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1. Introduction 

The Advanced Search and Find (ASAF) system is a 

multi- agent robotic system that assigns several 

heterogeneous robots searching for an object in an 

open area, each is to follow a predefined traversal path. 

Our research group is developing this system on top of 

a heterogeneous state-of-the-art testbed developed by 

our research group named Multiple Unmanned 

Autonomous Vehicle Experimental Testbed 

(MUAVET) [5]. We have also implemented and 

documented the algorithm to generate traversal paths 

in submitted paper [7]. In that paper, we introduced 

several traversal patterns like zig-zag traversal, and 

two strategies to divide the searched area among 

several flying robotic agents. We also studied the 

behavior of the agents’ autopilot and found that due to 

systems’ mechanical limitations and Global 

Psitioning System (GPS) signal accuracy, the agent 

does not follow the path between two waypoints (start 

to end) exactly, and an error happens. We also saw that 

this error, in real life experiments, is a function of the 

speed of the agent. The problem is that such an error 

will affect the accuracy of the target detection process 

as an agent’s onboard camera should capture each 

point in the area at least once to find the target we are 

looking for. 

In this paper we further investigate the behavior of 

the drone and the optimization of the overall 

performance by altering the traversal strategy to reduce 

the gaps in the traversed area. We have built a 

simulator based on the statistical data from the real 

experiments to simulate a drone traversing an area. 

 

The simulation results shown in this paper have 

enhanced our understanding of the agents’ behavior 

and gave us insights on how changing some traversing 

parameters may affect performance. It also helped us 

to compare different traversal strategies and get first 

impression prior to actual deployment on the 

experimental testbed. 

The structure of this paper is as follows; Section 2 is 

related work. Section 3 highlights the characteristics of 

ASAF architecture. Section 4 introduces the system 

components, testbed and setup. Section 5 presents the 

traversal algorithm and its components. Section 6 

presents error estimation analysis based on field 

experimental data along with discussion about 

performance analysis and optimization aspects. The 

last sections are conclusions and acknowledgments. 

2. Related Work 

On cooperation and coordination of multiple 

Unmanned Aerial Vehicles (UAVs), Wenjing and 

Shenghong [43] discuss several types of architectures 

for multi UAV cooperation, namely: 

1. Multi-agent. 

2. Basestation. 

3. Central agent.  

Our MUAVET [5] in theory supports all these modes, 

but for this set of experiments, we have implemented it 

to run in base station mode. The paper lists drawbacks 

of those methods, such as a single point of failure in 

(2) and (3) and communication difficulties in (1), then 

proposes a work-flow based approach for cooperation: 
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it gives agents autonomousity in generating decisions 

but unifies their parameters that would lead to a 

decision, leading to agents taking similar and 

coordinated decisions. This approach is initially for 

military uses but is adaptable to search and find 

applications as well. 

Moreover, Wenjing and Shenghong [42], the same 

authors perform a more thorough and systematic 

comparison between the cooperation architectures, 

comparing time and data consumption of the different 

models. They found that Multi-Agent model is worse 

than the model they proposed ’workflow-based’. 

Chen et al. [12] propose a reciprocal decision 

approach for the sensing of multi-UAV swarms. The 

approach is self-organized, distributed, and 

autonomous without the need for optimal parameters to 

be determined through repeated experiments. 

More on search path design, Cabreira et al. [11] 

compare between spiral and zig-zag patterns in terms 

of energy efficiency, arguing that both are 

computationally cheap, saving energy in that regard. 

They claim-based on simulation results in many 

different areas-that spiral uses less energy overall, by 

up to 16. 

On a similar note, Andersen [2] presents and 

analyses multiple path patterns: two zig-zag patterns: 

one with longer side length and a shorter one, spiral, 

and triangular ’sector’ pattern. Andersen [2] selects 

spiral as the best in multiple metrics but without 

backing from real-world experiments. Both this and 

[11] lack real world experiments to prove their findings 

as opposed to our research. Thus the claim in [2, 11] 

should be examined as an objective of our study. 

Traversing a region needs some preparations such as 

detecting polygon shape, converting, and rotating to 

get less turns. Araujo et al. [3] starts with solving 

concave polygon by converting it into a convex shape. 

The second step is rotating the whole region to find 

maximum height between two points. 

In [27], while being general for both rotor-based and 

multi-rotor craft, concludes that decomposing complex 

areas to their components and searching them 

individually in convex patterns yields best results. 

Researcher also used rotation of areas to improve 

performance of patterns. They conclude that while 

spiral pattern yields shorter paths, they sometimes 

produce very sharp turns and are harder to implement 

in code. Zig-zag patterns, on the other hand, have 

better coverage despite being longer. They propose 

mixing both patterns in different subareas based on 

desired metrics. 

