
312 The International Arab Journal of Information Technology, Vol. 18, No. 3, May 2021

Software Defined Network: Load Balancing

Algorithm Design and Analysis

Senthil Prabakaran1 and Ramalakshmi Ramar2
1Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and

Education, India
 2Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education,

India

Abstract: Software Defined Network (SDN) cut down the monopolies of producing network devices and their applications. It

allows the use of an omniscient controller that manages the overall network and promises for simplifying the configuration

and management burden of the traditional Internet Protocol (IP) network. The use of hardware load balancer is a critical

issue in conventional IP networks that creates many negative impacts such as the cost affordability, features customization,

and availability. Also, the existing load balancing algorithm does not consider the flow size generated by the client nodes.

Further, flows are not classified based on the threshold value of the dynamic flow size. The paper proposes to compare the

performance of two load balancing algorithms such as flow-based load balancing algorithm and traffic pattern-based load

balancing algorithm with distributed controllers' architecture. The result shows that the flow-based load balancing algorithm

minimizes response time by 94%, enhances transaction rate by 14% and Traffic pattern-based load balancing algorithm has

improved availability by 2.69%.

Keywords: SDN, distributed controller, flow-based algorithm, traffic pattern based algorithm, failover.

Received January 10, 2020; accepted November 24, 2020

 https://doi.org/10.34028/iajit/18/3/7

1. Introduction

The current traditional Internet Protocol (IP) network

is complex and hard to manage Benson et al. [4]. The

difficulties often arise in the configuration parts, in

which each forwarding element must be configured

independently by using the manufacturer commands.

At the same time, there is a deficiency of an automatic

reconfiguration. Furthermore, the vertical integration

of the current network is done by the control plane

which manages and communicates to the forwarding

element. The data plane combined with control plane

reduces the flexibility and the innovation Kreutz et al.

[16]. Controller decouples control plane function from

forwarding devices to program and manage the

network. By the definition of Software Defined

Network (SDN), it refers to the decoupling of the

network control part from the forwarding part.

Control, data and application layers characterize

SDN architecture. Representational state transfer

Application Programming Interface (REST API)

manages the control and application layer sessions

Alkhatib et al. [2]. Openflow switch uses Openflow

protocol to send controller instructions to the data

plane element Prabakaran and Ramar [23]. Control and

data plane communicate the controller instructions

using open flow protocol Greene [8]. In SDN nodes are

interconnected logically. Thus, using a single

interoperable control plane, packet and circuit-

switched network can be controlled efficiently Badotra

and Panda [3] Figure 1 shows SDN architecture.

Figure 1. SDN architecture.

In increasing network traffic, load balancing is a

critical application to overcome the availability

problem and ensure a higher transaction rate with a

low response time. Additionally, the load balancing

algorithm eliminates and minimize network downtime.

Yin et al. [29] stated that the controller uses data from

flow analysis to enable load balancing decisions. In

this paper, the performance comparison of traffic-

pattern based and flow-based load balancing

algorithms in a distributed controller environment is

proposed. POX (An open-source Python based SDN

controller application) is the distributed SDN controller

[22]. Ahmed and Ramalakshmi [1] proposed SDN

distributed controller architecture, which achieves

Software Defined Network: Load Balancing Algorithm Design and Analysis 313

optimal performance and overcomes the problems like

a single-point failure and Network bottleneck,

encountered by the centralized SDN controller.

The significant contributions of this paper are:

● Two load balancing algorithms are developed based

on traffic flow and traffic pattern on a distributed

controller SDN architecture.
● Load balancing algorithm based on traffic flow is

implemented to minimize the server's overwhelming

problem.
● Load balancing algorithm based on traffic pattern is

implemented to reduce processing load and

overcome single-point failure.
● The performance of flow-based and traffic pattern-

based load balancing algorithms are measured,

compared and analyzed using metrics like

availability, response time and transaction rate.

The paper is organized as follows: related works in

section 2, proposed work in section 3, experimental

setup in section 4, simulation results and discussions in

section 5, evaluation in section 6 and conclusion in

section 7.

