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Abstract: Single Photon Emission Computed Tomography (SPECT) imaging has the potential to acquire information about 

areas of concerns in a non-invasive manner. Until now, however, deep learning based classification of SPECT images is still not 

studied yet. To examine the ability of convolutional neural networks on classifying whole-body SPECT bone scan images, in this 

work, we propose three different two-class classifiers based on the classical Visual Geometry Group (VGG) model. The proposed 

classifiers are able to automatically identify that whether or not a SPECT image include lesions via classifying this image into 

categories. Specifically, a pre-processing method is proposed to convert each SPECT file into an image via balancing difference 

of the detected uptake between SPECT files, normalizing elements of each file into an interval, and splitting an image into 

batches. Second, different strategies were introduced into the classical VGG16 model to develop classifiers by minimizing the 

number of parameters as many as possible. Lastly, a group of clinical whole-body SPECT bone scan files were utilized to 

evaluate the developed classifiers. Experiment results show that our classifiers are workable for automated classification of 

SPECT images, obtaining the best values of 0.838, 0.929, 0.966, 0.908 and 0.875 for accuracy, precision, recall, F-1 score and 

AUC value, respectively. 
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1. Introduction 

The past few decades have witnessed a significant rise 

in demand for medical image analysis because medical 

imaging provides an important base to display and 

differentiate the pathological tissue from the normal 

field of the body. Specifically, the structural imaging 

acquires anatomic/morphological structures of organs 

and tissues while the physiological/functional imaging 

captures functional changes in pathological tissues of 

the body. Due to the superior capability of 

Convolutional Neural Network (CNN) on automatically 

extracting from the low-level to high-level features 

from images [8], a large number of CNN-based work 

has been done on the structural image (i.e., Computed 

Tomography (CT)and Magnetic Resonance Imaging 

(MRI) analysis including image segmentation and 

classification [7, 9, 17, 18, 20]. 

The commonly used functional imaging techniques 

include MR lymphography, perfusion CT, 

diffusion-weighted imaging, MR spectroscopy, 

dynamic contrast-enhanced MRI, blood oxygenation 

level-dependent MRI, Single Photon Emission 

Computed Tomography (SPECT), and Positron 

Emission Tomography (PET) [2]. As a most 

well-established functional imaging modality, SPECT 

has been widely used since the early 1990s and over 18 

million SPECT scans are conducted each year in the  

 
United States. 

SPECT imaging works by injecting radionuclides 

into a patient’s body and capturing information about 

areas of concerns, e.g., lesions and organs [4]. Imaging 

equipment picks up the emitted gamma rays to produce 

a map of the inside of a body and identify the body areas. 

The data acquired by SPECT imaging is stored in a file 

that is, in essence, a matrix. The elements in this matrix 

are the detected counts of uptake, which differs from the 

natural images in which the pixel value ranges from 0 to 

255. The resolution of a SPECT image is relatively low. 

A whole-body SPECT image, for example, has a size of 

256 (width)×1024 (height).  

Compared to the structural and other functional 

imaging modalities, it is more difficult for SPECT to 

develop a comparable and high-performance classifier 

for the purpose of automated classification of diseases 

[2]. Using CNN, classifying SPECT bone scan images 

for diagnosing disease is still in its infancy. Currently, 

only few work has been done to classify partial- instead 

of whole-body SPECT images, targeting at automated 

detection or diagnosis of neurodegenerative disorder 

[6,12,13,15], thyroid disease [10,11], and coronary 

artery disease [20]. The CNN models used mainly 

include LeNet [3], AlexNet [1], DenseNet [5] and 

VGGNet [19]. An open dataset PPMI 

(https://www.ppmi-info.org/) was frequently used in 
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existing works [12, 13, 15].  

To examine the ability of CNN-based techniques on 

classifying whole-body SPECT bone scan images, in 

this work, we propose three two-class classifiers based 

on the classical Visual Geometry Group (VGG) model. 