Otte et al. [28] discuss the limitations of spiral 

strategies. If the search area is a disk, spiral strategies 

work well. If an environment is ’roughly’ disc-shaped, 

a near-optimal spiral strategy is as follows: create a 

closed path by connecting the two branches of a double 

spiral with short path segments. i.e., one near the 

search space edge and the other near the source in the 

spiral center. However, if the environments are not 

disk-like, Otte et al. [28] believe that for the following 

reasons, any spiral strategy will work poorly: 

1. If we use a single spiral, we will sweep a large 

amount of area outside the search space. 

2. Alternatively, if we use multiple spirals to cover 

space, we need a large overlap between different 

spirals for each covering. Our aim should be then to 

reduce the computing and power overhead by 

converting the non-disk like area into disk like 

shape i.e., convex shape. 

Held and de-Lorenzo [19] introduce a simple and easy-

to-use algorithm for computing polygonal spirals to 

cover planer shapes with straight line segments and 

circular arcs. However, their algorithm generates a 

spiral path with extra spacing. 

When factoring wind effects on path following and 

trajectory planning, Liu et al. [21] list two common 

approaches: correcting path while in-flight by detecting 

deviations with GPS or similar utilities, and 

preplanning the path with wind in mind - which works 

when wind is constant, known, or predictable (which is 

also our approach-although, since our MUAVET [5] 

architecture is pluggable, extendable, and open source, 

we can bake any afore-mentioned approach in it). 

Paper then continues to propose an approach where an 

external apparatus measures wind then feeds the agent 

or a controller with necessary information for them to 

make corrections in real-time. Their work - again - is 

targeting fixed wind craft but applies to multi-rotor 

UAVs as well. 

Also, Guerrero et al. [17] discusses the problem in 

terms of multi-rotor UAVs and proposes using wind to 

operators’ advantage by turning areas into the wind to 

save energy (by making long legs downwind and short 

ones against it). This can be useful when flying a path. 

They, however, do that with complex algorithms to 

change agent headings and power settings, as opposed 

to our novel solution which just shifts waypoints and 

lets agents simply fly ’straight’. 

Several researches discuss wind modes such as 

across wind, upwind, downwind, and diagonal. The 

mode of wind travel usually consists of a series of 180o 

turns, with an average distance across the wind [31]. 

The upwind mode can be diagonal or directly upwind 

based upon stored angles and is more efficient than the 

across wind mode [1, 29, 35]. Mir et al. [26] present 

wind shear model in both linear and nonlinear cases. 

They find the challenges and the positive impact they 

have met. In another word, it obvious that wind force 

could hinder the sensing process and thus must be 

addressed. 

For simulating UAVs, researchers have used several 

types of simulation environments. One of such is X-

plane, which is originally a general-purpose flight 

simulator more focused on gaming [41]. But its 

pluggable nature enables its use for simulating UAVs, 
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such as Garcia and Barnes [16] and Babka [4] did. In 

[4], researchers pointed out that it is easy to simulate 

several types of terrain, visibility, and weather in X-

plane. Moreover, work in [16] used several PCs with 

modest specs-for their time in 2010-, X-plane has 

limitations such as mentioned by the researchers 

themselves, having to use one machine per agent, as 

well as scalability issues [16]. Also, work in [4] points 

out another drawback of similar approaches (using X-

plane, Microsoft’s Flight Simulator X, or some other 

similar products) which is some lack of accuracy when 

agents are on the smaller side, although this can be 

mitigated by developing own flight model, as Sorton 

and Hammaker [33] did and also the model presented 

in [9] which is standalone. Another way is building a 

simulator over some graphics engine that has a physics 

model like Unity (which is the approach used to 

simulate drones in our MUAVET project). This was 

also present in [23] where they discuss that unity is 

more helpful for simulating some complicated aspects 

of UAVs like collision avoidance and object detection 

in real-time fashion. 

Various methods where used to improve UAV 

localization and increase precision when following 

paths assigned to them. Our segmented paths method is 

one of them. More discussion about segmented paths is 

present in a later section. Other methods include using 

different methods of localization in addition to GPS 

signals, like work in [32] which uses recognition of 

some scenery features that have a known location to 

significantly boost localization precision. Ben et al. [8] 

and Merino et al. [24] showed diverse ways of 

following the same techniques. Other ways of 

navigation include internal based ones like using 

inertia, image, air sensors and gyroscopic data to sense 

how much an agent has moved with respect to a known 

point [24]. The most precise method (although it is 

overkill for our purpose in this project) is a hybrid of 

traditional GPS navigation in addition to one or more 

other methods [18]. Such work is also present in work 

by [14]. 

3. A Framework for Search and Find 

System 

In this paper we present algorithms for task division 

and path traversal for multi robotic mobile agents. The 

novelty of this work can be perceived as follows: 

1. The path traversal algorithm developed, 

incorporates the camera’s pacifications in order to 

ensure that process of target detection and to control 

the overlapping of cameras view thus all points in 

the searched area are covered evenly in an efficient 

manner unlike many similar applications where 

trajectory overlapping is somewhat tolerated in 

favor of decentralized control of the system which is 

not the case in our system since we assume 

centralized control. 