2. Related Works

A traditional IP network operates with its limitation of

implementing a software-based load balancing

application entirely due to the API's absenteeism.

Thus, conventional network consents for only

hardware-based load balancers offer a high

performance but with a prohibitive cost and no

customization since they are a vendor-locked policy. In

this section, various SDN load balancing techniques

are examined and classified into:

2.1. OpenFlow-Based Load Balancing

Kaur et al. [15] proposed a round-robin load balancing

algorithm over SDN architecture to distribute incoming

traffic evenly to available cluster of servers. The server

weight is not considered in this algorithm. Thus, it

might be useful in some scenarios in which the

capabilities of the servers are equal. Otherwise, some

of the servers will be overwhelmed. A path switching

method is proposed to overcome the transmission load

imbalance problem, which minimizes the response

time. The load-balancing algorithm does not consider

flow size that could affect the whole process of

balancing the load. Similarly, Wang et al. [28]

implemented the algorithm to match the source IP

addresses into the servers. The clients' requests are

handled directly by the load balancers. A new

transition and partitioning algorithms are proposed to

set and change the wildcard rules. It suffers from large

overhead that might degrade the controller

performance. This architecture considers only the

distribution of the incoming traffic without considering

the server's side. Thus, the difference in speed and size

forces the servers to be overloaded and go out of

service. A Load Balancing Based on Server Response

Time (LBBSRT) algorithm is proposed by Zhong et al.

[30] to balance servers load based on response time

with centralized controller. LBBSRT selects server

with minimum response time. LBBSRT depends only

on the real-time measuring without using any

techniques to handle the load when the scenario

changes. LBBSRT is not a suitable solution for

balancing the load when the size of the flows increases.

Least Delay Dynamic Weighted Round-Robin

(LDDWRR) by Sroya and Singh [27], implemented a

load balancing strategy by assigning the load to the

servers based on the delay. LDDWRR shows good

response time, throughput, and transactions against the

round-robin algorithm. The downside of using

LDDWRR is that it will not consider the server's

capabilities to handle the weight. Moreover, the weight

calculation process is time-consuming, leading to the

server's response degradation. Senthil and

Ramalakshmi [24] designed Flow-based Proactive

Prediction Load Balancing (FPPLB) to quickly and

effectively anticipate the current load of the controller.

In FPPLB, flows are categorized based on the

variations in traffic flows and controller load. Hwang

and Tseng [13] proposed an architecture that dealt with

switches based on the topology-aware principle and

addressed the auto-routing to minimize the human

error. On-Line Routing (OLR) calculates the optimal

route but it does not address the problem of the flow

size.

2.2. Dynamic Load Balancing

To manage dynamic traffic burst flows and controller

load, a dynamic load balancing algorithm is required.

Hamdan et al. [10] reported that the controller can

make a load calculation and maintain a balance in

network load when a predefined threshold exceeds. To

improve the overall performance the loads are assigned

to specific switches which can handle the flows. Latif

et al. [17] proposed a dynamic load balancing to

reduce latency and optimize the update mechanism

based on the information from the data plane element.

The FlowBender by Kabbani et al. [14] balances

distributive flows instead of packets. It used

Retransmit Timeout (RTO) to recover from link

failure. It relies on Equal Cost Multipath (ECMP)

switch support. Likewise, the Mahout by Curtis et al.

[6] discussed a novel technique which provides

efficient visibility of flow behaviour to detect flow size

by observing the end hosts' socket. But it suffers from

a large overhead that degrades the controller

performance. Additionally, Shang et al. [26] proposed

a load balancing strategy using an adaptive link

algorithm and link weight based on the Quality of

Service (QoS) principle, which successfully balances

the network traffic. The design does not consider the

314 The International Arab Journal of Information Technology, Vol. 18, No. 3, May 2021

flow size, which may affect QoS. This technique

increases the controller overhead, in which the link

weight-based QoS requires to be monitored, and the

prioritization needs to occur before sending the traffic.