The proposed classifiers can identify that whether one 

or more metastatic lesions present in a whole-body 

SPECT image. Specifically, we first propose a 

pre-processing method to convert each SPECT file into 

an image through balancing difference of the detected 

counts of uptake between SPECT files, normalizing 

elements of each file into an interval, and splitting an 

image into one or more batches. Second, various 

strategies were adopted to construct classifiers by 

minimizing the number of parameters of VGG 16 as 

many as possible. Lastly, a group of clinical whole-body 

SPECT bone scans were used to evaluate the proposed 

classifiers. Experiment results show that our classifiers 

are workable for the two-class classification task, with 

obtaining the best values of 0.838, 0.929, 0.966, 0.908, 

and 0.875 for accuracy, precision, recall, F-1 score and 

AUC value, respectively. 

The rest of this paper is organized as follows. We 

provide in section 2 the materials and methods used in 

this work. We report in section 3 the experimental 

results. In section 4, we conclude this work and point 

out the future research directions. 

2. Materials and Methods  

In this section, the used whole-body SPECT bone scan 

images, the pre-processing method conducted on image 

data, and the proposed classifiers based on VGG model 

will be detailed. 

2.1. Dataset and Pre-Processing 

2.1.1. SPECT Imaging Data 

SPECT is a typical non-invasive imaging technique, 

which captures uptake of radiopharmaceutical by using 

imaging device outside the body of a patient. Currently, 

SPECT imaging is widely used for clinical examination 

of various diseases including tumors, bone metastasis, 

arthritis, and neurodegenerative disorders.  

A SPECT examination generates two Digital 

Imaging and Communications in Medicine (DICOM) 

files (.dcm), recording the anterior- and posterior-view 

image of the body, respectively. Each DICOM file is a 

matrix of the detected uptake represented by a 16-bit 

unsigned integer. As mentioned previously, the size of 

the matrix is 256×1024, enabling to show most of the 

body of the patient. 

The data of SPECT imaging files used in this work 

were acquired during diagnosing various physiological 

diseases using an equipment Siemens SPECT ECAM in 

Gansu Provincial Hospital from Jan 2016 to Nov 2018. 

The emitted gamma rays from radiopharmaceutical 

99mTc-MDPthat was intravenously injected into the 

body of a patient in advance were collected by the 

imaging equipment to produce a map of the inside of a 

body and identify the body areas, e.g., lesions and 

organs.  

Figure 1 depicts the visual presentation of a SPECT 

file captured from the anterior of the body in the form of 

RGB image. Three lesions are present in the images, 

which have been diagnosed as degenerative change in 

the spine and arthritis in both the left and right knees by 

physicians. Drug residue in the urinary bladder has also 

been detected as high-uptake area in the SPECT images, 

which often challenges CNN-based image analysis due 

to its similar visual characteristics with lesions. 

 

 

Figure 1. A visual presentation of an anterior SPECT file. 

The SPECT files differ from the natural images and 

structural medical images by the wide range of uptake, 

making the traditional machine learning algorithms that 

use handcrafted features unsuitable for distinguishing 

diseased images from the rest. As an example, Table 1 

provides the statistical analysis of the detected uptake of 

SPECT files collected in 2017 and 2018. The sources of 

the variance vary, relying on the radiopharmaceutical 

injected, waiting period after patients were injected with 

a radioactive substance, and imaging device.  

Table 1. The detected counts of uptake in the selected SPECT bone 
scan files in our datasets acquired in 2017 and 2018. 

 Min 80% 90% Max Mode 

17-Anterior 4 187 378 9805 31 

17-Postetior 4 144 333 11070 31 

18-Anterior 4 243 363 12668 34 

18-Postetior 4 186 360 15738 34 

 

We call the SPECT files (i.e., both the anterior and 

posterior) collected from each examination as a medical 

case. There are finally 3831 medical cases in our dataset 

after removing those files with uncertain morphology, 

contamination, and interference. The diseases included 

in the dataset are bone metastasis, inflammation, and 

degenerative changes. We chose 3271 SPECT files after 

converting them into images for training the proposed 

classifiers and the rest 560 cases for testing. In our 

two-class classification problem, a SPECT file that 

includes at least one lesion is regarded as positive (i.e., 

diseased); otherwise, it is a negative image. The rate of 

the positive and negative files is about 3.3: 1 in both the 

training and test subsets. 
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2.1.2. Converting SPECT File to Image 

