
The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021 611

Performance Evaluation and Simulation of the

Traversal Algorithms for Robotic Agents in

Advanced Search and Find (ASAF) System

Ahmed Barnawi and Marwan Alharbi

Faculty of Computing and IT, King Abulaziz University, Saudi Arabia

Abstract: ASAF is a multiple agent robotic system where Unmanned Aerial Vehicles (UAV) and Ground Vehicles (UGV)

agents perform coordinated tasks. Our research group built this system based on Multiple Unmanned Autonomous Vehicle

Experimental Testbed (MAUVET), an in-house platform that we have introduced as well. The challenge in the development of

a mobile robotic system is that performance in real time deployment differs from the original plan. This case is clearer when

planning the traversal path of an agent, where error happens because of mechanical and environmental factors. The aim of

this paper is to investigate the agent traversal execution via system experimentation and computer simulation. The outcome of

this investigation is understanding this behavior under different sets of circumstances and finding some optimization factors.

Keywords: Unmanned aerial vehicles, UAV controller, embedded systems, multilayered architecture.

Received June 18, 2019; accepted June 18, 2020

https://doi.org/10.34028/18/4/14

1. Introduction

The Advanced Search and Find (ASAF) system is a

multi- agent robotic system that assigns several

heterogeneous robots searching for an object in an

open area, each is to follow a predefined traversal path.

Our research group is developing this system on top of

a heterogeneous state-of-the-art testbed developed by

our research group named Multiple Unmanned

Autonomous Vehicle Experimental Testbed

(MUAVET) [5]. We have also implemented and

documented the algorithm to generate traversal paths

in submitted paper [7]. In that paper, we introduced

several traversal patterns like zig-zag traversal, and

two strategies to divide the searched area among

several flying robotic agents. We also studied the

behavior of the agents’ autopilot and found that due to

systems’ mechanical limitations and Global

Psitioning System (GPS) signal accuracy, the agent

does not follow the path between two waypoints (start

to end) exactly, and an error happens. We also saw that

this error, in real life experiments, is a function of the

speed of the agent. The problem is that such an error

will affect the accuracy of the target detection process

as an agent’s onboard camera should capture each

point in the area at least once to find the target we are

looking for.

In this paper we further investigate the behavior of

the drone and the optimization of the overall

performance by altering the traversal strategy to reduce

the gaps in the traversed area. We have built a

simulator based on the statistical data from the real

experiments to simulate a drone traversing an area.

The simulation results shown in this paper have

enhanced our understanding of the agents’ behavior

and gave us insights on how changing some traversing

parameters may affect performance. It also helped us

to compare different traversal strategies and get first

impression prior to actual deployment on the

experimental testbed.

The structure of this paper is as follows; Section 2 is

related work. Section 3 highlights the characteristics of

ASAF architecture. Section 4 introduces the system

components, testbed and setup. Section 5 presents the

traversal algorithm and its components. Section 6

presents error estimation analysis based on field

experimental data along with discussion about

performance analysis and optimization aspects. The

last sections are conclusions and acknowledgments.

2. Related Work

On cooperation and coordination of multiple

Unmanned Aerial Vehicles (UAVs), Wenjing and

Shenghong [43] discuss several types of architectures

for multi UAV cooperation, namely:

1. Multi-agent.

2. Basestation.

3. Central agent.

Our MUAVET [5] in theory supports all these modes,

but for this set of experiments, we have implemented it

to run in base station mode. The paper lists drawbacks

of those methods, such as a single point of failure in

(2) and (3) and communication difficulties in (1), then

proposes a work-flow based approach for cooperation:

https://doi.org/10.34028/18/4/14

612 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

it gives agents autonomousity in generating decisions

but unifies their parameters that would lead to a

decision, leading to agents taking similar and

coordinated decisions. This approach is initially for

military uses but is adaptable to search and find

applications as well.

Moreover, Wenjing and Shenghong [42], the same

authors perform a more thorough and systematic

comparison between the cooperation architectures,

comparing time and data consumption of the different

models. They found that Multi-Agent model is worse

than the model they proposed ’workflow-based’.

Chen et al. [12] propose a reciprocal decision

approach for the sensing of multi-UAV swarms. The

approach is self-organized, distributed, and

autonomous without the need for optimal parameters to

be determined through repeated experiments.

More on search path design, Cabreira et al. [11]

compare between spiral and zig-zag patterns in terms

of energy efficiency, arguing that both are

computationally cheap, saving energy in that regard.

They claim-based on simulation results in many

different areas-that spiral uses less energy overall, by

up to 16.

On a similar note, Andersen [2] presents and

analyses multiple path patterns: two zig-zag patterns:

one with longer side length and a shorter one, spiral,

and triangular ’sector’ pattern. Andersen [2] selects

spiral as the best in multiple metrics but without

backing from real-world experiments. Both this and

[11] lack real world experiments to prove their findings

as opposed to our research. Thus the claim in [2, 11]

should be examined as an objective of our study.

Traversing a region needs some preparations such as

detecting polygon shape, converting, and rotating to

get less turns. Araujo et al. [3] starts with solving

concave polygon by converting it into a convex shape.

The second step is rotating the whole region to find

maximum height between two points.

In [27], while being general for both rotor-based and

multi-rotor craft, concludes that decomposing complex

areas to their components and searching them

individually in convex patterns yields best results.

Researcher also used rotation of areas to improve

performance of patterns. They conclude that while

spiral pattern yields shorter paths, they sometimes

produce very sharp turns and are harder to implement

in code. Zig-zag patterns, on the other hand, have

better coverage despite being longer. They propose

mixing both patterns in different subareas based on

desired metrics.

Otte et al. [28] discuss the limitations of spiral

strategies. If the search area is a disk, spiral strategies

work well. If an environment is ’roughly’ disc-shaped,

a near-optimal spiral strategy is as follows: create a

closed path by connecting the two branches of a double

spiral with short path segments. i.e., one near the

search space edge and the other near the source in the

spiral center. However, if the environments are not

disk-like, Otte et al. [28] believe that for the following

reasons, any spiral strategy will work poorly:

1. If we use a single spiral, we will sweep a large

amount of area outside the search space.

2. Alternatively, if we use multiple spirals to cover

space, we need a large overlap between different

spirals for each covering. Our aim should be then to

reduce the computing and power overhead by

converting the non-disk like area into disk like

shape i.e., convex shape.

Held and de-Lorenzo [19] introduce a simple and easy-

to-use algorithm for computing polygonal spirals to

cover planer shapes with straight line segments and

circular arcs. However, their algorithm generates a

spiral path with extra spacing.