Another limitation is that the algorithm failed to

manage the server's load. The link weight-based

balancer does not consider server capacity, active

connections, and the servers' speed while selecting the

backend server. A load balancing by Ma et al. [18]

decoupled control plane as a meta plane and local

plane. The control plane processing is done by local

plane and resource management is handled by meta

plane.

Hikichi et al. [11] used round-robin technique to

balance load with distributed controllers to enhance the

controller performance. Hai and Kim [9] introduced an

algorithm to balance the traffic in a distributed

controller network to improve the resource

management based on the threshold load on the

controllers. This method reduces the communication

overhead. Overall controller load is measured, and to

improve the efficiency of the network, number of

controllers is dynamically extended or narrowed by

Nisar et al. [20]. Gasmelseed and Ramar [7] developed

a load balancing algorithm depending on traffic

patterns to divide the packets into transmission control

and user datagram protocol, and eventually transmit

the flows to the designated controller. Huang et al. [12]

proposed Congestion Avoidance Video Multicast

(CAVM) on SDN environment to monitor bandwidth

availability and network link delay to find path with

minimum congestion cost and delay.

3. Proposed Work

In this section, two load balancing algorithms based on

traffic flow and traffic pattern are compared and

analyzed in a distributed SDN controller environment.

3.1. Load Balancing Application

Load balancer application reduces the network

bottleneck problem and increases the network

availability. Load balancer application is implemented

on distributed and centralized controller environments

to compare the performance of the network. If a

controller goes down, the secondary controller takes

control, to eliminate the network bottleneck problem in

distributed environment. Figure 2 shows the load

balancer placement on a distributed SDN controlled

network.

Figure 2. Load balancer application placement.

3.2. Load Balancer Algorithm

Load balancers use various algorithms to distribute

incoming traffic. Flow-based and traffic pattern-based

algorithms are discussed and compared below.

3.2.1. Flow-Based Load Balancer

Figure 3 shows the flow-based load balancer

architecture.

Figure 3. Load balancer architecture based on flow detection.

The flow-based load balancer algorithm deals with

the problems of servers overwhelming. The algorithm

deals with the absence of real-time monitoring and

assigning dynamic threshold level in traditional load

balancer applications. The flows are classified into

large and normal flows to reduce the processing time

taken by the servers and achieve a higher number of

transactions. The flow status of controllers is analyzed

using sFlow traffic analytic tool [25]. Thus, the loads

are distributed evenly between controllers to reduce the

overwhelming problem.

3.2.2. Traffic Pattern-Based Load Balancer

Algorithm

The load balancing algorithm inspects the ingress

packet headers to identify the TCP and UDP packets.

The identified packets are forwarded to assigned

controllers, and the traffic is distributed to the server

pool. Figure 4 shows the load balancer architecture

based on traffic pattern.

Software Defined Network: Load Balancing Algorithm Design and Analysis 315

Figure 4. Load balancer architecture based on traffic pattern.

The incoming packet headers are analyzed to find

the traffic type. The controller creates and assigns

virtual IPs to establish the communication path

between the load balancer. It uses source IP to reduce

the processing load and minimize the single point

failure.

4. Experimental Setup

Table 1 shows the experimental setup and parameters

Table 1. SDN setup description and parameters.

Description Tools used

Network Emulation Mininet

SDN controller type Distributed

SDN controller POX

Forwarding element OpenVSwitch

Flow generator Curl

Servers load generator and tester Open load and siege

Number of servers 10

Total number of concurrent clients 500

To compare the performance of traffic pattern-based

and flow-based load-balancing algorithm with

distributed SDN controllers, Mininet is used as

network emulator [19]. Open load tool generates load,

and siege tool tests the network environment [21]. Curl

as a traffic generator to generate traffic from clients to

servers [5]. Response time, availability and transaction

rate are analyzed and compared to evaluate the

proposed work's performance.

5. Simulation Results and Discussions

In this section, compared the performance of a traffic

pattern-based and a flow-based algorithm considering

response time, availability, and transaction rate. Table

2 shows the symbols and descriptions used in the

equations.