As mentioned previously, a SPECT file is a data matrix 

of the detected uptake. The CNN models like VGG and 

Inception cannot work directly on a data matrix if the 

transfer learning technique is used. We therefore need to 

convert every SPECT file to an image in the form of that 

the deep models require. Formally, we use matrix rd to 

represent a DICOM file as follows.  
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   (1) 

where rdij (1≤i≤m, 1≤j≤n) denotes the detected uptake 

with a 16-bit unsigned integer and m=256, n=1024 for a 

whole-body SPECT bone scan file. 

The first task is to alleviate the difference of the 

detected uptake between medical cases. Let M denote 

the mode as provided in Table 1, an element rdij in rd 

can be squeezed according to Equation (2).  
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, Otherwise
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where α is a random number between [0, 0.05] and m is 

a constant. A value of 10 for m performs well in the 

experiment.  

The second task is to normalize each element of the 

matrix into an interval [a, b] by calculating a coefficient 

factor k according to Equation (3). 

Max Min

b a
k

rd rd





    (3) 

where rdMax and rdMin is the maximum and minimum of 

elements in the squeezed rd, respectively.  

The normalized matrix is treated as an image, in 

which each element ranges from a to b. In the proposed 

classifiers, a and b will be set as 0 and 1, respectively.  

The last task is to split a 256×1024 SPECT image 

into patches. To do so, two schemes are used as follows. 

 A positive SPECT image will be conditionally split 

into one or more patches. In this case, we ensure that 

each of the split patch contains at least one lesion and 

there is no overlap between any two adjacent 

patches. 

 A negative SPECT image will be deterministically 

split into four patches at equal intervals. In this case, 

we ensure that the four patches cover all non-empty 

regions of this image together. 

Figure 2 depicts the process of splitting patches from a 

negative image (left panel) and a positive image (right 

panel). Specifically, the negative image is split into four 

patches and the positive one is split into two patches. 

The first patch in the positive image contains an arthritic 

lesion ‘a1’ and two metastatic lesions ‘bm1’ and ‘bm2’. 

The second patch contains two metastatic lesions ‘bm3’ 

and ‘bm4’. 

 

 

Figure 2. An example of splitting SPECT images into patches.  

How to determine that a SPECT image is positive or 

not is implemented by physicians labeling this image. 

We developed an annotation system based on LabelMe 

(http://labelme.csail.mit.edu/Release3.0/)released by 

MIT with a Web interface for labelling SPECT images. 

As depicted in Figure 3, each labelled area in an image 

will be annotated with a self-defined symbol combined 

with the name of disease or body part. The annotation 

results for all images serve as ground truth in 

experiments and will be organized in an annotation file, 

which will be fed into the classifiers.  

 

 

Figure 3. LabelMe-based SPECT image annotation system.  

Specifically, three human experts consisting of one 

nuclear medicine physician, one nuclear medicine nurse 

and one trained computer vision expert manually label 

every image independently. An image will be annotated 

as a positive image if the majority of the human experts 

regard this image contain one or more hotspots.  

Using the operations above, 8701 patches of 

224×224were finally extracted from 3271 whole-body 

bone scan images for training the classifiers and 1490 

patches from 560 images for testing the classifiers (see 

Table 2). 
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Table 2. The used dataset in this paper. 

 Training data Test data 

Patches Images Patches Images 

Positive 4821 2301 830 395 

Negative 3880 970 660 165 

2.2. VGG-Based Classifiers 

Several classical CNN models were adopted to develop 

automated classifiers based on the Tensor flow platform 

for classification of SPECT images, including Xception, 

VGG16, VGG19, ResNet, Inception-v3, and ResNet-v2. 

