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Abstract: Ease of self-driving technological developments revives Vehicular Adhoc Networks (VANETs) and motivates the 

Intelligent Transportation System (ITS) to develop novel intelligent solutions to amplify the VANET safety and efficiency. 

Collision warning system plays a significant role in VANET due to the avoidance of fatalities in vehicle crashes. Different 

kinds of collision warning systems have been designed for diverse VANET scenarios. Among them, reinforcement-based 

machine learning algorithms receive much attention due to the dispensable of explicit modeling about the environment. 

However, it is a censorious task to retrieve the Q-learning parameters from the dynamic VANET environment effectively. To 

handle such issue and safer the VANET driving environment, this paper proposes a cloud aided pliable Q-Learning based 

Collision Warning Prediction and Safety message Dissemination (QCP-SD). The proposed QCP-SD integrates two 

mechanisms that are pliable Q-learning based collision prediction and Safety alert Message Dissemination. Firstly, the 

designing of pliable Q-learning parameters based on dynamic VANET factors with Q-learning enhances collision prediction 

accuracy. Further, it estimates the novel metric named as Collision Risk Factor (CRF) and minimizes the driving risks due to 

vehicle crashes. The execution of pliable Q-learning only at RSUs minimizes the vehicle burden and reduces the design 

complexity. Secondly, the QCP-SD sends alerts to the vehicles in the risky region through highly efficient next-hop 

disseminators selected based on a multi-attribute cost value. Moreover, the performance of QCP-SD is evaluated through 

Network Simulator (NS-2). The efficiency is analyzed using the performance metrics that are duplicate packet, latency, packet 

loss, packet delivery ratio, secondary collision, throughput, and overhead. 
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1. Introduction 

Due to the rapid smart developments of human 

lifestyle and vehicular environments, the usage of cars 

is increased day by day at every household [7]. Most 

people utilize their vehicles for comfortable traveling, 

and the vehicle population on the road is also 

escalated. Thereby, countless people are killed and 

injured by road accidents every year. By permitting 

more intelligent communication among the vehicles 

with Roadside Units (RSUs), Vehicular Adhoc 

Networks (VANET) saves human life and makes the 

journey comfortable [20]. The VANETs offer 

numerous active safety services such as frequent real-

time traffic updating, collision warning, road 

conditions monitoring, and weather contexts [10]. Such 

safety services help drivers take timely, precise driving 

decisions based on disseminated safety messages, 

resulting in accident avoidance [29]. According to the 

VANET principle, the vehicles in their vicinity 

establish straight communication, and the vehicles in 

out of vicinity employ routers for data transmission 

[2]. Therefore, the safety messages are broadcasted in a  

 
single or multi-hop manner. For safety message 

dissemination, different solutions have been introduced 

in the literature [11, 23]. However, the high mobility of 

vehicles and wireless communication medium makes 

the VANET message dissemination a challenging task. 

Moreover, the vehicle population, smart and dynamic 

VANET characteristics force the Intelligent 

Transportation System (ITS) to innovate modern 

dissemination techniques in the vehicular 

transportation system.  

Collision warning is a significant application of 

active safety services in which the safety messages 

carry information about the real-time driving 

environment to reduce the fatalities and financial 

losses due to vehicle crashes [3]. The abundant data 

generation, inefficient router selection, and later 

reception of collision warning messages are the main 

issues of improving the collision warning systems. 

Modern machine learning techniques pave the way for 

the ITS system for innovating novel collision 

prediction systems [28]. As the machine learning-

based collision warning system can alert the drivers 
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promptly by making wise decisions based on statistical 

learning profiles [25]. Reinforcement learning is a type 

of machine learning algorithm that employs optimal 

learning policies based on perceiving states and 

corresponding actions of the states with rewards from 

the environment. It decides the final optimal one from 

the long-term evaluation of cumulative rewards. The 

main advantage of employing reinforcement learning is 

the non-essential of explicit modeling of the learning 

environment. Albeit, the designing of Q-learning 

parameters is the cardinal of reinforcement learning, 

and it is crucial to design the Q-learning parameters 

based on the environmental characteristics effectively. 

To enhance the VANET dissemination efficiency and 

to save human lives, this work proposes a cloud aided 

pliable Q-Learning based Collision warning Prediction 

and Safety message Dissemination (QCP-SD). The 

main contributions of the proposed QCP-SD are as 

follows. 

 To prevent the fatalities and financial loss due to 

vehicle collisions, the QCP-SD integrates a smart 

collision warning system in which the collisions are 

predicted in earlier and prevents the vehicle users 

from crashes through appropriate timely alerts.  

 Initially, the QCP-SD designs the pliable Q-learning 

algorithm based on the dynamic VANET factors 

retrieved from the cloud server. The utilization of 

effective dynamic Q-learning parameters in QCP-

SD enhances the learning accuracy, CRF estimation, 

and accuracy level of damage type prediction.  

 To minimize the work burden at vehicles and 

maximizes the safety performance, the QCP-SD 

executes the Q-leaning algorithm at RSUs and 

updates the dynamic Q-parameters periodically 

based on the information at cloud server. 

 By providing alerts to the vehicles only in the risky 

region, the safety message dissemination of QCP-

SD minimizes the overhead and maximizes the 

performance. For successful data dissemination, the 

QCP-SD disseminates messages through efficient 

next-hop disseminator vehicles selected using 

multiple parameters. 

