
54 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Networking Data Integrity: High Speed

Architectures and Hardware Implementations
Nicolas Sklavos, Epaminondas Alexopoulos, and Odysseas Koufopavlou

Electrical and Computer Engineering Department, University of Patras, Greece

Abstract: Hash functions are widely used in encryption schemes and security layers of communication protocols
(wap, ipsec) for data integrity, digital signature and message authentication codes. In addition to the demanded
high security level, the need for high performance is a major factor of the security implementations. In this work,
an ultra high speed architecture for the hardware implementation of both md5 and sha-1 is proposed. Both hash
functions have been developed with vhdl description language and have been integrated in fpga devices. The
introduced md5 implementation performance is equal to 2,1 gbps while sha-1 proposed implementation achieves
throughput equal to 2,3 gbps. Both proposed implementations are compared in throughput, operating frequency
and in the area-delay product, with other related works. From these comparisons, it is proven that the md5
proposed implementation is better by a factor range from 700% to 1500%. The sha-1 proposed implementation is
better by about 800% to 1700% in the term of performance, compared with the other conventional works.

Keywords: MD5, SHA-1, hash functions, hardware implementation, cryptography, wireless protocols security .

Received February 24, 2003; accepted May 5, 2003

1. Introduction
In the last few years, communications have been
grown up rapidly, due to the users increased needs
and the maximized offered services and applications.
In parallel to this growth, is the increased major
demand for powerful secure implementations of
cryptographic algorithms and encryption schemes.
Almost all the communication protocols have
specified security layers, which ensure security with
high-level strength. In order these special and
sensitive needs for cryptography to be satisfied in the
desirable level, different categories of encryption
algorithms, support the communication protocols and
networks defense.

Hash functions belong to one of the most
important categories of encryption algorithms,
against the external harmful attacks [1]. They are
widely used in a great number of security
applications and have been included in the
specifications of communication protocols like WAP
and IPsec. They mainly serve data integrity and
message authentication codes (MAC) but they are
also used in digital signatures, HMAC and random
number generators. The most well know and widely
used hash functions are MD5 and SHA-1 [10, 11].

In this paper, an ultra high speed architecture for
the VLSI implementation of both MD5 and SHA-1
hash functions is proposed. Both hash functions
specifications and operation processes have been
studied and a pipeline architecture with four
processing levels is proposed. The internal
components of the proposed architecture are analyzed
and presented for each one of the MD5 and SHA-1

implementations separately. Both MD5 and SHA-1 hash
functions have been integrated by using VHDL
description language, in FPGA hardware module. The
synthesis results are presented in detail. The MD5
implementation throughput reaches the value of 2,1
Gbps while the SHA-1 throughput is equal to 2,3 Gbps.
Both proposed implementations are compared with other
related works for both MD5 [2, 4], and SHA-1 [3, 4, 6,
9]. In these comparisons, the hardware terms of system
performance (throughput), operating frequency and
covered area are given, for both proposed and
conventional implementations. Furthermore, in order to
have a fair a detailed comparison, the Area-Delay
products for all the hardware implementations are
compared. These comparisons prove that the proposed
implementations have ultra high-speed performance
compared with the other conventional architectures in all
of the cases. Especially the proposed MD5
implementation has better performance with a factor
equal from 7 to 15 times, compared with the
conventional architectures. The Area-Delay product of
the proposed MD5 implementation is still better (less)
compared with all the others ones. The SHA-1 proposed
implementation performance is superior to all the other
conventional works. Especially, it is better at about 8 to
17 times. It is proved that the SHA-1 introduced VLSI
integration has better Area-Delay product in all of the
cases. The proposed MD5 and SHA-1 implementations
could be used efficiently in applications with high
performance and minimized covered area demands.
They can be flexible solutions for hardware
implementations of data integrity, digital signatures and
MAC applications. Furthermore, they can substitute

Networking Data Integrity: High Speed Architectures and Hardware Implementations 55

successfully possible existing developments, with
better achieved performance and high security
offered level at the same time. Especially, they can be
used to implement the data integrity specified
schemes of wireless protocols such as WAP and
IPsec.

