The possible key of SDES cipher is
any combination of lowercase alphabetic characters
with maximum length of (1024=32*32) which is the
size of the training set. Figure 5 illustrates actual and
simulated key of length (300 characters) for SDES
cipher, Where the value of the letter a = 0 and the
letter z = 25.

SDES cipher and NID response in Cryptanalysis Mode

& |

'Acruax Key e mdex & o
4

Slmu.fa feti:Key}: 40 ; r;c o & 0 80 50

Figure 5. Actual and behaviours of simulated NID response for
SDES cipher.

7. Conclusions

1. The Levenberg-Marquardt (LM) algorithm from
neural network is used to train the Neuro-Identifier
which gives good approximation capabilities, faster
convergence, and more stable performance surface.
This work present the idea of the equivalent cipher
system, which is identical 100% to the unknown
system, and that means an unknown hardware, or
software cipher system could be reconstructed
without knowing the internal circuitry or the
algorithm.

2. Most of identification techniques can identify
certain cipher systems, but not all of them, the
presented method is a generalized one that could
identify many cipher system and build the
equivalent system from the input-output
observations.

3. Emulation cryptography is a generalized method
that could be used to all cryptographic systems. The
only changeable parameter is the size of the hidden
layers which should be made large enough to
accommodate the key space of the target cipher
system. The total number of neurons in the hidden
layers is at most equal to the number of training
samples, giving that the training samples are
sufficient to describe the target system behavior.
The feature of generalization is due to the
characteristic of modelling.
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4. Future works: It is possible to use this model with
the most sophisticated cryptosystems such as public
key, as well as to use search for any efficient
algorithms in neural network. It is possible to use
the genetics algorithm to reduce the space search for
the keys and use the results as inputs for the neural
networks to get the correct keys.

Actual and Simulated Key of SEDS Cipher

Plaintext:
amessageiscalledplaintexttheprocessofdisguisingamessageinsucha
wayastohideitssubstanciscalledencryptionanencryptedmessageisca
lledciphertexttheprocessofturningciphertextintoplaintextagainiscall
eddecryptiontheartandscienceofkeepingmessagessecureiscryptogra
phyanditispracticedbycryptographerscryptanalyst.

Ciphertext:

58 12197 13469210 4410934 120175234 12172142 52552471632
107 169 197 230 248 64 101 109 199 81 1478 197 13469178 176 219 34
12034 155130134 625444021429 173220153 126 142 230 234 126
206 242 215 234 204 192 226 210 207 255 156 107 22163 197 251 248 10
207 249 187 120 208 234 6 194 6 10 135 0 66 146 232 163 197 56 241
5065562083214 1815356 1422541351788 126 208

145 128 158 142 10 207 0 22 29 22 220 141 192 51 129 205 219 139 32
123 230 197 209 248 236 243 255 208 107 232 2 129 82 241 236 207 126
156 165 208 155 129 56 6 254 44 84 34 126 215 145 129 35 142 191 196
180215243 142 12 192 6 254 196 109 225 243 58 11153 251 164 230
207 84 16 146 238 145 128 160 142 142 106 62 199 243 22 119 6 35 15
236 145 178 208 234 107 163 65 194 6 236 234 84 92 127 199 170 197 27
35230234 1521429173220 153 126 142 10 207 109 139 191 157 145
130 13424150 65 56 208 127 34 213 153 247 15 55 145 94 90 32 208
22265247 192210135255 34 242232 163 28 241 241 50 65 56 208 127
34213153247 15236 106 126 139 81 132 2 35 192 164 210 245 62 33
243.

Simulated Key:
0 3

NpoRnuowowh ook gO
W NG RN U W WM G oW
B UoOWLWaLNG®RAIO WO ol G,
D da O Wo Wl (o a4 W o
DN oHATD W WN G ® R &
CWHWONG®HE YO W N G ®
HFRUO WO WLNG®RK IO WO ©
NGO RBE IO W WM G ®RE gD
WHONUDRAE IO WO N G © R
M UOWRONU®DHRA YD WO 0N
R AUYUOWRWOLN G ®R & O W
HLONG®HB IO WO N G © kW
N WO LWNOGORNKNJIO WO ©N O,
DA UOWR VNG ®RA YO WO

~
[e¢)
o

o
Qwo\mNmmN-&wamkol\JLnOng\ch\kol\)anoH-&\]meml\)mooH
HuugwmmmmmwuugwmmmgHuugwmmmmmmuugwo\ml\)
[\)UW(X)’\"&\]Q(AJQKO[\)U‘IOON&\]Q(A)”
WO mR® YO W Ol G o~ &
T O T N VI N C S S I PR NIV N O
DU WLl G o e a4 W o
T N N e R I I AV NV NI I S SR

SCWHLONU®RKANUOWH NG

MR UOWRHRWLN O RKA IO WO W

NGO ®HRAUTO W WNG®RNJD

WRHWON OB A IO WO VN G R

MUOWRHWVWNGORN®N IO W LN

MO RAUIOW VW G®RNIO W

NONGORN®N IO WO LN G ®R A

NO W WNGORNKNJO W, N O,

ORI WRHWNG®ERAIO WO

~
[e¢)
o

7
4
1
8
5
2
9
6
3
0
7
4
1
8
5
2
9
A
0
7
4
1
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2
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6
3
0
7
4
1
8
5
2
9
A

ccuracy = 100%
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