 Finally, the efficacy of QCP-SD is evaluated using 

Network Simulator (NS-2) Simulator. For 

evaluation, the different performance metrics like a 

duplicate packet, latency, packet loss, packet 

delivery ratio, secondary collision, throughput, and 

overhead are used.  

1.1. Paper Organization 

The remaining part of the paper is organized as 

follows. Section 2 surveys the works related to 

VANET collision avoidance. Section 3 defines the 

motivation and problem formulation. Section 4 

comprehensively explains the pliable Q-learning based 

collision prediction and safety message dissemination 

of QCP-SD. Section 5 shows the performance setup, 

metrics, and results of QCP-SD. Finally, section 6 

concludes this paper. 

2. Literature Survey 

Many works have been proposed in the literature for 

detecting and mitigating the vehicle collisions. The 

works in [9, 18] surveys the collision prediction and 

detection methods proposed for vehicular 

environments. The existing works are segregated into 

two divisions for a comprehensive review, such as 

miscellaneous collision warning solutions and machine 

learning-based collision warning solutions.  

2.1. Miscellaneous Collision Warning Solutions 

A safety message broadcast protocol in [17] utilizes an 

event warning electronic control unit to disseminate 

the emergency alert messages to the vehicles in the 

dangerous region. Such protocol also controls the 

dissemination messages by selecting the dangerous 

region based on vehicle position information and 

bearing angle. Thus, the broadcast protocol efficiently 

alerts the vehicles nearer to the risky region without 

reducing the system performance. A multi-hop 

broadcast protocol for emergency message 

dissemination in urban VANETs has been proposed in 

[5]. The work in [19] proposes applying deep 

convolutional neural network algorithm in the 

autonomous vehicles traffic model design by 

integrating VANET with the cloud. The work in [6] 

proposes an efficient multi-directional data 

dissemination protocol known as EDDP. The main 

intention of EDDP is to diminish the unnecessary 

transmission costs without compromising the safety 

level of vehicles in the urban VANET environment. 

For better message dissemination, the EDDP only 

exploits fundamental data to observe the road 

conditions. 

Further, it utilizes the location information of 

vehicles in a broadcast suppression strategy to reduce 

unnecessary dissemination. Moreover, the Efficient 

multi-directional Data Dissemination Protocol (EDDP) 

efficiently controls the dissemination overhead by 

considering the simple urban VANET layout 

characteristics and enhancing VANET safety. A 

context-aware system named Context-aware System 

for Safety Messages (CaSSaM) in [27] facilitates the 

VANET dissemination protocol to accomplish 

optimized performance by choosing adequate 

environmental parameters. The CaSSaM overcomes 

the issues of lack of environmental knowledge of 

existing dissemination routing protocols and assists the 

dissemination protocol to adapt well to the actual 

environmental conditions. In CaSSaM, the 

dissemination parameters are adjusted based on the 

environmental factors, resulting in high dissemination 

efficiency.  
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An Emergency Message (EM) dissemination 

strategy in [1] utilizes dynamic clustering and position-

based cross-cluster communication methods for 

efficient safety message dissemination. The EM 

strategy constructs clusters based on primarily on 

interest compatibility and vehicle destination similarity 

estimated using vehicle position information. The EM 

strategy updates the position information of vehicles 

using the beacon messages. A time barrier-based 

emergency message dissemination has been proposed 

in [24]. Vehicle collision prediction and detection 

systems have been proposed for highway VANETs in 

[21]. The collision prediction model estimates the 

vehicle collision probability using an intelligent control 

unit. In such a model, the RSUs are responsible for 

tracking the vehicle information through the 

monitoring process. Further, it evaluates the collision 

probability rate based on the current vehicle status, and 

it disseminates warning alarms to the vehicles that are 

going to reach a risky zone. A Multi-Hop Broadcast 

Mechanism For Emergency Message Dissemination 

(MBM-EMD) has been introduced in [13]. The MBM-

EMD employs multiple influencing factors in 

designing the new metric proposed for optimal hop 

selection. A framework in [15] consolidates the 

advantages of both Vehicular ad hoc nature and cloud 

computing structure for effective safety message 

dissemination. The cloud-assisted safety message 

dissemination framework is a downlink approach in 

which the traffic data is flooded using the bus 

gateways that are constructed with cellular and vehicle 

interfaces. Further, the corresponding gateway node 

disseminates the event message through intra vehicle 

communication. Thus, the framework effectively 

reduces the packet loss rate and broadcasts storm 

issues using parallel message distribution strategies.  

2.2. Learning-based Collision Warning 

Solutions 

The work in [8] proposes a machine learning-based 

lane departure warning strategy to predict the 

unintended behaviors of drivers during the journey. 

Such a model employs extreme learning to extract the 

driving state features. By inferring the correction 

possibility of drivers, the machine learning model 

precisely determines the unintended lane changing 

behaviors and alerts the drivers to prevent accidents. 

The work in [12] investigates the hazards in addressing 

the issues of applying the machine learning methods in 

a high-speed VANET environment. It also 

demonstrates that the machine learning algorithm 

attains better performance in diverse artificial areas. 