This paper is organized as follows: In section 2
both MD5 and SHA-1 hash functions are introduced.
In the next section, the proposed system architecture
is presented. The internal components of this
architecture for both MD5 and SHA-1
implementations are described in detail. The
synthesis results for MD5 and SHA-1 VLSI
implementations are given in the next section 4.
Comparisons with other related works are also
presented in the same section. Finally, important
conclusions and observations are discussed in
section5.

2. Hash Functions
An n-bit hash is a map from arbitrary length
messages to n-bit hash values [1]. An n-bit hash
function is an n-bit hash which is one-way and
collision-resistant. One-way is the function that for a
given hash value, it should require work equivalent
about 2n hash computations to find any message that
hashes that value. The term collision resistance
characterizes the functions that finding two messages,
which hash the same value, should require work
equivalent to 2n/2 hash computations. Of course the
hash functions architectures ofare public and
commonly known. In the hash computation process,
there is no secrecy and no keys, public or private, are
used at all. The security is based on the one-way
operation of each hash function itself. Hash functions
are used for digital signature scheme, data integrity,
HMAC and other cryptographic purposes (random
number generators) [5, 8]. In most of the wireless
protocols, such as WAP and IPsec, the widely used
hash functions are SHA-1 and MD5.

MD5 is the Message Digest algorithm developed
by Ronald Rivest [10, 12]. The algorithm accesses
512-bit message blocks and finally produces a 128-
bit hash value (message digest). This hash function is
an improved version of MD4 but a more complex
design [1]. In MD5 architecture a fourth round has
been added, while each transformation step has a
unique additive constant. Each step now adds in the
result of the previous transformation step. This
promotes a faster valance effect compared with MD4.

Furthermore the order of the processed message
sub-blocks is changed in transformation rounds 2 and
3 [1]. In spite of these differences, both MD4 and
MD5 produce a 128-bit message digest.

SHA-1 is the Secure Hash Algorithm designed by
NIST [7, 11]. This hash function is widely used in the
Digital Signature Algorithm [8]. The SHA-1 is based
on design aspects and mathematical principles similar
to the applied to MD4 and MD5. Especially, SHA-1
is almost the same with MD4 with the addition of an

expand transformation, an extra round, and better
avalanche effect [1].

SHA-1 produces a 160-bit message digest, longer
than the generated 128-bit hash value by MD5. This
hash function offers high security level and no
cryptanalytic attacks have been applied successfully
against SHA-1 yet. The 160-bit message digest of SHA-
1 makes it more resistant to birthday and brute-force-
attacks than the 128-bit hash value of MD5.

3. Proposed System Architecture

3.1. MD5 Hash Function
The proposed system architecture is illustrated in the
following Figure 1. This architecture is used for both
MD5 and SHA-1 implementation, with the appropriate
modifications each time.

The Padding Data Unit pads the input data and
converts them to 512-bit blocks (padded data). This
operation is characterized of simplicity and it is well
defined by the MD5 specifications (for more details see
[10]). Every produced padded data block is stored in one
of the four used RAM blocks. Each one of the used
RAM blocks is equal to 16x32-bit (=512-bit). Four
padded data blocks in total can be processed by the
proposed system architecture at the same time.

RAM Block I
16x32-bit

Address
Bus 32-bit

RAM Block II
16x32-bit

RAM Block III
16x32-bit

RAM Block IV
16x32-bit

MUX1 MUX2 MUX3 MUX4

Out1
(32-bit)

Out2
(32-bit)

Out3
(32-bit)

Out4
(32-bit)

Pipeline Data
Transformation Unit

M
o
d
d
u
lo

 A
d
d
er

s
U

ni
t

M1
(32-bit)

M2
(32-bit)

M3
(32-bit)

M4
(32-bit)

Message
Digest

(128-bit)

Data Bus
32-bit

Padding
Data Unit

Constants
Unit

Control
 Unit

Input Data
32-bit

X2 (32-bit)
X3 (32-bit)
X4 (32-bit)

X1 (32-bit)

K2 (32-bit)

K3 (32-bit)
K4 (32-bit)

K1 (32-bit)

4x32-bit

Control

Figure 1. Proposed system architecture.

The necessary data transformation is performed in the

Pipeline Data Transformation Unit. The architecture of
this unit is shown in Figure 2.

This last unit basically consists of four different in
architecture data transformation rounds. Of course, the
pipeline applied design technique of this unit (Figure 2)
needs four registers between the data transformation
rounds. Every round operates on 4 inputs (AIn, BIn, CIn,
DIn) plus the message input (Mi) and the constant input
(Ki), all equal to 32-bit (Figure 3).