2. We introduce two task division algorithms (region 

and path division), in either algorithm we 

incorporate the home location coordinate to be 

accounted for within the offered drone capabilities. 

Moreover, though the region division algorithm is 

straight forward, the path division algorithm 

introduced improves the coverage of scanned area, 

in particular in the adjacent sub areas boarders. Our 

analysis also has shown that the path division 

strategy is more energy efficient in terms of 

processing power. 

3. We also provide a thorough study of the drone 

behavior while executing the trajectory using the 

developed algorithms onboard of drone in real time 

experiments. We have established the relationships 

between the localization errors and drone speed in 

order to lie the ground for further optimization in 

path planning for the system. 

From a design point of view, the developed framework 

could be characterized based on similar frameworks 

that are found in the literature from the following 

perspective aspects explained in the following 

subsections. We then end this section by presenting 

some comparison between our framework and some 

frameworks of similar applications. 

3.1. Cooperation (Autonomous Versus No 

Autonomous Systems) 

A strategic decision concerning the suggested 

framework was to tackle the search and find 

application based on multiple agents cooperating 

among themselves where the task of each of them is 

determined prior to the mission start. This strategy, 

“non-autonomous strategy” has been used in several 

studies such as [13, 45] this strategy is quite different 

from the strategy where the task is executed by 

multiple autonomous agents where each of them 

performs the mission independently with minimum 

interaction or coordination (no task division) [10, 15, 

30, 44]. 

3.2. Integration (Homogenous Versus 

Heterogeneous Agents) 

Another design goal in our framework is to deal with 

agent diversity to enable the integration of different 

types of mobile agents (i.e., aerial, ground and marine) 

and/or agents with different capabilities (i.e. battery 

lifetime, image processing power or size), having this 

in mind, the system developed considers scenarios 

where heterogeneous mobile robots are able to perform 

methodological search and find tasks tailored to the 

needed operation. The MAUVET platform, explained 

in following section, ensures mobile robotic agent 

heterogeneity as the developed centralized system uses 
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standardized communication interfaces and open 

software architecture, this aspect of heterogeneity can 

be found in several studies such as [20, 25, 34, 45]. 

 

Table 1. Framework comparisons. 

Aspects Mobile Robotic Systems ASAF 

Cooperation 

Autonomous Non-autonomous The ASAF system is considered as a none-autonomous system where 

the task for search and find process is divided over a team of 
cooperative mobile robots. In ASAF, the task division function is used 

to divide the task according to the robot capabilities. Unlike [13, 45], 

the ASAF system task division function is based on centralized 
architecture. 

[10, 15, 22, 30, 44] [13, 45] 

Integration 
Homogeneous Heterogeneous While ASAF is a heterogeneous system that facilitates heterogeneity 

based on either mobile robot type (i.e. aerial, marine or ground) as in 
[20, 25, 34] or based on mobile robot capabilities as in [45] [10, 13, 15, 30, 44] [20, 25, 34, 45] 

Coordination 

Centralized Decentralized ASAF is a centralized system where the controlling software reside on 

a central node. The centralized coordination enables better management 
of the resources and ensures avoidance for trajectory overlapping 

unlike the case in the decentralized systems in [10, 15], [30, 44] and the 

centralized system in [45]. While in [30] centralization is ensured 
through online guidance throughout the mission, the ASAF systems 

centralized functions to plan the path for instant, can be offloaded to 

various system components. 

[30, 45] [10, 13, 15, 44] 

 

3.3. Coordination (Centralized Versus 

Decentralized Systems) 

Similar to system developed in [30, 45], the 

coordination of the agents in the MAUVET system has 

been developed to be centralized where the task 

planning, monitoring and control functions for the 

whole mission are deployed on a single entity. 

Although the Single Point of Failure (SPF) is an 

obvious disadvantage of such architecture, the 

centralized approach ensures consistency and stability 

throughout a system of heterogeneous mobile robots 

performing a search and find mission where strict 

methodology of workflow must be followed. 

Moreover, with regard to the SPF, we would like to 

distinguish between the Physical Single Point of 

Failure (PSPF) and Logical Single point of Failure 

(LSPF). While the PSPF is associated with the 

hardware hosting the control software, the LSPF is 

associated with the central software bugs, attacks or 

errors. In fact, our system can be made more resilient 

against the PSPF by enabling offloading the running of 

the control software to backup sites (or even onboard 

of one of the mobile agents with enough computing 

resources) since the communication protocols are 

based on standardized TCP/IP interfaces and 

technologies. On the other hand, although the main 

advantage of decentralized system architecture is 

appreciated with dealing with LSPF, the decentralized 

approach doesn’t really suite our need to follow a strict 

workflow by multiple mobile agents with limited 

onboard resources performing a choreographed 

maneuver. 

3.4. Framework Comparisons 

In order to compare ASAF framework with others 

developed, Table 1 summarizes our arguments where 

multi agent systems were developed to deal with 

similar applications. 