The machine learning framework also introduces the 

tools that assist in making decisions in VANETs. The 

traffic accident prediction model in [30] employs 

conventional neural networks to predict the accident 

risk probability in vehicular networks. Such a model 

utilizes a deep learning strategy running at edge servers 

for training. Further, it extracts the autonomous 

features from a massive amount of collected data using 

the kernel tricks. Moreover, the accident prediction 

strategy warns the vehicles by sending an alarm 

through RSUs when they have a high accident risk 

probability value. The work in [14] designs a novel 

machine learning-based driving habit prediction model, 

named as Naive Bayesian classifier-based habitat 

Prediction (NBP) over VANETs. The NBP scheme 

uses a naive Bayes classifier to calculate the vehicle 

alignment status using some parameters that are 

relative vehicle speed, vehicle type, and traffic 

violation number. For effective prediction, the NBP 

divides the vehicles into two alignments and applies 

the machine learning algorithm over stable VANET 

clustering. Furthermore, the NBP scheme improves the 

VANET efficiency by making decisions using various 

factors like relative vehicle speed, vehicle type, and 

traffic violation number. Table 1 compares the existing 

works based on the objectives, techniques used, and 

advantages. Machine learning based accident 

prediction in [16] aims to identify the features that 

have high impact on vehicle accident severity. Such 

model utilizes various machine learning classifiers 

such as artificial neural networks, random forest, k-

nearest neighbor, logistic regression, and decision trees 

to analyze the accident severity level. Further, it 

designs a web-based alert system based on the accident 

severity prediction to alert the vehicles through smart 

Internet Of Things (IOT) devices. A novel mechanism 

in [4] uses autonomous vehicles to detect the roadside 

anomalies automatically and utilizes the edge artificial 

intelligence-based communication to alert the 

upcoming vehicles about roadside hazards. Thus, it 

minimizes the accident rate at roadside considerably. It 

employs residual convolution neural network and 

visual geometry group for automatic detection and 

classification. However, the existing efforts employ 

empirical assumption parameters in collision inferring, 

and it is not suitable for all situations. Additionally, the 

prediction accuracy of existing models is not too high. 

The proposed QCP-SD model uses vehicle speed, 

acceleration, temperature, and airbag deployments in 

its network architecture design to predict the vehicle 

crashes. The change in weather conditions like rain or 

falling trees are not considered. Before the secondary 

collision to occur, it is predicted, and message is 

disseminated to avoid collisions it is done 

continuously. Since it is continuous process of 

prediction the period for feeling the danger is 

immediate and a fast responsive process. Differing 

from existing efforts, the proposed QCP-SD decides 

the pliable Q-learning parameters based on multiple 

influencing factors retrieved from cloud architecture 

and enhances the prediction accuracy of rural and 

urban VANET environments. 
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Table 1. Comparison of various existing dissemination and leaning 
based protocols. 

Protocol Name Description Techniques Used Advantages 

Data 

Dissemination 

Scheme [1] 

To disseminate 

the emergency 
messages in 

timely manner 

Dynamic 

clustering and 
position-based 

dissemination 

Minimum 
communication 

delay and 

improved packet 
delivery ratio 

Time Barrier-

Based Emergency 
Message 

Dissemination 

[24] 

Aims to reduce 

the overhead of 
messages that can 

clutter the 

network 

Super-node based 
timely 

dissemination 

Minimize the 
unnecessary 

broadcast 

Lane Departure 

Warning Model 
[8] 

To identify 

drivers’ 

unintended lane-
departure 

behaviors 

Extreme Learning 
Residual Network 

and Greedy 

LSTM 

Limited false alarm 

rate and high 
accuracy 

NBP [14] 

To predict the 

driving habitat 

using multiple 

factors to form 
stable clusters 

Naïve Byes 
Classifier 

High cluster 
stability 

Machine learning 
based accident 

prediction [16] 

To predict the 

accident severity 
level using 

multiple learning 

methods 

Web base 
Message alert 

system 

Highest mean 
accuracy and 

accurate prediction 

Edge artificial 
intelligence based 

novel mechanism 

[4] 

To detect the road 

anomalies 

automatically and 
minimizes the 

accident risks 

Edge artificial 
intelligent 

communication 

model 

High classification 

accuracy 

3. Motivation and Problem Formulation 

Every year, 1.35 million people are killed worldwide 

by road traffic collisions [26] and the vehicle crashes 

also cause a significant economic loss to the 

individuals and government. Nearly 90% of accidental 

deaths are happened in developing countries [22]. The 

safer transportation is improved by utilizing the 

advanced collision alerts received from warning 

systems. Thus, the drivers take efficient and timely 

driving decisions based on the collision alerts, resulting 

in avoiding roadside hazards. The research community 

proposes different types of collision warning systems 

in which numerous kinds of roadside parameter are 

taking into account to improve the transportation safety 

system efficacy. Most of the collision warning system 

detects the crashes and alerts the succeeding vehicles 

to avoid further crashes. The learning-based collision 

prediction methods rectify such issues by speculating 

the crash possibility using various roadside features. 

However, the hard evaluation of local risk predictions 

creates some delay in sending warning messages and 

minimizes the system efficiency owing to 

inappropriate driving decisions. Also, the vast amount 

of VANET data generation makes the prediction and 

safety message dissemination as complex. Finally, an 

inaccurate collision warning system lacks to alert the 

driver with timely messages and good prediction 

results Thus, it increases the risk level of road users. 