The four rounds are very similar but its one performs
a different operation. Each operation is based on a
nonlinear function on three of AIn, BIn, CIn, and DIn,
inputs. Then, this result is added to the fourth input with
the input data block (Mi) and the constant (Ki). That
result is rotated to the right and the rotated data output is
added with the input (B). There are four different
nonlinear functions, one for each round, which are
described by the following four equations:

56 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

Round 1:
F (X,Y,Z) = (X AND Y) OR ((NOT X) AND Z)

Round 2:
G (X,Y,Z) = (X AND Z) OR (Y AND (NOT Z))

Round 3:
H (X,Y,Z) = (X XOR Y XOR Z)

Round 4:
I (X,Y,Z) = Y XOR (X OR (NOT Z))

where X,Y,Z are equal to 32-bit.
Each round modifies the input data 16 times.

These necessary transformations are performed with
the use of loop rolling technique (feedback logic).

Data Transfomation
Round I

Register I (128-bit)

Data Transfomation
Round II

Register II (128-bit)

Data Transfomation
Round III

Register III (128-bit)

Data Transfomation
Round IV

Register IV (128-bit)

AIn BIn CIn DIn

AOut
32-bit

BOut
32-bit

COut
32-bit

DOut
32-bit

AIn BIn CIn DIn

AOut
32-bit

BOut
32-bit

COut
32-bit

DOut
32-bit

AIn BIn CIn DIn

AOut
32-bit

BOut
32-bit

COut
32-bit

DOut
32-bit

AIn BIn CIn DIn

Out1
32-bit

Out2
32-bit

Out3
32-bit

Out4
32-bit

X1
32-bit

X2
32-bit

X3
32-bit

X4
32-bit

M2
32-bit

K2
32-bit

M1
32-bit

K1
32-bit

M3
32-bit

K3
32-bit

M4
32-bit

K4
32-bit

Figure 2. Pipeline data transformation unit.

As it has been mentioned before the data (input

message) are processed 16 times in each
transformation round and in this way 64
transformations are performed in total. The proposed
architecture of Figure 2, processes four different
padded data blocks at the same time. When the
transformation of the N padded data block is

completed in the round unit K, then it is forward to
round unit K+1. After that, the N+1 padded data block is
entered to the K round unit.

This operation is repeated every 16 clock cycles.
Every padded data block needs 64 clock cycles in total
to be completely transformed. Then the outputs data
(Out1, Out2, Out3, Out4) are loaded from the Modulo
Adders Unit (Figure 1). The modulo adders unit consists
of 4 modulo adders. In this unit modulo additions 232 are
performed, between the input data (Out1, Out2, Out3,
Out4) and the four constants (X1, X2, X3, X4). In this
way the message digest (128-bit) is finally produced.
With the pipeline applied technique a new 128-bit
message digest is generated every (16+1) clock cycles.
The specified constants for the MD5 operation are stored
in the Constants unit. Four 32-bit constants (initial
values) have been defined. These values (X1, X2, X3,
X4) are called chaining variables. In addition, every one
of the four transformation rounds demands 16x32-bit
constants to support its operation, according to MD5
hash function specifications [10]. These values are
loaded from the four data inputs (K1, K2, K3, K4), one
for each round.

3.2. SHA-1 Hash Function

The proposed system architecture (Figure 1) can be
used alternatively for the implementation of the
other widely used hash function SHA-1. Only the
Constants Unit and the Pipeline data transformation
unit needs minor modification in order the proposed
system architecture (Figure 1) to perform efficiently
as SHA-1 hash function. The Data transformation
round architecture of SHA-1 is shown in the
following Figure 4.

The basic difference with the MD5
transformation round is that SHA-1 round operates
on five 32-bit variables (inputs/outputs). It also
based on a different nonlinear function. The
specified nonlinear functions for each one of the
SHA-1 transformation rounds are:

MA MA MANonlinear
Function

A
32-bit

B
32-bit

C
32-bit

D
32-bit

Mi
32-bit

Ki
32-bit

MARight
Shifter

Figure 3. MD5 data transformation round.