When factoring wind effects on path following and

trajectory planning, Liu et al. [21] list two common

approaches: correcting path while in-flight by detecting

deviations with GPS or similar utilities, and

preplanning the path with wind in mind - which works

when wind is constant, known, or predictable (which is

also our approach-although, since our MUAVET [5]

architecture is pluggable, extendable, and open source,

we can bake any afore-mentioned approach in it).

Paper then continues to propose an approach where an

external apparatus measures wind then feeds the agent

or a controller with necessary information for them to

make corrections in real-time. Their work - again - is

targeting fixed wind craft but applies to multi-rotor

UAVs as well.

Also, Guerrero et al. [17] discusses the problem in

terms of multi-rotor UAVs and proposes using wind to

operators’ advantage by turning areas into the wind to

save energy (by making long legs downwind and short

ones against it). This can be useful when flying a path.

They, however, do that with complex algorithms to

change agent headings and power settings, as opposed

to our novel solution which just shifts waypoints and

lets agents simply fly ’straight’.

Several researches discuss wind modes such as

across wind, upwind, downwind, and diagonal. The

mode of wind travel usually consists of a series of 180o

turns, with an average distance across the wind [31].

The upwind mode can be diagonal or directly upwind

based upon stored angles and is more efficient than the

across wind mode [1, 29, 35]. Mir et al. [26] present

wind shear model in both linear and nonlinear cases.

They find the challenges and the positive impact they

have met. In another word, it obvious that wind force

could hinder the sensing process and thus must be

addressed.

For simulating UAVs, researchers have used several

types of simulation environments. One of such is X-

plane, which is originally a general-purpose flight

simulator more focused on gaming [41]. But its

pluggable nature enables its use for simulating UAVs,

Performance Evaluation and Simulation of the Traversal Algorithms… 613

such as Garcia and Barnes [16] and Babka [4] did. In

[4], researchers pointed out that it is easy to simulate

several types of terrain, visibility, and weather in X-

plane. Moreover, work in [16] used several PCs with

modest specs-for their time in 2010-, X-plane has

limitations such as mentioned by the researchers

themselves, having to use one machine per agent, as

well as scalability issues [16]. Also, work in [4] points

out another drawback of similar approaches (using X-

plane, Microsoft’s Flight Simulator X, or some other

similar products) which is some lack of accuracy when

agents are on the smaller side, although this can be

mitigated by developing own flight model, as Sorton

and Hammaker [33] did and also the model presented

in [9] which is standalone. Another way is building a

simulator over some graphics engine that has a physics

model like Unity (which is the approach used to

simulate drones in our MUAVET project). This was

also present in [23] where they discuss that unity is

more helpful for simulating some complicated aspects

of UAVs like collision avoidance and object detection

in real-time fashion.

Various methods where used to improve UAV

localization and increase precision when following

paths assigned to them. Our segmented paths method is

one of them. More discussion about segmented paths is

present in a later section. Other methods include using

different methods of localization in addition to GPS

signals, like work in [32] which uses recognition of

some scenery features that have a known location to

significantly boost localization precision. Ben et al. [8]

and Merino et al. [24] showed diverse ways of

following the same techniques. Other ways of

navigation include internal based ones like using

inertia, image, air sensors and gyroscopic data to sense

how much an agent has moved with respect to a known

point [24]. The most precise method (although it is

overkill for our purpose in this project) is a hybrid of

traditional GPS navigation in addition to one or more

other methods [18]. Such work is also present in work

by [14].

3. A Framework for Search and Find

System

In this paper we present algorithms for task division

and path traversal for multi robotic mobile agents. The

novelty of this work can be perceived as follows:

1. The path traversal algorithm developed,

incorporates the camera’s pacifications in order to

ensure that process of target detection and to control

the overlapping of cameras view thus all points in

the searched area are covered evenly in an efficient

manner unlike many similar applications where

trajectory overlapping is somewhat tolerated in

favor of decentralized control of the system which is

not the case in our system since we assume

centralized control.

2. We introduce two task division algorithms (region

and path division), in either algorithm we

incorporate the home location coordinate to be

accounted for within the offered drone capabilities.

Moreover, though the region division algorithm is

straight forward, the path division algorithm

introduced improves the coverage of scanned area,

in particular in the adjacent sub areas boarders. Our

analysis also has shown that the path division

strategy is more energy efficient in terms of

processing power.

3. We also provide a thorough study of the drone

behavior while executing the trajectory using the

developed algorithms onboard of drone in real time

experiments. We have established the relationships

between the localization errors and drone speed in

order to lie the ground for further optimization in

path planning for the system.

From a design point of view, the developed framework

could be characterized based on similar frameworks

that are found in the literature from the following

perspective aspects explained in the following

subsections. We then end this section by presenting

some comparison between our framework and some

frameworks of similar applications.

3.1. Cooperation (Autonomous Versus No

Autonomous Systems)

A strategic decision concerning the suggested

framework was to tackle the search and find

application based on multiple agents cooperating

among themselves where the task of each of them is

determined prior to the mission start. This strategy,

“non-autonomous strategy” has been used in several

studies such as [13, 45] this strategy is quite different

from the strategy where the task is executed by

multiple autonomous agents where each of them

performs the mission independently with minimum

interaction or coordination (no task division) [10, 15,

30, 44].

3.2. Integration (Homogenous Versus

Heterogeneous Agents)

Another design goal in our framework is to deal with

agent diversity to enable the integration of different

types of mobile agents (i.e., aerial, ground and marine)

and/or agents with different capabilities (i.e. battery

lifetime, image processing power or size), having this

in mind, the system developed considers scenarios

where heterogeneous mobile robots are able to perform

methodological search and find tasks tailored to the

needed operation. The MAUVET platform, explained

in following section, ensures mobile robotic agent

heterogeneity as the developed centralized system uses

614 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

standardized communication interfaces and open

software architecture, this aspect of heterogeneity can

be found in several studies such as [20, 25, 34, 45].

Table 1. Framework comparisons.

Aspects Mobile Robotic Systems ASAF

Cooperation

Autonomous Non-autonomous The ASAF system is considered as a none-autonomous system where

the task for search and find process is divided over a team of
cooperative mobile robots. In ASAF, the task division function is used

to divide the task according to the robot capabilities. Unlike [13, 45],

the ASAF system task division function is based on centralized
architecture.