Hence, the transportation system necessitates an 

effective collision warning system with optimal 

prediction strategies and dissemination methods. The 

cloud assisted leaning based collision warning systems 

are an optimal solution, as they primarily aim to 

amplify the vehicle interactions and speed up the safety 

message broadcasting by maintaining the entire 

network information at the cloud server.  

3.1. Network Architecture 

A fundamental cloud-based VANET structure is 

depicted in Figure 1. The QCP-SD system consists of 

three major units that are vehicles, RSUs, and cloud 

server. The vehicles are equipped with multiple sensor 

devices, or humans have wearable sensor devices for 

safety purposes. The sensor devices continuously 

monitor the driving environment like vehicle speed, 

acceleration, temperature, and airbag deployments. The 

vehicle speed sensor indicates the speed level of 

vehicles along roadside. The vehicle acceleration 

sensor refers the amount of time taken by a vehicle to 

reach the final velocity level from the initial velocity of 

zero. The temperature sensor measures the road surface 

temperature to identify the slippery road conditions 

like snow, icy and slush. The airbag sensor indicates 

that the vehicle is deployed with airbag or not and it is 

triggered based on the crash severity level. The 

monitored information periodically reports to the cloud 

server via RSUs. The cloud server stores and maintains 

the VANET information about vehicles, drivers, and 

driving environments. A vehicle can receive 

information about other vehicles from the cloud server 

whenever it is needed. Additionally, incorporating 

machine learning solutions with a cloud-based VANET 

system generates appropriate alerts based on learning 

and maximizes the collision prediction accuracy level. 
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3.2. Network Model 

The VANET is denoted as a network graph G (N, E). 

The term V refers to the number of VANET nodes that 

are classified into vehicles and RSUs, where {V, 

RSU}€N. The term E represents the straight 

communication links among two vehicles=V1V2. 

The QCP-SD considers the urban VANET 

environment with complex road structures, including 

intersections, multiple lanes, traffic lights, obstacles, 

and high vehicle populations. On each road, the 

vehicles are moving in the same and opposite 

directions with high mobility. The vehicles are moving 

at various speeds (Vspeed) and different directions (Vdr) 

along the road. The direction of a vehicle is 

represented as Dr, and distance among two vehicles Vi 

and Vj are denoted as Dr(vi, vj). The RSUs are fixed 

units placed on both sides of the roads. The 

communication range of vehicles (CV) is smaller than 

the communication range of RSUs (CRSU), where CV < 

CRSU. For effective collision prediction and warning, 

the QCP-SD model combines the advantages of a 

cloud architecture with VANET in designing the Q 

learning parameters. Each vehicle can obtain real-time 

VANET information from the cloud server anywhere 

through RSUs for collision risk prediction and next-

hop disseminator selection. Moreover, the CRF is 

estimated effectively using the multiple influencing 

pliable Q-parameters obtained with cloud server help.  

3.3. Problem Definition 

The collision warning system is crucial in the vehicular 

environment as the lives of drivers and passengers 

depend on the driving environment. The VANET 

characteristics, such as the high speed of vehicles, 

roadside obstacles, and unpredicted driving behaviors, 

increase the possibility of collisions, which is very 

difficult to predict in real-time environments. Hence, it 

is crucial to design an optimal collision warning 

strategy with early predictions to improve the safety 

level of road users. This work proposes a cloud-

assisted reinforcement Q-learning mechanism to 

predict the collision risks in a dynamic VANET 

environment. The main problem focused by QCP-SD 

is that the collision risk prediction with multiple 

parameters and safety message dissemination to the 

endangered vehicles. Most of the existing collision 

warning systems lack to incorporate high influencing 

factors in collision prediction. Also, it is very hard to 

maintain the vast data generation in VANET. The 

cloud architecture assists to handle the vast data 

generation and helps the vehicle to retrieve the driving 

environmental parameters from the cloud server at any 

time anywhere. The collision warning system exploits 

the retrieved parameters to speculate the collision risks. 

Unlike existing reinforcement Q-learning models, the 

proposed work incorporates a dynamic discount factor 

with the Q-learning process, named pliable Q-learning, 

which effectively reflects the VANET dynamicity in 

CRF evaluation. The main advantage of utilizing a 

pliable Q-learning algorithm is that it does not 

explicitly model the network environment. In contrast, 

the pliable Q-learning agent takes learning decisions 

based on the state actions Q-values. Instead of 

requiring a learning dataset with enormous VANET 

data, the pliable Q-learning experience-based decision 

making maximizes the prediction behavior of QCP-

SD. Thus, the CRF based advance collision risk 

prediction with most influenced factors caused timely 

alarm to the road users and helped to take appropriate 

precaution decisions during driving. Further, the 

collision warning is disseminated based on the QCP-

SD prediction results. The utilization of multi-attribute 
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Figure 1. Cloud-VANET seamless framework model. 
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cost value in QCP-SD disseminator selection boosts 

the message dissemination speed. Thus, the drivers 

take appropriate decisions based on the timely collision 

alerts and avoid the vehicle crashes. 

4. QCP-SD Overview 

The main intention of QCP-SD is to enhance the safety 

level of humans and diminish the financial loss due to 

vehicle crashes by timely alerting the vehicles using a 

CRF. For that, the QCP-SD incorporates two 

mechanisms that are pliable Q-learning based collision 

risk prediction and collision alert message 

dissemination. The systematic design of QCP-SD is 

shown in Figure 2. The pliable Q-learning model 

evaluates a CRF value by dynamically learning the 

prediction factors with appropriate discount Q-values. 