Round 1:
F1(X, Y, Z) = (X AND Y) OR ((NOT X) AND Z)

Round 2:
F2(X, Y, Z) = (X XOR Y XOR Z)

Round 3:
F3(X, Y, Z) = (X AND Y) OR (X AND Z)
OR (Z AND Y)

Networking Data Integrity: High Speed Architectures and Hardware Implementations 57

Round 4:
F4(X, Y, Z) = (X XOR Y XOR Z)

where X,Y,Z are equal to 32-bit.

The data are transformed 20 times in each round
(80 times in total) and finally a 160-bit (5x32-bit)
message
digest is produced.

The proposed architecture of Figure 2 ensures that
four 512-bit padded data blocks are processed at the
same time and every (20+1) clock cycles a new
message digest is generated.

The Constants Unit (Figure 1) in the case of SHA-
1 implementation initializes the inputs of SHA-1
pipeline data transformation unit (Figure 2), with five
32-bit specified initial values. In addition four 32-bit
constants are used (K1, K2, K3, K4), one for each
round for the Pipeline Data Transformation Unit. Of
course both initial values and used rounds constants
have been specified by the SHA-1 standard.
Especially, the initial values are refreshed each time
that a message digest is produced (for more details
see [11]).

MA MA MA MANonlinear
Function

EIn
32-bit

DIn
32-bit

CIn
32-bit

BIn
32-bit

Mi
32-bit

Ki
32-bit

AIn
32-bit

EOut
32-bit

DOut
32-bit

COut
32-bit

BOut
32-bit

AOut
32-bit

Shifter
<<<5

Shifter
<<<30

Figure 4. SHA-1 Data transformation round

4. Synthesis Results
The proposed system architecture, (Figure 1) has

been captured by using VHDL. All the internal
components of the design were synthesized placed
and routed using XILINX FPGA device [14]. The
system then was simulated again, for the verification
of the correct functionality. The test scenarios that are
applied to the proposed architectures, in order to
verify systems’ correct functionality, are provided by
the MD5 and SHA-1 standards [10, 11]. In addition,
during the test procedure a great number of test
vectors were used to verify the right operation of the
received FPGA device samples. These test vectors,
were mostly selected in a random way, but there have
been included some special values of the input data
(for example “FFF…FFF”, “000…000”) to ensure
maximum test coverage.

The synthesis results for both MD5 and SHA-1
implementations are illustrated in the next Table 1, in
terms of covered area resources, and operating
frequency.

Both implementations have almost the same
operating frequency. Especially SHA-1 operates up
to 72 MHz, while MD5 implementation has

frequency equal to 70 MHz. The covered area resources
are less for the MD5 integration by about 15-20 %
compared with the SHA-1 implementation. Both hash
functions designs, fit to the same used FPGA device
(v100ecs14). MD5 implementation allocates 1226 FG,
713 CLB slices and 1591 Dffs. SHA-1 FPGA integration
uses 1473 FGs, 878 CLB slices, and 1735 Dffs.

Comparisons of the proposed MD5 integration, with
previous published implementations of the same hash
function are presented in Table 2. The proposed MD5
implementation has very high throughput compared with
the other conventional works of both hardware
implementations [2, 4, 13] and software developments
[3]. It has to be mentioned that work [13] is an
estimation of a possible hardware implementation of the
MD5 and not a real hardware integration of this certain
hash function.

Table 1. FPGA implementations synthesis results D Flip-Flops
(DFFs), Configurable Logic Blocks (CLBs), Function Generators
(FGs).

Nevertheless, in this work [13] no estimations about

the covered area are presented. In spite of these
omissions, the presented estimations results of [5] are
very interesting for the readers and they are reported in
order to have a fair and detailed comparison.

Furthermore, the proposed MD5 implementation is
also compared with the other hardware implementations
in the Area-Delay Product.

Especially, and only for the hardware
implementations the Area-Delay product can be used as
a comparison term. This product is calcula ted easily
according to the equation:

A-D Product = Allocated Area X Tdelay

where Tdelay = 1 / Frequency.

The following Figure 5 shows the Area-Delay Product
Comparison for the MD-5 implementations. From, the
illustrated diagram of Figure 5 it is proven that the
proposed MD5 implementation has better (less) Area-
Delay product in the case of conventional works related
to hardware implementations.