Table 2. Symbols and descriptions.

Symbol Description

Sf Socket failure

∑ 𝑐𝑡
Total time taken by the controllers and

servers to wait for reply messages

Time-out Time out value of controllers and servers

TTrans The total transaction from clients to servers

Tx_time Overall time taken for transaction

5.1. Availability

The Availability is calculated by considering socket

failures and ratio of time out to total time taken by the

controller and server as expressed in Equation (1).

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑖𝑡𝑦 = 𝑠𝑓 +
𝑇𝑖𝑚𝑒_𝑂𝑢𝑡

∑ 𝑐𝑡

In Equation (1), sf mentions socket failures due to a

large number of ingress traffic. The traffic pattern-

based algorithm attains higher availability since it has

secondary controllers and failover mechanisms,

reducing the downtime and bottleneck issue. Figure 5

shows the availability.

Figure 5. Availability.

5.2. Response Time

The time taken by the controller to respond to the

respective client requests measures the response time.

It plays a significant role in a load-balancing

environment which has large server and controller

clusters. Resulting low response time of an application

indicates that the application is well suited for a

network environment with a more significant number

of clients and request frequency which heavily affect

the transaction rate. The flow-based load balancing

algorithm achieves low response time compared to the

traffic pattern-based algorithm. The reason is the

consideration of the flow size, which reduces the

standard server from being overwhelmed. Figure 6

shows the average response time.

Figure 6. Average response time.

5.3. Transaction Rate

The transaction rate is the total number of flows

processed by the controllers per second. The

transaction rate is inversely proportional to the

response time. The transactions rate formula is:

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑅𝑎𝑡𝑒 =
𝑇𝑇𝑟𝑎𝑛𝑠

𝑇𝑥_𝑡𝑖𝑚𝑒

Figure 7 shows the transaction rate

(1)

(2)

316 The International Arab Journal of Information Technology, Vol. 18, No. 3, May 2021

Figure 7. Transactions rate.

The flow-based algorithm achieves a high

transaction rate with less response time compared to

traffic pattern-based load balancer algorithm.

6. Evaluation

As shown in section 5, flow-based load balancing

algorithm is best suited for distributed controllers

while considering response time and transaction rate

parameters. It considers the incoming flows' size and

redirects them to the backend servers, consisting of

high capabilities and standard servers to process the

flows accordingly. In contrast, the load balancing

algorithm based on traffic pattern is optimal when

addressing the scalability and availability parameters

since it uses primary and secondary controllers to

ensure availability and growth of the network.

Moreover, the load balancing algorithm based on

traffic pattern improves the network's performance by

using a failover mechanism to eliminate single point of

failure problem.

The performance comparison of flow-based load

balancing and traffic pattern-based load balancing

shows that the flow-based algorithm is more

responsive and achieves higher transaction rate.

Therefore, it is advantageous for applications like

media streaming servers, online gaming servers, Voice

over IP (VoIP) servers, Trivial file transfer servers and

Virtual Private Network (VPN) tunnelling. The traffic

pattern-based load balancing has better network

availability. So, it is advantageous for applications like

web servers, data farming, remote server and client

communication, file transfer servers and mail servers.

7. Conclusions

This paper compares the performance of the load

balancing algorithms based on traffic flow and traffic

pattern. Distributed SDN controller eliminates the

disadvantages of a centralized SDN controller

architecture to improve the availability, management

and scalability of the network. Mininet emulates SDN

network, curl, Openload and siege tools are used to

generate the traffic load and test the proposed

environment. The results display that the load

balancing algorithm based on traffic flow has

improved the response time by 94% and transactions

rate by 14%. Similarly, the load balancing algorithm

based on traffic pattern has improved availability by

2.69% due to traffic separation and failover mechanism

that lead to achieving better results than flow-based

load balancing algorithm.

References

[1] Ahmed H. and Ramalakshmi R., “Performance

Analysis of Centralized and Distributed SDN

Controllers for Load Balancing Application,” in

Proceedings of 2nd International Conference on

Trends in Electronics and Informatics,

Tirunelveli, pp. 758-764, 2018.