Based on the CRF and damage type, the QCP-SD 

alerts the vehicles through safety alert messages. For 

reliable and timely message delivery, the QCP-SD 

utilizes a multi-cost attribute in next-hop disseminator 

selection. 

 

 

Figure 2. Systematic design of QCP-SD. 

4.1. Pliable Q-Learning based Collision Risk 

Prediction 

To efficiently alert the vehicles in advance and 

diminish the damages due to collisions, the QCP-SD 

instructs the RSUs to predict the collision risk value 

based on unique VANET characteristics and historical 

Q-learning records. The collision prediction 

mechanism incorporates three steps that are designing 

pliable Q-parameters, pliable Q-learning and CRF 

estimation, and damage type prediction.  

Designing Pliable Q-Parameters: This aims to 

introduce a q-learning based collision risk prediction 

strategy that comprises four parts. In the first part, the 

term S is measured based on the observations of the 

vehicle situations at a time t. Secondly, the term A 

represents the discrete set of actions of the vehicles. 

Thirdly, R is the reward function estimated 

immediately based on the state and action information 

at time t, Rt=fr(st, at). Finally, F denotes the state 

transfer strategies from t to t+1, F=fs(st, at). In 

designing the Q-parameters, the QCP-SD considers the 

most influencing factors of causing collisions like 

Vehicle Speed (VS), Road Traffic Conditions (RTC), 

Complexity Level of Road (CLR), Vehicle Type (VT), 

and Weather Conditions (WC) as Q values, Q (VS, RTC, 

CLR, VT, and WC). The VS, RTC, CLR, VT, and WC 

values are periodically updated with the help of a cloud 

server. The range of the influencing factor values is 

between 0 to 1 which is defined as a matrix shown in 

Equation (1). In Equation (1), the parameters are 

measured over a time t-n for obtaining the Q-values of 

vehicles. Finally, the Q values are provided as input for 

the Q-learning process. 

Qt−n =

[
 
 
 
 
 

VS(t) VSfcr(t − 1) … VSfcr(t − n)

RTC(t) RTC(t − 1) . . . RTC(t − n)

CLR(t) CLR(t − 1) … CLR(t − n)

VT(t)       VT(t − 1) … VT(t − n)

WC(t)     WC(t − 1) …… WC(t − n)]
 
 
 
 
 

 

 Pliable Q-Learning and CRF Estimation: the core 

idea of the Q-learning algorithm is to dynamically 

update the Q-values using the following Equation 

(2). 

𝑸(𝐬𝐭, 𝐚𝐭) ← (𝟏 − ∅) ∗ 𝐐(𝐬𝐭, 𝐚𝐭) + ∅ ∗ 𝐟𝐫(𝐬𝐭, 𝐚𝐭) + 𝛗𝐐 𝐟𝐬((𝐬𝐭, 𝐚𝐭), 𝐚
′)) 

In Equation (2), the term ∅ is a weighting factor value 

that is not equal to 1. Similarly, the term φ is a discount 

factor that is essential for the Q-learning algorithm. 

Generally, the term φ is constant in basic Q-learning. 

For optimizing the learning performance and 

predicting the collision risk value effectively, the QCP-

SD dynamically updates the φ value based on the Q-

values obtained using Equation (1). After pliable Q-

learning, the QCP-SD instructs RSUs to evaluate the 

CRF for vehicles in its area. Each vehicle in the 

network and the driver has different characteristics. For 

instance, the vehicles are moving at different speeds 

with accelerations, and the unpredicted behaviors of 

drivers are unpredicted. Therefore, the QCP-SD 

considers the most five features in CRF estimation that 

greatly influence creating the risky events. The CRF is 

estimated using Equation (3). 

𝑪𝑹𝑭 = 𝑪𝑹𝑭𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 − 𝑪𝑹𝑭𝑨𝒄𝒕𝒖𝒂𝒍 

(1) 

(2) 

(3) 
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Where, 

CRFactual = [1 − (VS ∗ RTC ∗  CLR ∗ VT ∗ WC)]SM 

CRFPredicted = [VS ∗ RTC ∗  CLR ∗  VT ∗ WC]Q−Learning 

In Equation (4), the term CRFactual is estimated by 

RSUs through Straight Relative Risk Monitoring 

(SRRM) at current time t. Similarly, the term 

CRFPredicted is the learning value of RSU predicted 

using the historical records at t-1 time in Equation (5). 

Finally, the QCP-SD decides the CRF value using 

Equation (3). Incorporating most influencing VANET 

factors as states and taking the actions according to the 

states, the pliable Q-learning boosts the CRF 

estimation accuracy. The dynamic discount evaluation 

effectively reflects the VANET dynamism in collision 

risk evaluation. Moreover, the CRF is fed as input to 

the damage type prediction.  

 Damage Type Prediction: for collision prediction, 

the QCP-SD segregates the CRF value of urban or 

rural VANETs into three types that are low, 

moderate, and high. Based on the CRF value, the 

RSU instructs the vehicles through safety messages 

for taking appropriate actions.  