In the following Table 3, previous published
implementations of the SHA-1 are presented and are
compared with the proposed implementation of this hash
function. The used pipeline architecture is proved a

Fpga Device: Xilinx V100ecs144

 Hash Functions Md5 Sha-1

 Covered Area Used /
Available

Utilization Used /
Available

Utilization

 Inputs/Outputs 68 / 94 72 % 68 / 94 72 %

 Fun. Generators 1226 / 2400 51 % 1473 / 2400 61 %

 Clb Slices 713 / 1200 59 % 878 / 1200 73 %

 Dffs Or Latches 1591 / 2988 53 % 1735 / 2988 58 %

 Operating
Frequency 70 Mhz 72 Mhz

58 The International Arab Journal of Information Technology, Vol. 1, No. 0, July 2003

better applied design technique for the SHA-1
implementation.

Table 2. MD5 implementations comparison.

Architecture
Covered

Area
(CLBS)

Frequency
(MHz)

Throughput
(Mbps)

Dominikus [4] 1004 43 146

Dobbertin [5] Software 90 114

Touch [6] - 300 256

Deepakumara [7] 880
4763

21
71.4

165
354

Proposed MD5 1313 70 2,1 Gbps

Table 3. SHA-1 implementations comparison.

Architecture Covered Area
(CLBS)

Frequency
(MHz)

Throughput
(Mbps)

Roe [8] Software -
133

4.23
41.51

Dominikus [4] 1004 43 146

Dobbertin [5] Software 90 40

Kitsos [9] 2506 47 300

Proposed SHA-1 1578 72 1,7 Gbps

0

10

20

30

40

50

60

70

Dominikus
[4]

Deepakum.
[7]a

Deepakum.
[7]b

Proposed
MD5

MD5 Implementations Area-Delay Product
(CLBs X nsec)

Figure 5. MD5 area-delay product comparison.

The proposed implementation has far high
throughput compared with all the others software and
hardware implementations. The work [9] is an
assembly development in two different kinds of
processors. The second processor of [8] operates at
133 MHz while for the first no information is given
for the system clock. In the assembly implementation
of [3] a 90 MHz processor is used. The hardware
implementation of [6] uses a loop rolling technique
and has the higher throughput of all the conventional

architectures. Nevertheless, the pipeline proposed
architecture for the SHA-1 implementation has 8 times
better throughput compared with [6]. The work [4] has
been designed as a typical processor and needs a great
number of clock cycles in order to generate a 160-bit
message digest block. Especially, 320 clock cycles are
needed for every produced message digest in [4], while
our proposed system architecture demands only 21 clock
cycles.

The proposed SHA-1 implementation is compared
with the other related hardware integrations in the term
of Area-Delay product. This comparison is shown in the
Figure 6. From the following illustrated diagram it is
proven that the proposed SHA-1 implementation has
better (less) Area-Delay product compared with the
other published work [6] and almost the same with work
[4]. It is obvious that comparison by using this
implementation factor (Area-Delay product) can be done
only in the cases of hardware implementations and not
for software developments [3, 9].

0

10

20

30

40

50

60

Dominikus [4] Kitsos [9] Proposed SHA-1

SHA-1 Implementations Area-Delay Product
(CLBs X nsec)

Figure 6. SHA-1 area-delay product comparison.

5. Conclusions
Security has become a very critical issue on the

provision of electronic services. In addition to the
supported security level, performance is major factor for
both hardware and software implementations. The
system throughput must not be the bottleneck of the
implementation itself.

In this work, an ultra high speed architecture for the
VLSI implementation of MD5 is presented. In addition,
with minor modifications the proposed architecture can
be used for the hardware integration of the SHA-1 hash
function. Both hash functions have been implemented by
using VHDL in FPGA devices. The synthesis results are
illustrated and compared with other related works,
published in the technical literature. From the
performance comparison it is proven that the MD5
proposed implementation is better by a factor range from
700% to 1500%. In addition, the Area-Delay product of
the proposed implementation is better in all of the cases.
The SHA-1 proposed implementation is better at about
800% to 1700% compared with the other conventional
works. The Area-Delay product comparison proves that
the proposed SHA-1 implementation is superior to all
the other related implementations. Both MD5 and

Networking Data Integrity: High Speed Architectures and Hardware Implementations 59

SHA-1 proposed implementations offer high-speed
performance and support high security level at the
same time. They can be used efficiently in all the
hash functions applications such us digital signature,
data integrity, message authentication and random
number generators. Both of them can substitute
successfully any existing implementations in the
above referenced applications with superior
performance. They can also be used successfully in
communication protocols such as IPsec and WAP
and security schemes in general.