4. ASAF: SYSTEM 

We have developed the ’Advanced Search and Find’ 

(ASAF) system as an application on top of MUAVET 

[5] which is a programmable experimental testbed 

consisting of multiple robotic agents performing pre-

assigned tasks. A comprehensive GUI interface [6] 

monitors and manages the tasks where search 

parameters are set. In the following subsections we 

briefly highlight both the MUAVET and ASAF 

system. 

4.1. MUAVET 

The MUAVET project is an experimental testbed of 

novel multi robotic system that supports 

communication and task distribution in real-life 

conditions of open-air area. The verification scenario 

targets a setup of multiple Autonomous Vehicles (AV) 

including Unmanned Aerial Vehicles (UAV), Ground 

Vehicles (UGV) or marine vehicles, performing 

coordinated tasks such as a search scenario for objects 

of interest over a given area. 

The designed system infrastructure applies to all 

types of robots, but UAVs are the primary actor in the 

platform. We can incorporate UAVs (or other robots) 

with unique functionalities in the system. 

Figure 1 shows the basic system components and 

the interfaces between them. Over an openair area, the 

robots are situated. The UAV agents physically 

connect to the Base Station (BS) via the access point in 

a star topology. Note that different unmanned aerial 

vehicle types are present here including ground and 

marine robotic vehicles. A graphical user interface runs 

and manages this system. 
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Figure 1. MUAVET. 

The MUAVET Agent subsystem consists of an 

onboard PC, a flight controller, a GPS receiver, a 

camera, a Wi-Fi Communication Module, and sensors. 

A low-level standard TCP/IP socket interface supplies 

functionality of the UAV Control software. We have 

built a C++ Application Interface (API) above the 

socket interface in form of C++ functions encapsulated 

by MUAVET Interface class. The application code can 

exploit UAV control functionalities simply by calling 

function from this API. Both these interfaces are 

available on the server as well as on the UAV onboard 

PC, so it is up to the user to decide the strategy of 

controlling the agent, i.e., centralized control via BS or 

autonomous control via onboard PC. 

4.2. ASAF  

ASAF system is an application we developed to 

automate search and find process. ’Search and find’ of 

an object is an incredibly routine process that 

consumes a lot of human and machine resources. 

Automation of such an operation is a perfect 

application for using robotic agents. Such an 

application will be widely beneficial. Figure 2 shows 

the default scenario in ASAF, the agent, i.e., an UAV, 

will have to fly along the pre-planned trajectory, 

collect sensor data (namely camera images to detect 

objects of interest) and send information about its own 

position and sensor data to the ground base station. 

 

Figure 2. The default scenario. 

Path planning is a part of ASAF that generates the 

traversal path for an agent. The traversal algorithms 

ensure that agents scan each point in the searched area 

at least once. Otherwise, search might not be 

successful. In section 4, we introduce various traversal 

algorithms to produce paths for robotic agents. 

5. Proposed Traversal Algorithm for ASAF 

A selected region may result in several types of 

polygons such as convex, concave or self-intersect. 

We provide in [7] a traverse algorithm that 

generates a Zig-zag path (Figure 3). Here we describe 

another traversal approach: is the spiral path Algorithm 

1. Both Zig-zag and spiral algorithm process convex 

polygons; however, they can give a solution for 

concave by ignoring inner points. They start with 

polygon type detection. In case of concave shape, the 

algorithms will convert a given region into convex 

shape. 

 

Figure 3. Zig-Zag traversing. 

The algorithm rotates a convex region according to 

its minimum height. That results in less turns when 

generating traversing paths. Now, Zig-zag algorithm is 

ready to generate traversing paths which are lists of x-y 

points. 

Moreover, Spiral Algorithm 1 need a convex 

polygon to reduce number of turns. However, there is 

no need for region rotation according to the minimum 

height since this has no effect when generating the 

traversal path. 

To improve drone flying experience and optimize 

the performance, there are two approaches we add to 

Zig-zag paths which are: segmented and curved paths. 

5.1. Spiral Algorithm 

Similar to work in [11], we developed our spiral 

algorithm, Algorithm 1, the inputs to our algorithm are 

polygon points (P), camera properties (F), and overlap 

percentage (V ). Thus this algorithm should produce a 

spiral path, Figure 4. The first step is converting the 

polygon into convex if possible; otherwise, we did not 

provide solution for nonconvex polygon. Then 

compute polygon boundary (xmin,ymin,xmax,ymax,width 

and height). 
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Figure 4. Spiral path traversal. 

We developed Equation (1) to compute the factors 

for both height and width to find number of inner 

polygons that required to be scaled down. The polygon 

boundary variables and those that computed from the 

Equation (1) (nh, nw) are used to divide the polygon. 

Each iteration in algorithm, polygon gets scaled down 

by (perh, and perw) which perh is for scaling each y in 

polygon points and perw is for x in polygon points. 