[2] Alkhatib H., Faraboschi P., Frachtenberg E.,

Kasahara H., Lange D., Laplante P., Merchant

A., Milojicic D., and Schwan K., “The IEEE CS

2022 Report,” IEEE Computer Society, pp. 25-

27, 2014.

[3] Badotra S. and Panda S., Handbook of Computer

Networks and Cyber Security, Springer Link,

2020.

[4] Benson T., Akella A., and Maltz D., “Unraveling

the Complexity of Network Management,” in

Proceedings of 6th USENIX Symposium on

Networked Systems Design and Implementation,

Boston, pp. 335-348, 2009.

[5] Curl.Haxx.Se, Command Line Tool,

https://curl.se, Last Visited, 2021.

[6] Curtis A., Kim W., and Yalagandula P.,

“Mahout: Low-Overhead Datacenter Traffic

Management Using End-Host-Based Elephant

Detection,” in Proceedings of IEEE Infocom,

Shanghai, pp. 1629-1637, 2011.

[7] Gasmelseed H. and Ramar R., “Traffic Pattern-

Based Load‐Balancing Algorithm in

Software‐Defined Network Using Distributed

Controllers,” International Journal of

Communication Systems, vol. 32, no. 17,

pp.e3841, 2019.

[8] Greene K., 10 Breakthrough Technologies:

Software-defined Networking, MIT’s

Technology Review, Last Visited, 2009.

[9] Hai N. and Kim D., “Efficient Load Balancing

For Multi-Controller in SDN-Based Mission-

Critical Networks,” IEEE in Proceedings of 14th

International Conference on Industrial

Informatics, Poitiers, pp. 420-425, 2016.

[10] Hamdan M., Hassan E., Abdelaziz A., Elhigazi

A., Mohammed B., Khan S., Vasilakos A., and

Marsono M., “A Comprehensive Survey of Load

Balancing Techniques in Software-Defined

Network,” Journal of Network and Computer

Applications, vol. 174, pp. 102856, 2021.

[11] Hikichi K., Soumiya T., and Yamada A.,

“Dynamic Application Load Balancing in

Distributed SDN Controller,” in Proceedings of

18th Asia-Pacific Network Operations and

Management Symposium, Kanazawa, pp. 1-6,

2016.

Software Defined Network: Load Balancing Algorithm Design and Analysis 317

[12] Huang H., Wu Z., Ge J., and Wang, L., “Toward

Building Video Multicast Tree With Congestion

Avoidance Capability in Software-Defined

Networks,” The International Arab Journal of

Information Technology, vol. 17, no. 2, pp. 162-

169, 2020.

[13] Hwang R. and Tseng H., “Load Balancing and

Routing Mechanism Based on Software Defined

Network in Data Centers,” International

Computer Symposium, Chiayi, pp. 165-170,

2016.

[14] Kabbani A., Vamanan B., Hasan J., and Duchene

F., “Flowbender: Flow-Level Adaptive Routing

for Improved Latency and Throughput in

Datacenter Networks,” in Proceedings of the 10th

ACM International on Conference on Emerging

Networking Experiments and Technologies, New

York, pp. 149-160, 2014.

[15] Kaur S., Kumar K., Singh J., and Ghumman N.,

“Round-Robin Based Load Balancing in

Software Defined Networking,” in Proceedings

of 2nd International Conference on Computing for

Sustainable Global Development, New Delhi, pp.

2136-2139, 2015.

[16] Kreutz D., Ramos F., Verissimo P., Rothenberg

C., Azodolmolky S., and Uhlig S., “Software-

Defined Networking: A Comprehensive Survey,”

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-

76, 2014.

[17] Latif Z., Sharif K., Li F., Karim M., Biswas S.,

and Wang Y., “A Comprehensive Survey of

Interface Protocols for Software Defined

Networks,” Journal of Network and Computer

Applications, vol. 156, pp.102563, 2020.