References
[1] Bruce Schneier, Applied Cryptography–

Protocols, Algorithms and Source Code in C,
Second Edition, John Wiley and Sons, New
York, 1996.

[2] Deepakumara J., Heys H. M., and Venkatesan
R., “FPGA Implementation of MD5 Hash
Algorithm,” in Proceedings of IEEE Canadian
Conference on Electrical and Computer
Engineering (CCECE'2001), Toronto, Ontario,
May 2001.

[3] Dobbertin H., Bosselaers A., and Preneel B.,
“RIPEMD-160: A strengthened version of
RIPEMD,” in Proceedings of Fast Software
Encryption, LNCS 1039, Springer-Verlag, pp.
71-82, 1996.

[4] Dominikus S., “A Hardware Implementation of
MD4-Family Hash Algorithms,” proceedings of
IEEE International Conference on Electronics
Circuits and Systems (ICECS’02), Dubrovnik,
Croatia, September 15-18, 2002.

[5] HMAC Standard, National Institute of Standards
and Technology, The Keyed-Hash Message
Authentication Code, http://csrc.nist.gov/
publications/fips/dfips- HMAC.pdf, 2003.

[6] Kitsos P., Sklavos N., and Koufopavlou O., “An
Efficient Implementation of the Digital
Signature Algorithm,” in Proceedings of IEEE
International Conference on Electronics
Circuits and Systems (ICECS’02), Croatia, vol.
3, pp. 1151-1154, September 15-18, 2002.

[7] Menezes A., Oorchot P., and Vanstone S.,
Handbook of Applied Cryptography, CRC Press,
October 1997.

[8] National Institute of Standards and Technology
(NIST), Digital Signature Standard, FIPS PUB
186-2, http://csrc.nist.gov/publications/fips/fips
186- 2.htm, 2003.

[9] Roe M., “Performance of Block Ciphers and
Hash Functions-One Year Later,” in
Proceedings of Second International Workshop
for Fast Software Encryption ’94, Leuven,
Belgium, December 14-16, 1994.

[10] Rivest R., The MD5 Message-Digest Algorithm,
RFC 1321, MIT LCS and RSA Data Security
Inc., April 1992.

[11] SHA-1 Standard, National Institute of
Standards and Technology (NIST), Secure

Hash Standard, FIPS PUB 180-1,
www.itl.nist.gov/fipspubs/fip180-1, 2003.

[12] Stinson D. R., Cryptography: Theory and Practice,
CRC Press LLC, 1995.

[13] Touch J. D., “Performance Analysis of MD5,” in
Proceedings of ACM SIGCOMM’95, Cambridge,
Massachusetts, 1995.

[14] Xilinx, Virtex, 2.5 V Field Programmable Gate
Arrays, San Jose, California, USA, www.xilinx.
com, 2003.

Nicolas Sklavos received a Diploma in electrical and
computer engineering from the University of Patras,
Greece, in 2000. He is currently pursuing the PhD
degree at Department of Electrical and Computer
Engineering, University of Patras, Greece. His research
interests include security/cryptography, VLSI and low
power design, hardware implementations for wireless
communications security and reconfigurable computing
architectures. He is an IEEE member and referee of
international journals and conferences. He has published
many technical papers in the areas of his research.

Epaminondas Alexopoulos is a student of the
Department of Electrical and Computer Engineering at
University of Patras, Greece. His research includes
hardware implementations, mobile computing and
security.

Odysseas Koufopavlou received the Diploma of
electrical engineering in 1983 and the PhD degree in
electrical engineering in 1990, both from University of
Patras, Greece. From 1990 to 1994 he was at the IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, USA. He is currently an associate professor with
the Department of Electrical and Computer Engineering,
University of Patras. His research interests include
VLSI, low power design, VLSI crypto systems, and high
performance communication subsystems architecture
and implementation. Dr. Koufopavlou has published
more than 80 technical papers and received patents and
inventions in these areas. He served as general chairman
for the IEEE ICECS’1999. He is IEEE member.