[10, 15, 22, 30, 44] [13, 45]

Integration
Homogeneous Heterogeneous While ASAF is a heterogeneous system that facilitates heterogeneity

based on either mobile robot type (i.e. aerial, marine or ground) as in
[20, 25, 34] or based on mobile robot capabilities as in [45] [10, 13, 15, 30, 44] [20, 25, 34, 45]

Coordination

Centralized Decentralized ASAF is a centralized system where the controlling software reside on

a central node. The centralized coordination enables better management
of the resources and ensures avoidance for trajectory overlapping

unlike the case in the decentralized systems in [10, 15], [30, 44] and the

centralized system in [45]. While in [30] centralization is ensured
through online guidance throughout the mission, the ASAF systems

centralized functions to plan the path for instant, can be offloaded to

various system components.

[30, 45] [10, 13, 15, 44]

3.3. Coordination (Centralized Versus

Decentralized Systems)

Similar to system developed in [30, 45], the

coordination of the agents in the MAUVET system has

been developed to be centralized where the task

planning, monitoring and control functions for the

whole mission are deployed on a single entity.

Although the Single Point of Failure (SPF) is an

obvious disadvantage of such architecture, the

centralized approach ensures consistency and stability

throughout a system of heterogeneous mobile robots

performing a search and find mission where strict

methodology of workflow must be followed.

Moreover, with regard to the SPF, we would like to

distinguish between the Physical Single Point of

Failure (PSPF) and Logical Single point of Failure

(LSPF). While the PSPF is associated with the

hardware hosting the control software, the LSPF is

associated with the central software bugs, attacks or

errors. In fact, our system can be made more resilient

against the PSPF by enabling offloading the running of

the control software to backup sites (or even onboard

of one of the mobile agents with enough computing

resources) since the communication protocols are

based on standardized TCP/IP interfaces and

technologies. On the other hand, although the main

advantage of decentralized system architecture is

appreciated with dealing with LSPF, the decentralized

approach doesn’t really suite our need to follow a strict

workflow by multiple mobile agents with limited

onboard resources performing a choreographed

maneuver.

3.4. Framework Comparisons

In order to compare ASAF framework with others

developed, Table 1 summarizes our arguments where

multi agent systems were developed to deal with

similar applications.

4. ASAF: SYSTEM

We have developed the ’Advanced Search and Find’

(ASAF) system as an application on top of MUAVET

[5] which is a programmable experimental testbed

consisting of multiple robotic agents performing pre-

assigned tasks. A comprehensive GUI interface [6]

monitors and manages the tasks where search

parameters are set. In the following subsections we

briefly highlight both the MUAVET and ASAF

system.

4.1. MUAVET

The MUAVET project is an experimental testbed of

novel multi robotic system that supports

communication and task distribution in real-life

conditions of open-air area. The verification scenario

targets a setup of multiple Autonomous Vehicles (AV)

including Unmanned Aerial Vehicles (UAV), Ground

Vehicles (UGV) or marine vehicles, performing

coordinated tasks such as a search scenario for objects

of interest over a given area.

The designed system infrastructure applies to all

types of robots, but UAVs are the primary actor in the

platform. We can incorporate UAVs (or other robots)

with unique functionalities in the system.

Figure 1 shows the basic system components and

the interfaces between them. Over an openair area, the

robots are situated. The UAV agents physically

connect to the Base Station (BS) via the access point in

a star topology. Note that different unmanned aerial

vehicle types are present here including ground and

marine robotic vehicles. A graphical user interface runs

and manages this system.

Performance Evaluation and Simulation of the Traversal Algorithms… 615

Figure 1. MUAVET.

The MUAVET Agent subsystem consists of an

onboard PC, a flight controller, a GPS receiver, a

camera, a Wi-Fi Communication Module, and sensors.

A low-level standard TCP/IP socket interface supplies

functionality of the UAV Control software. We have

built a C++ Application Interface (API) above the

socket interface in form of C++ functions encapsulated

by MUAVET Interface class. The application code can

exploit UAV control functionalities simply by calling

function from this API. Both these interfaces are

available on the server as well as on the UAV onboard

PC, so it is up to the user to decide the strategy of

controlling the agent, i.e., centralized control via BS or

autonomous control via onboard PC.

4.2. ASAF

ASAF system is an application we developed to

automate search and find process. ’Search and find’ of

an object is an incredibly routine process that

consumes a lot of human and machine resources.

Automation of such an operation is a perfect

application for using robotic agents. Such an

application will be widely beneficial. Figure 2 shows

the default scenario in ASAF, the agent, i.e., an UAV,

will have to fly along the pre-planned trajectory,

collect sensor data (namely camera images to detect

objects of interest) and send information about its own

position and sensor data to the ground base station.

Figure 2. The default scenario.

Path planning is a part of ASAF that generates the

traversal path for an agent. The traversal algorithms

ensure that agents scan each point in the searched area

at least once. Otherwise, search might not be

successful. In section 4, we introduce various traversal

algorithms to produce paths for robotic agents.

5. Proposed Traversal Algorithm for ASAF

A selected region may result in several types of

polygons such as convex, concave or self-intersect.

We provide in [7] a traverse algorithm that

generates a Zig-zag path (Figure 3). Here we describe

another traversal approach: is the spiral path Algorithm

1. Both Zig-zag and spiral algorithm process convex

polygons; however, they can give a solution for

concave by ignoring inner points. They start with

polygon type detection. In case of concave shape, the

algorithms will convert a given region into convex

shape.

Figure 3. Zig-Zag traversing.

The algorithm rotates a convex region according to

its minimum height. That results in less turns when

generating traversing paths. Now, Zig-zag algorithm is

ready to generate traversing paths which are lists of x-y

points.

Moreover, Spiral Algorithm 1 need a convex

polygon to reduce number of turns. However, there is

no need for region rotation according to the minimum

height since this has no effect when generating the

traversal path.

To improve drone flying experience and optimize

the performance, there are two approaches we add to

Zig-zag paths which are: segmented and curved paths.

5.1. Spiral Algorithm

Similar to work in [11], we developed our spiral

algorithm, Algorithm 1, the inputs to our algorithm are

polygon points (P), camera properties (F), and overlap

percentage (V). Thus this algorithm should produce a

spiral path, Figure 4. The first step is converting the

polygon into convex if possible; otherwise, we did not

provide solution for nonconvex polygon. Then

compute polygon boundary (xmin,ymin,xmax,ymax,width

and height).

Operator

GPS

Basestatiton
Server

Userinterface

Objectof
Interest

UAV
AP

UGV

616 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

Figure 4. Spiral path traversal.

We developed Equation (1) to compute the factors

for both height and width to find number of inner

polygons that required to be scaled down. The polygon

boundary variables and those that computed from the

Equation (1) (nh, nw) are used to divide the polygon.

Each iteration in algorithm, polygon gets scaled down

by (perh, and perw) which perh is for scaling each y in

polygon points and perw is for x in polygon points.