DType

= {

if CRF = low;                              only property damage will occur
if CRF = moderate;    property damage with injuries will occur
if CRF = high;              property damage and fatalities will occur

 

Finally, the RSU concludes that if the CRF value is 

low, the vehicles will only meet property damages. If it 

is moderate, the vehicles will meet property damages, 

and humans will get injuries. Otherwise, the CRF is 

high, the vehicles will meet very dangerous, risky 

events in which fatality will occur. By predicting the 

collision probability using multiple severity factors, the 

\QCP-SD effectively saves the human lives from 

hazardous situations and financial losses due to 

property damage. The RSU initiates the safety message 

dissemination process through ring based risky zone 

formation and multi-attribute cost-based disseminator 

selection.  

4.2. Safety Alert Message Dissemination  

The safety message dissemination process of QCP-SD 

involves efficiently delivering the messages to the 

vehicles that meet the hazardous situation. In QCP-SD, 

the RSU is responsible for broadcasting safety 

messages to the vehicles that will meet risky events 

based on the CRF value. Initially, the RSU forms a 

risky region based on the CRF damage type. After, the 

region is partitioned into multiple ring zones to select 

the optimal next hop for rebroadcasting. Finally, the 

collision risk message is successfully delivered to the 

vehicles that will meet collision.  

 Ring based Risky Zone Partitioning: in QCP-SD, 

the range of dangerous zone is determined from the 

CRF value, damage type of collisions, road type, 

and vehicle characteristics that are speed, direction, 

density, and location. If the RSU predicts any 

collision event, it inaugurates the risky zone 

formation process. The size of the risky zone is 

significantly varied based on the collision type. A 

type of risky zone formation scenario is depicted in 

Figure 3. 

 

Figure 3. Risky zone formation of QCP-SD. 

In Figure 3, the two vehicles in a risky zone will 

meet collision within a few seconds. The RSU predicts 

the CRF value Dtype of such vehicles is high and 

initiates the safety message dissemination process. The 

RSU exploits two types of communication for 

broadcasting safety messages. In the first type, the 

RSUs directly alert the vehicles within its area through 

the safety message dissemination process. Secondly, 

the vehicles that are far away from RSU receive safety 

messages from the RSU in a multi-hop manner. The 

risky zone area is confirmed using the following 

Equation (6).  

𝑹𝑨𝒓𝒆𝒂 =
𝝅𝒓𝟐

𝟐
 

In Equation (6), the risky zone area is referred to as 

RArea. The term r refers to the radius of the risky zone 

decided based on the terms CRF,DType,RType,Vc. The 

term Vc defines the characteristics of vehicles. Also, 

the vehicles are moving both directions on the road, 

and the QCP-SD neglects the unnecessary safety 

message dissemination to the vehicles in the opposite 

direction by considering the vehicle characteristics in 

risky zone formation. Further, the risky zone is 

separated into multiple ring zones based on Dedicated 

Short-Range Communication (DSRC) of vehicles. The 

ring zone formation is shown in Figure 4.  

 

Figure 4. Ring zone formation. 

For effective message delivery, the vehicles in the 

(5) 

(4) 

(6) 
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Risky Zone (RZ) are divided into multiple zones like 

{R1, R2,…..Rj} € RZ. Initially, the RSU straightly 

disseminates the safety warning message to the 

destination group {G(D1, D2,….Dn)}€R1 in its area. 

Further, an optimal disseminator vehicle selection 

process is initiated to disseminate the safety messages 

to the desired destination group.  

Optimal Next-hop Disseminator Selection: after ring 

zone partitioning, the QCP-SD selects the next-hop 

dissemination vehicle using a multi-attribute cost 

value. The cost value of the vehicles in each ring is 

evaluated using the following Equation (7). 

𝑵𝑯𝑫𝒗 = 𝑾𝑫𝒓 ∗ 𝑫𝒓 + 𝑾𝒑 ∗ 𝑴𝒊𝒏(𝑫(𝒗)𝑹𝒁𝒊→𝑹𝒁𝒋
) + 𝑾𝑺 ∗ 𝑴𝒂𝒙(𝑺) +

 𝑾𝑵𝑫 ∗ 𝑵𝑫 

In Equation (7), the terms Dr, Max(S) and ND refers to 

the direction, maximum speed, and neighbor density of 

the risky ring region. The vehicles moving towards the 

collision risk area have high weight values than the 

vehicles are moving in the opposite direction. Also, the 

destination group vehicles in R1 estimate relative 

distance D(v)Ri→Rj using the position information of 

itself to the R2 using Equation (8).  

𝑫(𝒗)𝑹𝒊→𝑹𝒋
= √((𝒙𝒋 − 𝒙𝒊) + (𝒚𝒋 − 𝒚𝒊))

𝟐
+ 𝝁 

In Equation (8), the position information of vehicle 

i€R1 and j€R2 is (xi, yi) and (xj, yj), respectively, and 

the term μ is the relative distance constant value. The 

vehicle with a high-cost value is selected as next hop 

dissemination vehicle and rebroadcasts the safety 

messages in its zone. Similarly, the safety messages are 

successfully rebroadcasted until they reach the desired 

destination group vehicles of Rj. By selecting an 

optimal next-hop disseminator, the QCP-SD 

maximizes the safety alert message dissemination 

efficiency and avoids nearly 60% of accidents due to 

vehicle collisions. The QCP-SD also utilizes simple 

computation mechanisms, and thus, it reduces the time 

delay in safety alert message delivery. Moreover, the 

QCP-SD prevents the fatalities and financial losses 

caused due to vehicle collisions by utilizing optimal 

deep learning-based collision prediction and an 

effective safety alert dissemination process. The 

overall algorithm of QCP-SD is explained below.  