However, the accuracy obtained by Xception, ResNet, 

Inception-v3, and ResNet-v2 is less than 60% and 

VGG16 performs better than VGG19 on classifying 

SPECT images. We therefore chose VGG16 as a base 

model to develop our classifiers for classifying SPECT 

images.  

Figure4shows the network structure of VGG16. The 

number of parameter in each convolution is displayed 

and the total number of parameters is 138357544.  

 

 

Figure 4. The network structure of the classical VGG16 model. 

For a given input image Ix, y, the k-th layer output of 

this image after a convolution operation that the l-th 

convolutional kernel is defined in Equation (4). 

, x yC I K ,    (4) 

where K is the l-th convolutional kernel of the k-th layer, 

and x, yare spatial localities. 

A rectified linear unit (ReLU) function makes the 

elements with a value < 0 become 0, which is defined in 

Equation (5) [14]. 

ReLU( ) max(0, )x x ,   (5) 

where x is a pixel value in an image. 

A Softmax function is defined as follows. 
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where f(xj) is the score of the j-th output node, xj is the 

net input to the j-th output node, and n is the number of 

output nodes. In fact, all of the output values f(x) are a 

probability, which is between 0 and 1, and their sum is 1 

[17]. 

Based on the classical model VGG 16, in this work, 

we propose three different classifiers by minimizing the 

parameters of VGG16, which are illustrated in Figure5. 

 

Figure 5. The proposed classifiers VGG-FC, VGG-GAP, and 

VGG-GMP based on the classical VGG16 model. 

2.2.1. VGG-FC Classifier 

Since the two fully connected layers (i.e., FC1 and FC2) 

have too many parameters, the classical VGG16 model 

would be prone to overfitting if a relatively smaller 

dataset is applied. For our classifier VGG-FC (VGG16 

with fully connected layer) that uses transfer learning 

technique, we remain all parameters unchanged before 

the prediction layer and replace only the prediction 

layer with classification layer. As a result, there are 

overall 134268738 parameters for our classification 

problem and only 8914 (4096×2+2) parameters need to 

be trained in the proposed VGG-FC classifier. 

2.2.2. VGG-GAP Classifier 

We use Global Average Pooling (GAP) layer instead of 

the fully connected layers in the classification model to 

minimize the number of parameters when the transfer 

learning is used for training the deep model. So, only 

14714688 parameters need to be trained in our classifier 

VGG-GAP. The reason is that the GAP layer has no 

parameter and its output is a 512D vector. For our 

two-class classification problem, the number of 

parameters that need to be trained is 1026 (512×2+2) if 

we remain the features extracted by convolutional layer 

unchanged. 

2.2.3. VGG-GMP Classifier 

We use GMP instead of GAP in the classification model 

to further minimize the number of parameters when the 

transfer learning is used for training the model. So, only 

14714688 parameters need to be trained in our classifier 

VGG-GMP. Similar to VGG-GAP, the GMP layer has 

no parameter and its output is a 512D vector. For our 

two-class classification problem, the number of 

parameters that need to be trained is 1026 (512×2+2) if 

we remain the features extracted by convolutional layer 

unchanged. 

3. Experimental Evaluation 

We present an experimental evaluation in this section 
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conducted on the clinical whole-body SPECT bone scan 

images as shown in Table 2.  

3.1. Experimental Setup 

All experimental data of SPECT images in Table 2 were 

stored in a MongoDB database for access by the 

VGG-based classifiers. The annotation process 

produces data that follow the Tensorflow Dataset form. 

For our two-class classification problem, a SPECT 

image will be categorized into one of the following four 

categories. 

 True Positive (TP): a diseased SPECT image will be 

correctly identified as positive image; 

 True Negative (TN):a normal SPECT image will be 

correctly identified as negative image; 

 False Positive (FP): a normal SPECT image will be 

incorrectly identified as positive image; 

 False Negative (FN): a diseased SPECT image will 

be incorrectly identified as negative image. 

Based on the categories mentioned above, we now 

define the evaluation metrics (see Table 3). 