𝑛ℎ =
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝
, 𝑛𝑤 =

𝑤𝑒𝑑𝑡ℎ

𝑠𝑡𝑒𝑝

Moreover, this process results several polygons

placed inside each other. These polygons are connected

to each other using last point of larger polygon to the

first point of next polygon. This connection process

will be repeated until connecting the smallest polygon

which width equal the step size or less. Last point of

the smallest polygon is connected to the center.

Algorithm 1: Spiral Traversing Path algorithm

Input: Points

 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)},
 𝑐𝑎𝑚𝑒𝑟𝑎 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝐹,
 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑉: 0.0 ≤ 𝑉 ≤ 1.0

Output: pt path points,

 hmax maximum flight height,
1 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑆𝑝𝑟𝑖𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (𝑃, 𝐹, 𝑉)
2 if not test Convex And Convert(P)then
 return nil
4 Find

minx; miny; maxx; maxy; width; height of the

polygon
5 (𝑤𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑤𝑠𝑒𝑛𝑠𝑜𝑟 , 𝐶𝑟𝑒𝑠 , 𝐶𝑓𝑜𝑣𝐶𝑝) ← 𝐶𝑎𝑚𝑒𝑟𝑎 (𝐹)
6

ℎ𝑚𝑎𝑥 =
𝑤𝑝𝑎𝑡𝑡𝑒𝑟𝑛 × 𝐶𝑟𝑒𝑠

2𝐶𝑝 × 𝑡𝑎𝑛
𝐶𝑓𝑜𝑣

2

7 ℎ𝑚𝑖𝑛 = ℎ𝑚𝑎𝑥/2
8 ℎ = ℎ𝑚𝑎𝑥(1 + 𝑉)/2
9

𝑆𝑡𝑒𝑝 ←
𝑤𝑠𝑒𝑛𝑠𝑜𝑟 × ℎ𝑚𝑎𝑥

2𝑓

10 𝑖 ← 0
11

𝑛ℎ ← ⌈
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝
⌉ , 𝑛𝑤 ← ⌈

𝑤𝑖𝑑𝑡ℎ

𝑠𝑡𝑒𝑝
⌉

12 𝑝𝑡 ← 𝑃
13 for
 (𝑖, 𝑗)𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 ((𝑛ℎ − 1.0), (𝑛𝑤 − 1.0))
 do
14

𝑝𝑒𝑟ℎ ← ⌈
𝑖

𝑛ℎ

⌉ , 𝑝𝑒𝑟𝑤 ← ⌈
𝑗

𝑛𝑤

⌉

15 𝑃𝑠 ← 𝑟𝑒𝑠𝑖𝑧𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃, 𝑝𝑒𝑟𝑤, 𝑝𝑒𝑟ℎ)
16 𝑝𝑡 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ𝑇𝑜𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑝𝑡, 𝑃𝑠)
17 Insert region center point as end path point to pt
18 return{pt, hmax}

Algorithm 2: Segmented Traversing Path algorithm

Input: Path

 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)},

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆: 𝑁𝑢𝑚𝑏𝑒𝑟

Output: bp whole path points with break points
1 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑃𝑎𝑡ℎ (𝑃)
2 𝑏𝑝 ← {}
3 For each line∈ 𝑃𝑑𝑜
4 𝑞 ← 𝐷𝑖𝑣𝑖𝑑𝑒 𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑆 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
5 𝐴𝑑𝑑 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑏𝑝
6 𝐴𝑑𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑞 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑡𝑜𝑏𝑝
7 𝐴𝑑𝑑 𝑙𝑎𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑏𝑝
8 Return bp

5.2. Segmented Zig-Zag Path Traversal

When a drone reaches maximum speed, it may cause

the drone to drift away of actual path. This finding has

been explained in section 7. The algorithm generates

several points to break down the path which optimize

tracking the path correctly. See Figure 5.

Figure 5. Segmented Zig-zag path traversal.

Segmented traverse path Algorithm 2 needs zigzag

path (P) in order to divide each horizontal line in that

path into (S) segments. That generates (S−1) points on

each horizontal line. The algorithm inserts these points

between the begin and end of the first horizontal line.

This process repeated for each line in the traversal

path.

Algorithm 3: Curved Traversing Path algorithm

Input: Path
 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)},

 𝑆ℎ𝑖𝑓𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑆: 𝑁𝑢𝑚𝑏𝑒𝑟𝑤ℎ𝑒𝑟𝑒 − 2 ≤ 𝑆 ≤ 2

 𝑆𝑡𝑒𝑝 𝑆𝑡𝑒𝑝: 𝑁𝑢𝑚𝑏𝑒𝑟

Output: cp whole path points with shifted points
1𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐶𝑢𝑟𝑣𝑒𝑑𝑃𝑎𝑡ℎ (𝑃)
2 𝑐𝑝 ← {}
3 For each line∈ 𝑃𝑑𝑜
4 𝑞 ← 𝐷𝑖𝑣𝑖𝑑𝑒 𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 2 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 𝑞𝑦 ← 𝑞𝑦 + 𝑆 × 𝑆𝑡𝑒𝑝
5 𝐴𝑑𝑑 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑐𝑝
6 𝐴𝑑𝑑 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝑞 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑡𝑜𝑐𝑝
7 𝐴𝑑𝑑 𝑙𝑎𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑐𝑝
8 Return cp

(1)

Performance Evaluation and Simulation of the Traversal Algorithms… 617

5.3. Curved Path Algorithm

In case of wind, the drone could miss the correct path

as the wind force may shift the drone off its path. The

algorithm generates a curved path to compensate

against the wind force direction since wind causes the

drone to drift away from the path. Figure 6 shows the

wind direction and a curved path against wind.

Figure 6. Wind force compansting path traversal.

Curved Path Algorithm 3 generates shifted points

into the wind, which lets drones fly against wind to

correct the actual path it follows.

𝑠𝑡𝑒𝑝 =
𝜔𝑠𝑐𝑒𝑛𝑒× ℎ𝑚𝑎𝑥

2𝑓

Algorithm also need zig-zag path (P), step (Equation

(2)) [7] which is half scene width related to hmax, and

the percentage (h) of shifting the point either negative

or positive. In each iteration, algorithm find the

midpoint and shift it up or down according to value of

h which is between−2 and 2. Each midpoint of

horizontal lines shifted in oppsite direction of the wind.

Figure 6 shows wind direction and midpoint shifting

toward wind.

6. ASAF Object Detection

A fundamental part of ASAF is the process of object

detection. This process is relevant to the traversal

height and then the object detect ability. Thus the

developed traversal algorithms take the flight height

into consideration as explained above. Indeed it is not

of our scope to came up with detection technique and

thus for the purpose of the system proof of concept, we

limit the scope of target detection to AprilTag

detection.