 
//Protocol Design of QCP-SD// 

Input: VANET seamless framework with dynamic network 

characteristics. 

Output: Pliable Q-learning, collision risk prediction, and safety 

message dissemination  

Initialize the network; 

QCP-SD do { 

 Designing the pliable Q-parameters using cloud 

server; 

Extracts most influenced factors of collision; 

Learns the parameters using Pliable Q-learning 

model; 

Estimates CRF using the learning and monitoring 

values; 

𝐶𝑅𝐹 = 𝐶𝑅𝐹𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑅𝐹𝑎𝑐𝑡𝑢𝑎𝑙  

Collision prediction based of CRF value; 

Predicts the DType; 

}; 

 RSU do { 

  Forms the Risky Zone; 

Initiate the safety alert message 

dissemination  

process; 

  If (vehicles are in RSU range) { 

   Straight dissemination; 

   Else { 

   Messages are broadcasted to the 

destination group {G(D1, D2,….Dn)}€R1 using optimal next-hop 

disseminator; 

   For (v in Rj){ 

   Estimates multi attribute cost 

value; 

𝑁𝐻𝐷𝑣 = 𝑊𝐷𝑟 ∗ 𝐷𝑟 + 𝑊𝑝 ∗ 𝑀𝑖𝑛 (𝐷(𝑣)𝑅𝑍𝑖→𝑅𝑍𝑗
) + 𝑊𝑆 ∗ 𝑀𝑎𝑥(𝑆)

+ 𝑊𝑁𝐷 ∗ 𝑁𝐷 

    If (Cost of v==high) { 

The vehicle is selected as next-hop disseminator Rebroadcast 

the messages; 

  }}}}; 

5. Performance Evaluation  

The QCP-SD validates its efficiency through NS-2 

simulation. The proposed QCP-SD protocol is 

compared with existing MBM-EMD presented [13] in 

simulation. The simulation parameters of QCP-SD are 

described in Table 2. 

Table 2. Simulation parameters. 

Network area 1Km x 1Km 

Number of vehicles 90 

Vehicle Transmission Range 250m 

Number of RSUs 4 

RSU Transmission Range 500m 

Mobility model SUMO 

Maximum vehicle speed 10 to 100 Km/hr 

Packet size 512 Bytes 

Bandwidth 10MHz 

Simulation Time 5 Minutes 

5.1. Performance Metrics 

For performance evaluation, the QCP-SD employs 

different performance metrics such as duplicate packet, 

latency, packet loss, packet delivery ratio, secondary 

collision, throughput, and Overhead. 

 Duplicate Packet: it refers to the number of 

replicated packets received by a vehicle within the 

risky area.  

 Latency: the total time taken to deliver the safety 

alert message to the desired destination group. 

 Packet Loss: it is the number of failed packets to the 

total number of generated packets. 

(7) 

(8) 
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 Packet delivery ratio: the ratio of the number of 

successfully delivered packets to the total number of 

generated packets in the network.  

 Secondary Collision: it is the number of secondary 

crashes that happened within the risky region. 

 Throughput: it is the rate of successful data delivery 

among a source-destination pair. 

 Overhead: it is the number of control packets 

utilized for collision risk prediction and safety 

message dissemination. 

5.2. Simulation Results 

The performance results are obtained by varying the 

node density from 30 to 90 to analyze the effectiveness 

of QCP-SD with different density scenarios.  

 

Figure 5. Number of nodes vs. latency. 

Figure 5 shows the comparative latency results of 

QCP-SD and MBM-EMD under different node density 

scenarios. The QCP-SD increases the delay by varying 

the node density from 45 to 60. The reason is that the 

QCP-SD has to evaluate the multi-attribute cost 

function to the maximum number of vehicles under a 

high-density scenario. Thus, it incurs some delay in the 

network. After the point of 60 numbers of nodes, the 

QCP-SD decreases the delay suddenly. For example, 

the QCP-SD attains 0.09 and 0.04 seconds of latency 

for 60 and 75 node density scenarios, respectively. 

However, the QCP-SD outperforms the MBM-EMD, 

as shown in Figure 5. For instance, the QCP-SD and 

MBM-EMD accomplish latency results of 0.16 and 

1.02 seconds, respectively, for a 90 node density 

scenario. 

 

Figure 6. Number of nodes vs. packet loss. 

Figure 6 plots the packet loss results of QCP-SD 

and MBM-EMD obtained by varying the number of 

nodes from 30 to 90. The packet loss of QCP-SD is 

slightly increased with varying the number of nodes 

from 30 to 75. It is because many nodes compete to 

access the channel, and there is an amount of packet 

loss due to collisions. For example, the QCP-SD 

accomplishes a packet loss rate of 17 and 94 under 30 

and 90 node density scenarios. However, the QCP-SD 

shows its superior performance under all density 

scenarios than the existing MBM-EMD. For example, 

the QCP-SD and MBM-ED attain 94 and 691 packet 

loss rates, respectively, when the node density is 90.  

 

Figure 7. Number of nodes vs. packet delivery ratio. 