It is desired that a good classifier can obtain high 

True Positive Rate (TPR) and low False Positive Rate 

(FPR) simultaneously. By regarding TPR as x-axis and 

FPR as y-axis, the area under the curve is defined as 

AUC value. The more the AUC value, the high 

performance of the classifier obtains.  

3.2. Experimental Results 

For the test dataset consisting of 560 SPECT images as 

shown in Table 2, Figure 6 reports the confusion 

matrices obtained by three different classifiers. 
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Figure 6. Confusion matrices of the built classifiers with P=Positive 

and N=Negative. (Left: VGG-GMP; Middle: VGG-GAP; Right: 

VGG-FC). 

Table 4 reports the values of evaluation metrics 

obtained by three classifiers. It can be seen that 

VGG-GMP performs better than the others with respect 

to the defined evaluation metrics. Specifically, 

VGG-GMP is more suitable for identifying the positive 

samples of SPECT images with a value of 0.966 for 

Recall metric. However, all classifiers underperform on 

classifying the negative SPECT images. 

Table 3. The used evaluation metrics in this paper. 

Metric FPR TNR NPV FDR FNR TPR 

Definition FP/(FP+TN) TN/(TN+FP) TN/(TN+FN) FP/(TP+FP) FN/(TN+TP) TP/(TP+FN) 

Metric Accuracy Precision Recall F-1 score 

Definition (TP+TN)/(TP+FP+TN+FN) TP/(TP+FP) TP/(TP+FN) 2(Precision× Recall)/(Precision + Recall) 

Table 4. The values of different evaluation metrics obtained by three different classifiers. 

Metric FPR TNR NPV FDR FNR TPR Accuracy Precision Recall F-1 Score 

VGG-FC 0.368 0.632 0.500 0.080 0.129 0.871 0.830 0.920 0.830 0.895 

VGG-GAP 0.305 0.695 0.437 0.071 0.183 0.817 0.796 0.929 0.817 0.870 

VGG-GMP 0.789 0.211 0.556 0.143 0.034 0.966 0.838 0.857 0.966 0.908 

 
a) VGG-FC.                                              b) VGG-GAP.                                                    c) VGG-GMP. 

Figure 7. The ROC curves obtained by the tree different deep classifiers. 

 

 

Figure 7 depicts the ROC cures of the three 

classifiers on classifying whole-body SPECT bone scan 

images. 

The corresponding AUC values are provided in 

Table 5. 

The proposed VGG-based classifiers are workable 

for classifying SPECT bone scan images. The high 

AUC values in Table 5 further show that VGG-GMP 

performs better than the rest classifiers. We can 

conclude that the deep learning technique has the 

potential to be used as a kind of emerging techniques for 

automated diagnosis of disease with the SPECT images. 

 
Table 5. The AUC values of three different classifiers. 

AUC Upper Lower Average 

VGG-FC 0.8313  0.8206  0.8259  

VGG-GAP 0.8445  0.8363  0.8404  

VGG-GMP 0.8891  0.8617  0.8754  

4. Discussion 

We provide in this section a brief discussion about the 

reasons that cause misclassification of SPECT images. 
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 Model aspect: convolutional neural network has been 

widely applied in various fields such as intelligent 

transportation system [16]. However, the classical 

VGG 16 has too many parameters, which makes 

VGG-FC inefficient on classifying SPECT images. 

On the contrary, only 1026 parameters need to be 

trained for VGG-GAP and VGG-GMP. Overfitting 

can be avoided because no parameter needs to be 

optimized in the global average pooling of 

VGG-GAP and global maximum pooling of 

VGG-GMP. Furthermore, the global pooling layer is 

more robust to spatial translations of the input than 

the fully connected layer by summing out the spatial 

information of images. A global pooling operation 

has the potential to generate one feature map for each 

corresponding category of the SPECT image 

classification task since it is more native to the 

convolution structure in CNN models. The feature 

maps extracted by VGG-GAP/GMP are therefore 

easily interpreted as the categories confidence maps. 