ASAF camera subsystem consists of a downlooking

camera mounted on flying agents. The objects of

interest are special visual markers (AprilTags) placed

on the ground. The detection software can recognize

the position of the marker and report the information

back to the ASAF system to take a proper action.

AprilTag is a 2D label designed to encode between

4 to 12 bits [36]. The library for detection of AprilTags

is freely available under the Berkeley Software

Distribution (BSD) license it works with a plethora of

tag families with different amounts of information

encoded and resistance to sensor noise. A

recommended family is Tag16h5 which allows to

distinguish between 30 tags, Figure 7 shows few

examples.

Figure 8 shows the geometry of the camera’s field

of view (fov). The agent’s height (h) determines the

dimensions of the width of the scene visible to the

camera. It is obvious that as the height decreases, the

visible width by the camera decreases as well. In [7],

we have presented some equations relating these

optical relationships. For example, for a specific

camera subsystem, we calculated that at a height of

20m, the camera can view a rectangular area with

dimensions of 24m by 18m.

In case of AprilTag markers, for a given camera

pixel resolution, the detection of tags will depend on

the resolution of the size of the printed AprilTag. In

[36], authors show that the AprilTag with width of

0.5m and 50-pixel resolution is detectable at 21m.

Figure 7. Examples for Tag16h5 [36].

Figure 8. Camera parameters.

6.1. Traversed Area Regularity

Figure 9, shows some experimental results conducted

using a camera of 640×480 pixels resolution and a

fov= 60o. The tag size is 0.5m ×0.5m. The blue curve

describes the theoretical limit for detection height and

the dotted curve shows the actual height for detection

as experimented. Distance estimation error rises with

f

h

w scene

w sensor

fov

camera {

ground

(2)

618 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

the distance from the pattern. For distances under 30m,

the error is sufficiently low. For distances above 40m,

the detection fails completely, which defines the

maximal detection height for the setup used in

simulation. The size of the pattern in the camera image

is about 20 pixels, which denotes the minimal

detection size in image under best conditions.

Figure 9. Camera subsystem height simulation results.

7. Navigation along the Trajectories

The basic mode of a UAV from user’s point of view is

flying along the trajectory specified by GPS

coordinates. In the trivial case, it includes flight to a

single destination position. A trajectory is a list of

waypoints. Each waypoint consists of the geographical

latitude, longitude, and altitude (above sea level). The

navigation algorithm (autopilot) controls the UAV to

fly the shortest way possible to the first waypoint on

the trajectory, which is ideally a straight line [37]. A

pre-set maximal velocity constraint limits the flight

speed. The ideal flight velocity should be constant

during the flight to the actual trajectory point, except

an acceleration initially and a final deceleration to be

able to reach the last point with zero velocity.

In real conditions, errors happen in the trajectory

execution, due to:

• The limited precision of the conventional GPS

localization.

• External Environmental effects (e.g. wind).

• Limited precision of the regulator tuning (e.g. drone

mechanics).

Those effects will cause errors between designated and

executed trajectory, as is clear from Figure 10. In this

figure, we present experimental results based on

recorded positioning data of actual flight trajectory (20

minutes) with respect to the x-y plan. Because

performing experiments under stronger wind is out of

scope, we can say that effects of external

environmental effect, sensor noise and others will be

negligible compared to the error due to GPS

localization. Short-term (in units to tenths of seconds)

variation of the GPS- estimated position, considering

unobstructed view to sky (which is typically true for a

flying UAV), may be below 1m. From practical

experience, the real error is often below 5m [36].

Figure 10. Error measurement during 20 minutes experiments.

Considering the previously mentioned minimal error

and estimated position variance of the UAV, the

autopilot cannot aim to reach an exact waypoint

position (which would not be precise anyway), so the

navigation to that point stops whenever the UAV

reaches the vicinity around the actual waypoint.

According to common GPS variance, this region

should have a radius of about 0.1 to 0.5 m.

Most of drone flight parameters (except multirotor

inner dynamics) are adjustable to achieve desired

performance. These parameters include maximal

allowed velocity, maximal acceleration, and gains in

the position/velocity regulator. When agents should

follow a trajectory more precisely, they fly at lower

speeds to gain more control than when flying at higher

speeds. This observed behavior coupled with the

observation that flight velocity cannot be constant

during the flight: This involves braking and speeding

up near trajectory waypoints. We further explain this

aspect in the following subsection.

7.1. A Real UAV Flight Behavior

For further clarifications in our investigation of UAV

behavior considerations with respect to navigation

errors incurred to the flying agent, we have executed a

few experiments to draw conclusions. We designed a

trajectory of four waypoints arranged to execute a

square path with a 10 m edge length. We repeated the

experiment twice at speeds of 1 and 5m/s.

Figures 11 and 12 shows the actual flight path

where we see errors in each corner of the square edges,

the precision to follow a straight line between the

square’s corners worsens as the speed of the drone

increases.

Performance Evaluation and Simulation of the Traversal Algorithms… 619

Figure 11. x-y position error for square trajectory experiment at

1m/s maximal speed.

Figure 12. x-y position error for square trajectory experiment at
5m/s maximal speed.

Figures 13 and 14, enforces our observation that

UAVs change their speeds during path execution.

Figure 13. Flight data on speed variation during the execution of

square trajectory experiment at 1m/s maximal speed.

Figure 14. Flight data on speed variation during the execution of

square trajectory experiment at 5m/s maximal speed.

During the traversal of an edge between 2

waypoints

1. The UAV accelerates gradually at the beginning

then decelerates at the end of the edge.

2. The maximal speed may not be reachable especially

with the higher speed scenario i.e., at 5m/s.

3. Speed transition is smoother at higher maximal

speed.

8. Problem Simulation

We ran a simulation using Unity3D Version 5.6.1 [40],

to evaluate the traversal algorithms. Further, we

studied the impact of various parameters on the

coverage and overlap. We fed the simulator with

information about the traversals. Coverage shows the

percentage of the area that the agent has traversed [7].

Overlap shows the amount of area that agents traversed

(scanned) more than once.

The architecture of the simulator has two main

components:

1. UAV package, which controls the flight of the UAV

and generation/traversal of the path.

2. Scene Manager object handles simulating

environment options and user inputs.

We used two levels of the UAV package:

1. Stabilizing level to handle UAV stabilization

algorithms and PID controllers.

2. Trajectories level to handle the logic of the circuit

(path) to follow.

Scene Manager has five manager scripts, namely Input

Manager, File Manager, Drone Manager, Camera

Manager and Wind Manager. Input Manager controls

the configuration of the traversal path input (File or

Manual based), traversal type (Zigzag or Spiral),

overlap percentage, frames per seconds and many other

configurations. Using Shoelace Formula, we calculate

the area covered by the traversal [39].