The packet delivery ratio results of QCP-SD and 

MBM-EMD are shown in Figure 7. The QCP-SD 

decreases the packet delivery ratio by varying the 

number of nodes from low to high, as the huge 

numbers of nodes try to access the channel, and there 

is a packet loss due to collision. For example, the QCP-

SD accomplishes 99.2% and 95.8% of packet delivery 

ratio, respectively, when 30 and 90 nodes are presented 

in the network. The QCP-SD shows superior 

performance than existing MBM-EMD under all 

density scenarios, as depicted in Figure 7. For 

example, the QCP-SD and MBM-EMD accomplish 

95.8% and 62.4% of packet delivery ratio, 

respectively, when a huge number of nodes 90 

presented in the network. 

 

Figure 8. Number of nodes vs. secondary collision. 

Figure 8 demonstrates the secondary collision 

results of QCP-SD and MBM-EMD obtained by 

varying the number of nodes from low to high. 

Initially, the secondary collision result of QCP-SD is 

due to the ineffective reception of safety alert due to 
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poor connectivity. In Figure 8, the QCP-SD 

accomplishes one secondary collision for 30 and 45 

node density. After 45, the secondary collision of 

QCP-SD is zero, as the high density vehicles offer 

better connectivity and quickly deliver the safety alert 

messages. However, the pliable Q-learning based 

collision risk prediction of QCP-SD shows its 

enhanced performance than MBM-EMD under all 

density scenarios. For instance, the QCP-SD and 

MBM-EMD attain 0 and 31 secondary collisions for 90 

node density scenarios, respectively. 

 

Figure 9. Number of nodes vs. throughput. 

Figure 9 shows the comparative results of the 

throughput of QCP-SD and MBM-EMD. The QCP-SD 

increases the throughput from 45 to 75 node density 

scenarios, whereas it is slightly decreased after the 

point of 75. This is caused by the availability of a 

better next hop disseminator under high-density 

scenarios than low-density scenarios. After the point of 

75, the network is saturated, and there is some packet 

loss. However, the QCP-SD outperforms the MBM-

EMD under low and high node density scenarios, as 

shown in Figure 9. Unlike MBM-EMD, the QCP-SD 

utilizes a pliable Q-learning based collision prediction 

and multi-attribute cost-based disseminator selection, 

resulting in high throughput. For example, the 

throughput of QCP-SD and MBM-EMD is 0.015 and 

0.008 Kbps for 90 node density, respectively.  

 

Figure 10. Number of nodes vs. overhead. 

The overhead results of both ACP-SD and MBM-

EMD are plotted in Figure 10. Both models increase 

the Overhead by varying the number of nodes from 30 

to 90. The reason is that the high number of nodes 

amplifies the utilization of control packets under the 

high-density scenario. For example, the QCP-SD and 

MBM-EMD incur 12.2% and 12.7% of Overhead, 

respectively, when 30 vehicles are moving in the 

network. Figure 10 depicts that the QCP-SD attains 

much overhead than existing MBM-EMD under a high 

node density scenario of 90, as the nodes in QCP-SD 

employ control packets to obtain the real-time VANET 

information from the cloud server. 

 

Figure 11. Number of nodes vs. duplicate packet. 

Figure 11 portrays the relationship between the 

comparative results of the duplicate packet of QCP-SD 

and MBM-EMD. The QCP-SD effectively reduces the 

duplicate packets by designing a risky region and 

multi-attribute-based dissemination selection process. 

By partitioning the risky region into multiple rings, the 

QCP-SD effectively delivers the safety alert message 

to the dangerous vehicles at once and avoids the packet 

replication. For example, the QCP-SD attains 0.01 of 

duplicate packets under low and high node density 

scenarios. Unlike QCP-SD, the MBM-EMD does not 

form any risky region, and there is an amount of data 

packet replication at each node. For instance, the QCP-

SD and MBM-EMD accomplish 0.01 and 1.3 duplicate 

packet ratios, respectively, when 75 numbers of 

vehicles are presented in the network.  

6. Conclusions 

In this paper, a novel collision warning system named 

as QCP-SD has been proposed to maximize the safety 

level of VANET users during driving. For effective 

collision risk prediction and safety message 

dissemination, the QCP-SD integrates two mechanisms 

that are pliable Q-learning-based collision risk 

prediction and safety alert message dissemination. The 

pliable Q-learning algorithm maximizes the collision 

prediction accuracy by considering the most 

influencing dynamic VANET factors retrieved from 

the cloud server in CRF evaluation. Further, the ring 

partitioning based risky zone formation and multi-

attribute cost value based next-hop disseminator 

selection in safety message dissemination maximize 

the safety alert message dissemination efficiency with 
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minimum latency. Also, sending the safety messages 

only to the vehicles in risky region minimizes the 

message duplication rate significantly. Furthermore, 

the advance prediction of collisions and timely safety 

alerts to the vehicles in the risky area of QCP-SD 

avoids the fatalities and financial losses due to vehicle 

crashes. Finally, the simulation results show the 

effectiveness of QCP-SD in terms of various 

performance metrics. From the results, the QCP-SD 

accomplishes 95.8% of packet delivery ratio and 0.015 

MB/s of throughput under high node density scenario. 

The QCP-SD accomplishes 0.01 of duplicate packet 

ratio and it is reduced by 99.2%, than the existing 

MBM-EMD protocol. The QCP-SD is extended with 

multiple realistic Q-parameters in future. Furthermore, 

the future work plans to append the security methods 

in safety message dissemination of QCP-SD to offer 

defense against different attacks. 
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