𝑛ℎ =
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝
, 𝑛𝑤 =

𝑤𝑒𝑑𝑡ℎ

𝑠𝑡𝑒𝑝
 

Moreover, this process results several polygons 

placed inside each other. These polygons are connected 

to each other using last point of larger polygon to the 

first point of next polygon. This connection process 

will be repeated until connecting the smallest polygon 

which width equal the step size or less. Last point of 

the smallest polygon is connected to the center. 

Algorithm 1: Spiral Traversing Path algorithm 

Input: Points 

 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, 
 𝑐𝑎𝑚𝑒𝑟𝑎 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝐹, 
 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑉: 0.0 ≤ 𝑉 ≤ 1.0 

Output: pt path points, 

 hmax maximum flight height,  
1 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑆𝑝𝑟𝑖𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (𝑃, 𝐹, 𝑉) 
2 if not test Convex And Convert(P)then 
  return nil 
4 Find 

minx; miny; maxx; maxy; width; height of the 

polygon 
5 (𝑤𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑤𝑠𝑒𝑛𝑠𝑜𝑟 , 𝐶𝑟𝑒𝑠 , 𝐶𝑓𝑜𝑣𝐶𝑝) ← 𝐶𝑎𝑚𝑒𝑟𝑎 (𝐹) 
6 

ℎ𝑚𝑎𝑥 =  
𝑤𝑝𝑎𝑡𝑡𝑒𝑟𝑛 × 𝐶𝑟𝑒𝑠

2𝐶𝑝 × 𝑡𝑎𝑛
𝐶𝑓𝑜𝑣

2

 

7 ℎ𝑚𝑖𝑛 = ℎ𝑚𝑎𝑥/2  
8 ℎ = ℎ𝑚𝑎𝑥(1 + 𝑉)/2 
9 

𝑆𝑡𝑒𝑝 ←  
𝑤𝑠𝑒𝑛𝑠𝑜𝑟 × ℎ𝑚𝑎𝑥

2𝑓
 

10 𝑖 ←  0 
11 

𝑛ℎ ←  ⌈
ℎ𝑒𝑖𝑔ℎ𝑡

𝑠𝑡𝑒𝑝
⌉ , 𝑛𝑤 ←  ⌈

𝑤𝑖𝑑𝑡ℎ

𝑠𝑡𝑒𝑝
⌉ 

12 𝑝𝑡 ←  𝑃 
13 for 
  (𝑖, 𝑗)𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 ((𝑛ℎ − 1.0), (𝑛𝑤 − 1.0)) 
  do 
14  

𝑝𝑒𝑟ℎ ←  ⌈
𝑖

𝑛ℎ

⌉ , 𝑝𝑒𝑟𝑤 ←  ⌈
𝑗

𝑛𝑤

⌉ 

15  𝑃𝑠 ←  𝑟𝑒𝑠𝑖𝑧𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃, 𝑝𝑒𝑟𝑤, 𝑝𝑒𝑟ℎ) 
16  𝑝𝑡 ←  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ𝑇𝑜𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑝𝑡, 𝑃𝑠) 
17 Insert region center point as end path point to pt 
18 return{pt, hmax} 

Algorithm 2: Segmented Traversing Path algorithm 

Input: Path 

 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑆: 𝑁𝑢𝑚𝑏𝑒𝑟 

Output: bp whole path points with break points 
1 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑃𝑎𝑡ℎ (𝑃) 
2  𝑏𝑝 ← {} 
3  For each line∈ 𝑃𝑑𝑜 
4  𝑞 ←  𝐷𝑖𝑣𝑖𝑑𝑒 𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑆 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 
5  𝐴𝑑𝑑 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑏𝑝 
6  𝐴𝑑𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑞 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑡𝑜𝑏𝑝 
7  𝐴𝑑𝑑 𝑙𝑎𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑏𝑝 
8 Return bp 

5.2. Segmented Zig-Zag Path Traversal 

When a drone reaches maximum speed, it may cause 

the drone to drift away of actual path. This finding has 

been explained in section 7. The algorithm generates 

several points to break down the path which optimize 

tracking the path correctly. See Figure 5. 

 

Figure 5. Segmented Zig-zag path traversal. 

Segmented traverse path Algorithm 2 needs zigzag 

path (P) in order to divide each horizontal line in that 

path into (S) segments. That generates (S−1) points on 

each horizontal line. The algorithm inserts these points 

between the begin and end of the first horizontal line. 

This process repeated for each line in the traversal 

path. 