Moreover, global maximum pooling is more suitable 

for extracting information of lesions in SPECT 

images by alleviating deviation of estimated mean 

value caused by parameter error in convolution layer. 

In image classification task, global maximum 

pooling has the potential to select those 

distinguishable features from images. Despite the 

tremendous success in a variety of various 

applications, CNN is far from perfect at present [21]. 

For SPECT image analysis, a CNN does not exploit 

the diagnostic features that have been proved more 

discriminative. Existing CNN-based research efforts 

focus mainly on supervised learning; however, 

available large and labelled SPECT datasets are far 

from abundant for training supervised CNN learning 

models. 

 Data aspect: it can be seen from Tables 4 and 5 that 

VGG-based SPECT image classification is still in its 

infancy. The limited datasets of labelled SPECT 

images (e.g., 3271 images for training and 560 

images for test in our dataset) greatly challenge such 

a field. It is often difficult to develop a large dataset 

that contains various diseases acquired from different 

patient cohorts due to the rarity of diseases and 

patient privacy. Furthermore, it is subjective, 

time-consuming, and labor-intensive to manually 

annotate and label low-resolution whole-body 

scintigraphic images. Although the transfer learning 

can be used to alleviate the problem of the lack of 

sufficient images to some extent, how to fine-tune 

the parameters from natural images to SPECT 

images is still an open problem. Imbalanced data 

refers to a scenario in which the number of instances 

of one category is scanty in comparison to other 

classes. Such a problem presents in our dataset of 

SPECT images, where the rate of positive and 

negative samples is about 3.3:1 for training dataset. 

This would cause our classifiers to be more sensitive 

to detecting the diseased images and less sensitive to 

the normal ones. The VGG-GMP classifier achieves 

a value of 0.211 and 0.556 for TNR and NPV, 

respectively. The imbalance problem is also present 

in the subcategories of those diseased SPECT images, 

resulting in a skewed classification accuracy.  

 SPECT imaging aspect: in comparison with the 

structural imaging techniques like CT and MRI, 

SPECT is often accompanied by misregistration, 

respiration, truncation, and highly attenuating 

foreign bodies. All these artifacts and pitfalls 

challenge image analysis to some extent. During 

SPECT bone scanning that can take 2hours or more, 

a patient may fall asleep while a system acquires the 

position of a bed. When the bed shifts to the next 

scanning position, the patient is often startled. As 

such, a SPECT image may be marred by motion 

artifacts. It is also difficult to distinguish tumor 

progression from a flare response if a bone scan is 

performed right after a treatment. In addition, if a 

patient who has undergone recent surgery such as 

knee replacements, SPECT bone imaging would 

produce false-positive results. What is more 

important is that how to reliably recognize normal 

variants as they can mimic pathology since the 

pattern of tracer uptake in the sternum, head, and 

neck region is often variable. 

5. Conclusions 

Focusing on the automated classification of whole-body 

SPECT images, in this work, we have proposed three 

VGG-based classifiers. First, the pre-processing process 

of converting an original DICOM file to the image form 

required by VGG model was proposed. Second, various 

strategies were introduced to the classical VGG16 to 

construct different classifiers by minimizing the number 

of parameters as many as possible. Lastly, a group of 

clinical whole-body SPECT bone scan images were 

used to evaluate the proposed classifiers. Experiment 

results have shown that our classifiers are workable for 

automated classification of SPECT images, obtaining 

the best values of 0.838, 0.929, 0.966, 0.908 and 0.8754 

for accuracy, precision, recall, F-1score and AUC value, 

respectively.  

We plan to extend this work in the following three 

directions in the future. First, we intend to collect more 

data of SPECT imaging with various disease categories 

and fine-tune the developed classifiers so that they work 

in real computer-aided diagnosis systems for improving 

physicians’ diagnosis efficiency. Second, we attempt to 

develop CNNs-based multiclass classification networks 

with large datasets for reliable disease diagnosis. Lastly, 

we plan to exploit the nature of the extracted features 

before a classification process and incorporate the 

diagnostic features into a CNN-based classifier to 

achieve higher classification performance.  
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