𝐴 =
1

2
[∑ 𝑥𝑖𝑦𝑖+1 +𝑛−1

𝑢−1 𝑥𝑛𝑦1 − ∑ 𝑥𝑖+1𝑦𝑖 −𝑛−1
𝑢−1 𝑥1𝑦𝑛]

File Manager [40] stores the outcome of the traversal

of the UAVs. File Manager also controls how often to

store data like speed of the drone, position of the

drone, coverage percentage, overlap percentage,

screenshots, ..., etc.

Drone Manager [40] manages and instantiates

drones. Camera Manager manages cameras in the

scene. In our simulation, we only use the top view

camera of the scene from the UAV.

Wind Manager [40] helps us to simulate and study

the impact of wind on the UAV path traversal and area

coverage. The Wind Manager controls the Speed,

direction, and the zone of the wind.

Poly Ops class handles trajectory lines and

overlapping boundaries calculations. This class

depends on the Slope-Intercept equation to calculate

the necessary information. The Waypoint Circuit script

automatically applies a curve between any two points.

(3)

620 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

We do not need this feature in our traversal and thus

we read each point twice into the circuit. We calculate

the distance between two trajectory lines using the

point (0,b) where b is the y-intercept variable from the

slope-intercept equation for one of the trajectory lines

as our starting point:

𝑦 = mx + b

We calculate coverage percentage with the help of

Unity’s built-in function Physics. OverlapBox().

Figure 15. Desired overlapping.

Figure 15 gives information about the desired

overlapping regions. The traversal lines of an UAV are

separated by a distance, which could cause the visible

width of the camera (camera view width) to overlap.

We determine the traversal path based on the desired

overlap percentage. Increasing the desired overlapping

is achieved by reducing the flight height, which is also

considered in traversal algorithm. The OverlapBox()

function captures the field of view of the UAV based

on the filling of the region.

The Desired overlap percentage is based on the

boundaries and to check whether the captured point is

above the current lower boundary and below the

current upper boundary. Such an identification is based

on the slope-intercept equation [38] as;

(LBm× Px+ LBb) <Pz<(UBm× Px+ UBb)

Where LBm, LBb, UBm, UBb are the slope and y-

intercept of the current lower bound line equation and

the slope and y-intercept of the current upper bound

line equation respectively. While Px and Pz are the x

and z values of the point to be checked.

9. Results and Discussions

We studied the outcome of the experiment based on

several factors like: coverage percentage, overlap

percentage, number of turns, segmented paths, and

zigzag or spiral algorithm. Regular polygons are of

equal angles and equal edges. Irregular polygons have

different and uneven angles and edges. Coverage

shows what is the covered area’s percentage compared

to the whole area. Overlap shows the amount of area

that agents traverse more than once.

Impact of desired overlap on coverage: In this

experiment, the UAV traversed two areas with 100%

and 86% regularities, respectively. The maximum

speed of the UAV tops at 5m/s. Figure 16 shows that

with a regular area traversed, the coverage is close to

100% when the desired overlap percentage is 50%,

while irregular areas need to increase the desired

overlap to reach close to 100% coverage. This

observation can be attributed to the fact that irregular

areas requires more turns to be covered fully. This

probably shows limitation of our algorithms and is an

issue needs to be addressed as well.

Impact of speed on coverage: As it is noticed in our

results in section 7 that, as the speed of the drone

increases, accuracy decreases, and thus localization

errors increase. Thus the drone speed has significant

impact on the search coverage. In order to do examine

the limitation of our system, we calculated the

coverage and the overlapping percentage using

PolyOps class described in section 8. Figure 17 also

shows the results that increasing speed causes the

coverage percentage to drop significantly. The

performance degradation is more obvious in the case of

irregular areas. This outcome results point out to the

fact that the performance will be determined by the

average speed parameters.

Figure 16. Desired overlap vs achieved coverage.

Figure 17. Impact of speed on coverage and achieved overlap.

Impact of traversal algorithms: To reduce the

localization error, we have developed an algorithm to

generate segmented trajectory based on the conclusion

obtained in [7] that setting the drone to fly between

closer waypoints decrease the error. Segmented paths

1 2 3 4 5
70

75

80

85

90

95

100

Max Flight Speed

A
ch

ie
v

ed
 C

o
v

er
ag

e
(%

)

Regular Coverage
Irregular Coverage

0 20 40 60 80 100

70

75

80

85

90

95

100

Desired Overlap (%)

A

ch
ie

v
ed

 C
o
v

er
ag

e
(%

)

Regular Coverage
(86%) Irregular Coverage

(5)

(4)

Performance Evaluation and Simulation of the Traversal Algorithms… 621

are like normal paths but with extra points on each

traversal line, Figure 9 to conform to this conclusion,

an experiment to appreciate the impact of segmentation

is designed, we set UAV maximum speed to 5 m/s and

the desired overlap percentage was set to 0%. Table 2

shows that using segmented paths dose not only

increases the coverage percentage but also it increases

the traversal time. This show that path segmentation

limitation. In addition to that Table 2 shows also the

performance of spiral algorithm, which outperform the

normal zigzag in terms of coverage and outperforms

the segmented algorithm in terms of traversal time, this

might indicate that spiral algorithm can be optimized

further for optimal performance.

Table 2. Impact of the segmented paths on traversal time.

 Normal Zig-zag Segmented Spiral

Coverage 80% 91% 83%

Time (seconds) 181 240 205

Along different regularities, we study the impact of

different parameters. Desired overlap percentage

impacts both the achieved overlap and coverage

percentages. Overall, there is clearly a relationship

between the coverage percentage and the traversal

time. Using spiral algorithm and/or segmented paths do

increase the coverage percentage but also the traversal

time. Optimization of these algorithms could further

enhance the resultant coverage, overlap, and time

duration. The simulation experiment does not have

battery constraint. But, in real experiments, battery life

could be a deciding factor on which approach to use as

the traversal time depends on the battery life.

We study the impact of spiral and zigzag algorithms

on coverage percentages and traversal times. UAV’s

maximum speed was set to 5 m/s and the desired

overlap percentage was set to 0%. UAVs traverse the

same area using zigzag and spiral algorithm. We

compare coverage percentage and time taken between

them. Table 3 shows that there is about 10%

improvement in the coverage percentage when

traversing using spiral path but at the cost of 50% extra

time as it require the drone to handle more turns than

the zig-zag traversal.

Table 3. Traverse algorithm.