Algorithm 3: Curved Traversing Path algorithm 

Input: Path 
 𝑃: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, 

 𝑆ℎ𝑖𝑓𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑆: 𝑁𝑢𝑚𝑏𝑒𝑟𝑤ℎ𝑒𝑟𝑒 − 2 ≤ 𝑆 ≤ 2 

 𝑆𝑡𝑒𝑝 𝑆𝑡𝑒𝑝: 𝑁𝑢𝑚𝑏𝑒𝑟 

Output: cp whole path points with shifted points 
1𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐶𝑢𝑟𝑣𝑒𝑑𝑃𝑎𝑡ℎ (𝑃) 
2  𝑐𝑝 ← {} 
3 For each line∈ 𝑃𝑑𝑜 
4  𝑞 ←  𝐷𝑖𝑣𝑖𝑑𝑒 𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 2 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 
  𝑞𝑦 ← 𝑞𝑦 + 𝑆 × 𝑆𝑡𝑒𝑝 
5  𝐴𝑑𝑑 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑐𝑝 
6  𝐴𝑑𝑑 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝑞 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑡𝑜𝑐𝑝 
7  𝐴𝑑𝑑 𝑙𝑎𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑜 𝑐𝑝 
8 Return cp 

(1) 
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5.3. Curved Path Algorithm 

In case of wind, the drone could miss the correct path 

as the wind force may shift the drone off its path. The 

algorithm generates a curved path to compensate 

against the wind force direction since wind causes the 

drone to drift away from the path. Figure 6 shows the 

wind direction and a curved path against wind. 

 

Figure 6. Wind force compansting path traversal. 

Curved Path Algorithm 3 generates shifted points 

into the wind, which lets drones fly against wind to 

correct the actual path it follows. 

𝑠𝑡𝑒𝑝 =
𝜔𝑠𝑐𝑒𝑛𝑒× ℎ𝑚𝑎𝑥

2𝑓
 

Algorithm also need zig-zag path (P), step (Equation 

(2)) [7] which is half scene width related to hmax, and 

the percentage (h) of shifting the point either negative 

or positive. In each iteration, algorithm find the 

midpoint and shift it up or down according to value of 

h which is between−2 and 2. Each midpoint of 

horizontal lines shifted in oppsite direction of the wind. 

Figure 6 shows wind direction and midpoint shifting 

toward wind. 

6. ASAF Object Detection 

A fundamental part of ASAF is the process of object 

detection. This process is relevant to the traversal 

height and then the object detect ability. Thus the 

developed traversal algorithms take the flight height 

into consideration as explained above. Indeed it is not 

of our scope to came up with detection technique and 

thus for the purpose of the system proof of concept, we 

limit the scope of target detection to AprilTag 

detection. 

ASAF camera subsystem consists of a downlooking 

camera mounted on flying agents. The objects of 

interest are special visual markers (AprilTags) placed 

on the ground. The detection software can recognize 

the position of the marker and report the information 

back to the ASAF system to take a proper action. 

AprilTag is a 2D label designed to encode between 

4 to 12 bits [36]. The library for detection of AprilTags 

is freely available under the Berkeley Software 

Distribution (BSD) license it works with a plethora of 

tag families with different amounts of information 

encoded and resistance to sensor noise. A 

recommended family is Tag16h5 which allows to 

distinguish between 30 tags, Figure 7 shows few 

examples. 

Figure 8 shows the geometry of the camera’s field 

of view (fov). The agent’s height (h) determines the 

dimensions of the width of the scene visible to the 

camera. It is obvious that as the height decreases, the 

visible width by the camera decreases as well. In [7], 

we have presented some equations relating these 

optical relationships. For example, for a specific 

camera subsystem, we calculated that at a height of 

20m, the camera can view a rectangular area with 

dimensions of 24m by 18m. 

In case of AprilTag markers, for a given camera 

pixel resolution, the detection of tags will depend on 

the resolution of the size of the printed AprilTag. In 

[36], authors show that the AprilTag with width of 

0.5m and 50-pixel resolution is detectable at 21m. 

 

 
Figure 7. Examples for Tag16h5 [36]. 

 
Figure 8. Camera parameters. 

6.1. Traversed Area Regularity 

Figure 9, shows some experimental results conducted 

using a camera of 640×480 pixels resolution and a 

fov= 60o. The tag size is 0.5m ×0.5m. The blue curve 

describes the theoretical limit for detection height and 

the dotted curve shows the actual height for detection 

as experimented. Distance estimation error rises with 

f 

h 

w scene 

w sensor 

fov 

camera { 

ground 

(2) 
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the distance from the pattern. For distances under 30m, 

the error is sufficiently low. For distances above 40m, 

the detection fails completely, which defines the 

maximal detection height for the setup used in 

simulation. The size of the pattern in the camera image 

is about 20 pixels, which denotes the minimal 

detection size in image under best conditions. 

 
Figure 9. Camera subsystem height simulation results. 

7. Navigation along the Trajectories 

The basic mode of a UAV from user’s point of view is 

flying along the trajectory specified by GPS 

coordinates. In the trivial case, it includes flight to a 

single destination position. A trajectory is a list of 

waypoints. Each waypoint consists of the geographical 

latitude, longitude, and altitude (above sea level). The 

navigation algorithm (autopilot) controls the UAV to 

fly the shortest way possible to the first waypoint on 

the trajectory, which is ideally a straight line [37]. A 

pre-set maximal velocity constraint limits the flight 

speed. The ideal flight velocity should be constant 

during the flight to the actual trajectory point, except 

an acceleration initially and a final deceleration to be 

able to reach the last point with zero velocity. 