[18] Ma Y., Chen J., Tsai Y., Cheng K., and Hung W.,

“Load-Balancing Multiple Controllers

Mechanism for Software-Defined Networking,”

Wireless Personal Communications, vol. 94, no.

4, pp. 3549-3574, 2017.

[19] Mininet.Org, Mininet, http://mininet.org/, Last

Visited, 2021.

[20] Nisar K., Jimson E., Hijazi M., Welch L., Hassan

R., Aman H., Sodhro A., Pirbhulal S., and Khan

S., “A Survey on the Architecture, Application,

and Security of Software Defined Networking,”

Internet of Things, vol. 12, pp. 100289, 2020.

[21] Openwebload.Sourceforge.Net, Open Load,

http://openwebload.sourceforge.net, Last Visited,

2021.

[22] Pox, The POX Controller,

https://github.com/noxrepo/pox, Last Visited,

2012.

[23] Prabakaran S. and Ramar R., “Stateful

Firewall‐Enabled Software‐Defined Network

with Distributed Controllers: A Network

Performance Study,” International Journal of

Communication Systems, vol. 32, no. 17, pp.

e4237, 2019.

[24] Senthil P. and Ramalakshmi R., “Flow Based

Proactive Prediction Load Balancing in Stateful

Firewall Enabled Software Defined Network

with Distributed Controllers,” Journal of Green

Engineering, vol. 10, no. 10, pp. 8337-8355,

2020.

[25] Sflow.Org, Sflow-Flow Monitoring Tool,

https://sflow.org/, Last Visited, 2021.

[26] Shang F., Mao L., and Gong W., “Service-Aware

Adaptive Link Load Balancing Mechanism For

Software-Defined Networking,” Future

Generation Computer Systems, vol. 81, pp. 452-

464, 2018.

[27] Sroya M. and Singh V., “LDDWRR: Least Delay

Dynamic Weighted Round-Robin Load

Balancing in Software Defined Networking,”

International Journal of Advanced Research in

Computer Science, vol. 8, no. 5, pp. 145-148

2017.

[28] Wang R., Butnariu D., and Rexford J.,

“OpenFlow-Based Server Load Balancing Gone

Wild,” in Proceedings of the 11th USENIX

Conference on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and

Services, USA, pp. 12, 2011.

[29] Yin P., Diamond S., Lin B., and Boyd S.,

“Network Optimization for Unified Packet and

Circuit Switched Networks,” Optimization and

Engineering-Springer, vol. 21, no. 1, pp. 159-

180, 2020.

[30] Zhong H., Fang Y., and Cui J., “LBBSRT: an

Efficient SDN Load Balancing Scheme Based on

Server Response Time,” Future Generation

Computer Systems, vol. 68, pp. 183-190, 2017.

318 The International Arab Journal of Information Technology, Vol. 18, No. 3, May 2021

Senthil Prabakaran was born at

Dindigul, India, in 1987. He

graduated in Electronics and

Communication Engineering from

Anna University affiliated college

and post graduated in Network

Engineering from Kalasalingam

Academy of Research and Education, Krishnankoil,

India. He is pursuing his PhD in Electronics and

Communication Engineering (Software Defined

Networking) from Kalasalingam Academy of Research

and Education. His research interest includes

Computer Networks, Software Defined Networks,

Cloud Computing, Network Function Virtualization

and Network Security.

Ramalakshmi Ramar received her

Doctoral degree and Master of

Engineering degree in Computer

Science and Engineering. She has

been working in the department of

Computer Science and Engineering

at Kalasalingam Academy of

Research and Education (Previously known as

Arulmigu Kalasalingam College of Engineering) since

2001. She has more than 20 years of teaching

experience. She is a member of CSI, ISTE and

Network Technology group of TIFAC- CORE in

Network Engineering. She has published more than 25

research articles in reputed Journals and International

Conferences. She has received Young Scientist

Fellowship from Tamilnadu State Council for Science

and Technology and Award of Excellence from SAP

India Pvt. Limited. Her areas of research include

Software Defined Networking, Cognitive Science,

Internet of Things, Big Data Analytics and Social

Network Analysis.