 Zig-Zag Spiral

Coverage 71% 83%

Time (seconds) 140 205

Along different regularities, we study the impact of

different parameters. Desired overlap percentage

impacts both the achieved overlap and coverage

percentages. Overall, there is clearly a relationship

between the coverage percentage and the traversal

time. Using spiral algorithm and/or segmented paths do

increase the coverage percentage but also the traversal

time. Optimization of these algorithms could further

enhance the resultant coverage, overlap, and time

duration. The simulation experiment does not have

battery constraint. But, in real experiments, battery life

could be a deciding factor on which approach to use as

the traversal time depends on the battery life.

10. Conclusions and Future Work

In this work, we have reported on our progress. We

focused on the agent’s traversal pattern as it is the most

essential task the agent should execute in the search

mission. As for an application such as a search and

find application, agents should scan each point in the

traversed area at least once. Otherwise, UAVs might

miss some objects. Success to cover a spot is a

function of many factors such as: the number of

captured frames per second, the height of the camera,

the speed of the drone, the number of waypoints in an

area, the width of the cameras field of view, GPS

error... etc. In this work, we have investigated most of

these aspects and related them using available means

of simulation under different path traversal strategies

or/and several factors. The aim was to find

optimization problems for further improvements. We

identified the limitations relevant to each traversal

algorithms. In fact the new traversal algorithm

developed such as segmented and spiral has shown

performance improvement in many aspects. In future

work, we aim to work on algorithms that produce

optimized paths. We will explore whether we can

exploit cognition techniques to estimate the error and

suggest proper reactions.

Acknowledgment

This research work was funded by Makkah Digital

Gate Initiative under grant no (MDP-IRI-12020).

Therefore, the authors gratefully acknowledge

technical and financial support from the Emirate of

Makkah Province and King Abdelaziz University,

Jeddah, Saudi Arabia.

References

[1] Abdulrahim M., “Flight Dynamics and Control of

an Aircraft with Segmented Control Surfaces,” in

Proceedings of 42nd AIAA Aerospace Sciences

Meeting and Exhibit, Reno, pp. 128, 2003.

[2] Andersen H., “Path Planning for Search and

Rescue Mission Using Multicopters,” Master’s

Thesis, Institutt for tekniskkybernetikk, 2014.

[3] Araujo J., Sujit P., and Sousa J., “Multiple Uav

Area´ Decomposition and Coverage,” in

Proceedings IEEE Symposium on Computational

Intelligence for Security and Defense

Applications, Singapore, pp. 30-37, 2013.

[4] Babka D. Flight Testingi A Simulation Based

Environment, California Polytechnic University,

2011.

622 The International Arab Journal of Information Technology, Vol. 18, No. 4, July 2021

[5] Barnawi A. and Al-Barakati A., “Design and

Implementation of a Search and Find Application

on A Heterogeneous Robotic Platfrom,” Journal

of Engineering Technology, vol. 6, pp. 235-239,

2017.

[6] Barnawi A., Al-Barakati A., Khan A., Bajaber F.,

and Alhubaiti O., “A Proposed Architecture for

A Heterogeneous Unmanned Aerial Vehicles

System,” International Journal of Electrical and

Electronic Engineering and Telecommunications,

vol. 7, no. 3, pp. 119-126, 2018.

[7] Barnawi A., Alharbi M., and Chen M.,

“Intelligent Search And Find System for Robotic

Platform Based on Smart Edge Computing

Service,” IEEE Access, vol. 8, pp. 108821-

108834, 2020.

[8] Ben L., Johnson E., and Vachtsevanos G.,

“Vision-Based Navigation and Target Tracking

for Unmanned Aerial Vehicles,” IEEE Robotics

and Automation Magazine, vol. 1, pp. 63-71,

2006.

[9] Berndt J., “Jsbsim: An Open Source Flight

Dynamics Model inc++,” in Proceedings AIAA

Modeling and Simulation Technologies

Conference and Exhibit, Providence, pp. 4923,

2004.

[10] Bertuccelli L. and How J., “Search for Dynamic

Targets with Uncertain Probability Maps,” in

Proceedings American Control Conference,

Minneapolis, pp. 6, 2006.

[11] Cabreira T., Franco C., Ferreira P., and Buttazzo

G., “Energy-aware Spiral Coverage Path

Planning for Uavphotogrammetric Applications,”

IEEE Robotics and Automation Letters, vol. 3,

no. 4, pp. 3662-3668, 2018.

[12] Chen R., Xu N., and Li J., “A Self-Organized

Reciprocal Decision Approach for Sensing

Coverage with Multi-Uav Swarms,” Sensors, vol.

18, no. 6, pp. 1864, 2018.

[13] Choi H., Brunet L., and How J., “Consensus-

Based Decentralized Auctions for Robust Task

Allocation,” IEEE Transactions on Robotics, vol.

25, no. 4, pp. 912-926, 2009.

[14] Condomines J., Nonlinear Kalman Filter for

Multi-Sensor Navigation of Unmanned Aerial

Vehicles, Elsevier, 2018.

[15] Flint M., Polycarpou M., and Fernandez-

Gaucherand E., “Cooperative Control for

Multiple Autonomous Uav’s Searching for

Targets,” in Proceedings of the 41st IEEE

Conference on Decision and Control, Las Vegas,

pp. 2823-2828, 2002.

[16] Garcia R. and Barnes L., “Multi-Uav Simulator

Utilizing X-Plane,” Journal of Intelligent and

Robotic Systems, vol. 57, pp. 393-406, 2009.

[17] Guerrero J., Escareno J., and Bestaoui Y.,

“Quadrotor Mav Trajectory Planning in Wind

Fields,” in Proceedings of IEEE International

Conference on Robotics and Automation,

Karlsruhe, pp. 778-783, 2013.

[18] Hajiyev C., Soken H., and Vural S., State

Estimation and Control for Low-cost Unmanned

Aerial Vehicles, Springer, 2015.

[19] Held M. and de-Lorenzo S., “On the Generation

of Spiral-Like Paths within Planar Shapes,”

Journal of Computational Design and

Engineering, vol. 5, vo. 3, pp. 348-357, 2018.

[20] Hsieh M., Cowley A., Keller J., Chaimowicz L.,

Grocholsky B., Kumar V., Taylor C., Endo Y.,

Arkin R., Jung B., and Wolf D., Sukhatme G.,

MacKenzie D., “Adaptive Teams of Autonomous

Aerial and Ground Robots for Situational

Awareness,” Journal of Field Robotics, vol. 24,

pp. 991-1014, 2007.

[21] Liu C., McAree O., and Chen W., “Path

Following for Small Uavsin the Presence of

Wind Disturbance,” in Proceedings of UKACC

International Conference on Control, Cardiff, pp.