In real conditions, errors happen in the trajectory 

execution, due to: 

• The limited precision of the conventional GPS 

localization. 

• External Environmental effects (e.g. wind). 

• Limited precision of the regulator tuning (e.g. drone 

mechanics). 

Those effects will cause errors between designated and 

executed trajectory, as is clear from Figure 10. In this 

figure, we present experimental results based on 

recorded positioning data of actual flight trajectory (20 

minutes) with respect to the x-y plan. Because 

performing experiments under stronger wind is out of 

scope, we can say that effects of external 

environmental effect, sensor noise and others will be 

negligible compared to the error due to GPS 

localization. Short-term (in units to tenths of seconds) 

variation of the GPS- estimated position, considering 

unobstructed view to sky (which is typically true for a 

flying UAV), may be below 1m. From practical 

experience, the real error is often below 5m [36]. 

 

Figure 10. Error measurement during 20 minutes experiments. 

Considering the previously mentioned minimal error 

and estimated position variance of the UAV, the 

autopilot cannot aim to reach an exact waypoint 

position (which would not be precise anyway), so the 

navigation to that point stops whenever the UAV 

reaches the vicinity around the actual waypoint. 

According to common GPS variance, this region 

should have a radius of about 0.1 to 0.5 m. 

Most of drone flight parameters (except multirotor 

inner dynamics) are adjustable to achieve desired 

performance. These parameters include maximal 

allowed velocity, maximal acceleration, and gains in 

the position/velocity regulator. When agents should 

follow a trajectory more precisely, they fly at lower 

speeds to gain more control than when flying at higher 

speeds. This observed behavior coupled with the 

observation that flight velocity cannot be constant 

during the flight: This involves braking and speeding 

up near trajectory waypoints. We further explain this 

aspect in the following subsection. 

7.1. A Real UAV Flight Behavior 

For further clarifications in our investigation of UAV 

behavior considerations with respect to navigation 

errors incurred to the flying agent, we have executed a 

few experiments to draw conclusions. We designed a 

trajectory of four waypoints arranged to execute a 

square path with a 10 m edge length. We repeated the 

experiment twice at speeds of 1 and 5m/s. 

Figures 11 and 12 shows the actual flight path 

where we see errors in each corner of the square edges, 

the precision to follow a straight line between the 

square’s corners worsens as the speed of the drone 

increases. 
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Figure 11. x-y position error for square trajectory experiment at 

1m/s maximal speed. 

 
Figure 12. x-y position error for square trajectory experiment at 
5m/s maximal speed. 

Figures 13 and 14, enforces our observation that 

UAVs change their speeds during path execution. 

 
Figure 13. Flight data on speed variation during the execution of 

square trajectory experiment at 1m/s maximal speed. 

 
Figure 14. Flight data on speed variation during the execution of 

square trajectory experiment at 5m/s maximal speed. 

During the traversal of an edge between 2 

waypoints  

1. The UAV accelerates gradually at the beginning 

then decelerates at the end of the edge. 

2. The maximal speed may not be reachable especially 

with the higher speed scenario i.e., at 5m/s. 

3. Speed transition is smoother at higher maximal 

speed. 

8. Problem Simulation 

We ran a simulation using Unity3D Version 5.6.1 [40], 

to evaluate the traversal algorithms. Further, we 

studied the impact of various parameters on the 

coverage and overlap. We fed the simulator with 

information about the traversals. Coverage shows the 

percentage of the area that the agent has traversed [7]. 

Overlap shows the amount of area that agents traversed 

(scanned) more than once. 

The architecture of the simulator has two main 

components:  

1. UAV package, which controls the flight of the UAV 

and generation/traversal of the path.  

2. Scene Manager object handles simulating 

environment options and user inputs. 

We used two levels of the UAV package: 

1. Stabilizing level to handle UAV stabilization 

algorithms and PID controllers.  

2. Trajectories level to handle the logic of the circuit 

(path) to follow.  

Scene Manager has five manager scripts, namely Input 

Manager, File Manager, Drone Manager, Camera 

Manager and Wind Manager. Input Manager controls 

the configuration of the traversal path input (File or 

Manual based), traversal type (Zigzag or Spiral), 

overlap percentage, frames per seconds and many other 

configurations. Using Shoelace Formula, we calculate 

the area covered by the traversal [39]. 

𝐴 =
1

2
[∑ 𝑥𝑖𝑦𝑖+1 +𝑛−1

𝑢−1 𝑥𝑛𝑦1 − ∑ 𝑥𝑖+1𝑦𝑖 −𝑛−1
𝑢−1 𝑥1𝑦𝑛] 

File Manager [40] stores the outcome of the traversal 

of the UAVs. File Manager also controls how often to 

store data like speed of the drone, position of the 

drone, coverage percentage, overlap percentage, 

screenshots, ..., etc. 

Drone Manager [40] manages and instantiates 

drones. Camera Manager manages cameras in the 

scene. In our simulation, we only use the top view 

camera of the scene from the UAV. 