613-618, 2012.

[22] Liu X., Fan J., Mao J., and Ye F., “A Low-Power

Self-Service Bus Arrival Reminding Algorithm

On Smart Phone,” The International Arab

Journal of Information Technology, vol. 16, no.

2, pp. 260-264, 2019.

[23] Meng W., Hu Y., Lin J., LinF., and Teo R.,

“Ros+ Unity: An Efficient High-Fidelity 3d

Multi-Uav Navigation And Control Simulator In

Gps-Denied Environments,” in Proceedings of

IECON-41st Annual Conference of the IEEE

Industrial Electronics Society, Yokohama, pp.

002562-002567, 2015.

[24] Merino L., Caballero F., Forssen P., Wiklund J.,

Ferruz J., Martihez-de-DiosA J., Moe A.,

NordbergK., and Ollero A., Advances in

Unmanned Aerial Vehicles, Springer, 2007.

[25] Merino L., Caballero F., Mart´ınez-de Dios J.,

Ferruz J., and Ollero A., “A Cooperative

Perception System for Multiple Uavs:

Application to Automatic Detection of Forest

Fires,” Journal of Field Robotics, vol. 23, no. 3-

4, pp. 165-184, 2006.

[26] Mir I., Eisa S., and Maqsood A., “Review of

Dynamic Soaring: Technical Aspects, Nonlinear

Modeling Perspectives and Future Directions,”

Nonlinear Dynamics, vol. 94, pp. 1-28, 2018.

[27] Ost G., “Search Path Generation with Uav

Applications Using Approximate Convex

Decomposition, MSC Thesis, Linköpings

Universitet, 2012.

[28] Otte M., Kuhlman M., and Sofge D.,

“Competitive Target Search with Multi-Agent

Teams: Symmetric and Asymmetric

Communication Constraints,” Autonomous

Robots, vol. 42, no. 6, pp.1207-1230, 2018.

[29] Pennycuick C., “The Flight of Petrels and

Albatrosses (Procellariiformes), Observed

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wolf%2C+Denis+F
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Sukhatme%2C+Gaurav+S
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=MacKenzie%2C+Douglas+C

Performance Evaluation and Simulation of the Traversal Algorithms… 623

inSouth Georgia and Its Vicinity,” Philosophical

Transactions of the Royal Society B, vol. 300, no.

1098, pp. 75-106, 1982.

[30] Polycarpou M., Yang Y., and Passino K., “A

Cooperative Search Framework for Distributed

Agents,” in Proceedings of the IEEE

International Symposium on Intelligent Control,

Mexico City, pp. 1-6, 2001.

[31] Richardson P., “Upwind Dynamic Soaring of

Albatrosses and Uavs,” Progress in

Oceanography, vol. 130, pp. 146-156, 2015.

[32] Shaw A. and Barnes D., “Landmark Recognition

for Localisation and Navigation of Aerial

Vehicles,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots

and Systems, Las Vegas, pp. 42-47, 2003.

[33] Sorton E. and Hammaker S., “Simulated Flight

Testing of an Autonomous Unmanned Aerial

Vehicle Using Flightgear,” in Infotech@

Aerospace, pp. 70-83, 2005.

[34] Viguria A., Maza I., and Ollero A., “Distributed

Service based Cooperation in Aerial/Ground

Robot Teams Applied to Fire Detection and

Extinguishing Missions,” Advanced Robotics,

vol. 24, no. 1-2, pp. 1-23, 2010.

[35] Wakefield E., Phillips R., Matthiopoulos J.,

Fukuda A., Higuchi H., Marshall G., and Trathan

P., “Wind Field and Sex Constrain the Flight

Speeds of Central-Place Foraging Albatrosses,”

Ecological Monographs, vol. 79, no. 4, pp. 663-

679, 2009.

[36] Wang J. and Olson E., “Apriltag2: Ecientand

Robust Ducial Detection. In Intelligent Robots

and Systems (IROS),” in Proceedings of

IEEE/RSJ International Conference on

Intelligent Robots and Systems, Daejeon, pp.

4193-4198, 2016.

[37] Webpage., Pixhawk project webpages.

https://pixhawk.org, Last Visited, 2021.

[38] Webpage., Mathportal webpage, distance and

midpoint calculate.

https://www.mathportal.org/calculators/analyticg

eometry/distance-and-midpoint-calculator.php,

Last Visited, 2017.

[39] Webpage., Wikipedia website, shoelace formula.

https://en.wikipedia.org/wiki/Shoelace formula,

Last Visited, 2017.

[40] Webpage,. Unity website. https://unity3d.com,

2017-11-30, Last Visited, 2017.

[41] Webpage., Xplane 11 flight Simulator-More

Powerful. Made Usable. https://www.x-

plane.com, Last Visited, 2021.

[42] Wenjing C. and Shenghong X. “Comparison of

Multi-Uav Cooperation Architectures,” in

Proceedings of 3rd International Conference on

Information Management, Chengdu, pp. 500-505,

2017.

[43] Wenjing C. and Shenghong X., “Workflow

Based Multi-Uav Cooperation Architecture,” in

Proceedings of 3rd International Conference on

Information Management, Chengdupp. 496-499,

2017.

[44] Yang Y., Minai A., and Polycarpou M.

“Decentralized Cooperative Search by

Networked Uavsin an Uncertain Environment,”

in Proceedings of the American Control

Conference, Boston, pp. 5558-5563, 2004.

[45] Zhang K., Collins E., and Shi D., “Centralized

and Distributed Task Allocation in Multi-Robot

Teams via a Stochastic Clustering Auction,”

ACM Transactions on Autonomous and Adaptive

Systems, vol. 7, no. 2, pp. 1-22, 2012.

Ahmed Barnawi received the M.Sc.

degree from the University of

Manchester (UMIST), U.K., in

2001, and the Ph.D. degree from the

University of Bradford, U.K., in

2005. He is currently a Professor of

information and communication

technologies with the Faculty of Computing and IT

(FCIT), King Abdulaziz University (KAU). He is the

Managing Director of the KAU Cloud Computing and

Big Data Research Group. He acted as an Associate

and Visiting Professors in Canada and Germany. He is

an Active Researcher with good research fund awards

track. He published near to 100 articles in peer

reviewed journals. His research interests include big

data, cloud computing, future generation mobile

systems, advanced mobile robotic applications, and IT

infrastructure architecture.

Marwan Alharbi received the

Master of Science degree from the

University of Denver, USA, in 2014.

He is currently a Lecturer of

information technology with the

Faculty of Computing and IT

(FCIT), King Abdulziz University

(KAU). His research interests include machine

learning, AI and blockchain, and the IoT.