Wind Manager [40] helps us to simulate and study 

the impact of wind on the UAV path traversal and area 

coverage. The Wind Manager controls the Speed, 

direction, and the zone of the wind. 

Poly Ops class handles trajectory lines and 

overlapping boundaries calculations. This class 

depends on the Slope-Intercept equation to calculate 

the necessary information. The Waypoint Circuit script 

automatically applies a curve between any two points. 

(3) 
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We do not need this feature in our traversal and thus 

we read each point twice into the circuit. We calculate 

the distance between two trajectory lines using the 

point (0,b) where b is the y-intercept variable from the 

slope-intercept equation for one of the trajectory lines 

as our starting point: 

𝑦 = mx + b 

We calculate coverage percentage with the help of 

Unity’s built-in function Physics. OverlapBox(). 

 

Figure 15. Desired overlapping. 

Figure 15 gives information about the desired 

overlapping regions. The traversal lines of an UAV are 

separated by a distance, which could cause the visible 

width of the camera (camera view width) to overlap. 

We determine the traversal path based on the desired 

overlap percentage. Increasing the desired overlapping 

is achieved by reducing the flight height, which is also 

considered in traversal algorithm. The OverlapBox() 

function captures the field of view of the UAV based 

on the filling of the region. 

The Desired overlap percentage is based on the 

boundaries and to check whether the captured point is 

above the current lower boundary and below the 

current upper boundary. Such an identification is based 

on the slope-intercept equation [38] as; 

(LBm× Px+ LBb) <Pz<(UBm× Px+ UBb) 

Where LBm, LBb, UBm, UBb are the slope and y-

intercept of the current lower bound line equation and 

the slope and y-intercept of the current upper bound 

line equation respectively. While Px and Pz are the x 

and z values of the point to be checked. 

9. Results and Discussions 

We studied the outcome of the experiment based on 

several factors like: coverage percentage, overlap 

percentage, number of turns, segmented paths, and 

zigzag or spiral algorithm. Regular polygons are of 

equal angles and equal edges. Irregular polygons have 

different and uneven angles and edges. Coverage 

shows what is the covered area’s percentage compared 

to the whole area. Overlap shows the amount of area 

that agents traverse more than once. 

Impact of desired overlap on coverage: In this 

experiment, the UAV traversed two areas with 100% 

and 86% regularities, respectively. The maximum 

speed of the UAV tops at 5m/s. Figure 16 shows that 

with a regular area traversed, the coverage is close to 

100% when the desired overlap percentage is 50%, 

while irregular areas need to increase the desired 

overlap to reach close to 100% coverage. This 

observation can be attributed to the fact that irregular 

areas requires more turns to be covered fully. This 

probably shows limitation of our algorithms and is an 

issue needs to be addressed as well. 

Impact of speed on coverage: As it is noticed in our 

results in section 7 that, as the speed of the drone 

increases, accuracy decreases, and thus localization 

errors increase. Thus the drone speed has significant 

impact on the search coverage. In order to do examine 

the limitation of our system, we calculated the 

coverage and the overlapping percentage using 

PolyOps class described in section 8. Figure 17 also 

shows the results that increasing speed causes the 

coverage percentage to drop significantly. The 

performance degradation is more obvious in the case of 

irregular areas. This outcome results point out to the 

fact that the performance will be determined by the 

average speed parameters. 

 

 
Figure 16. Desired overlap vs achieved coverage. 

 

 
Figure 17. Impact of speed on coverage and achieved overlap. 

Impact of traversal algorithms: To reduce the 

localization error, we have developed an algorithm to 

generate segmented trajectory based on the conclusion 

obtained in [7] that setting the drone to fly between 

closer waypoints decrease the error. Segmented paths 
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are like normal paths but with extra points on each 

traversal line, Figure 9 to conform to this conclusion, 

an experiment to appreciate the impact of segmentation 

is designed, we set UAV maximum speed to 5 m/s and 

the desired overlap percentage was set to 0%. Table 2 

shows that using segmented paths dose not only 

increases the coverage percentage but also it increases 

the traversal time. This show that path segmentation 

limitation. In addition to that Table 2 shows also the 

performance of spiral algorithm, which outperform the 

normal zigzag in terms of coverage and outperforms 

the segmented algorithm in terms of traversal time, this 

might indicate that spiral algorithm can be optimized 

further for optimal performance. 

Table 2. Impact of the segmented paths on traversal time. 

 Normal Zig-zag Segmented Spiral 

Coverage 80% 91% 83% 

Time (seconds) 181 240 205 

 

Along different regularities, we study the impact of 

different parameters. Desired overlap percentage 

impacts both the achieved overlap and coverage 

percentages. Overall, there is clearly a relationship 

between the coverage percentage and the traversal 

time. Using spiral algorithm and/or segmented paths do 

increase the coverage percentage but also the traversal 

time. Optimization of these algorithms could further 

enhance the resultant coverage, overlap, and time 

duration. The simulation experiment does not have 

battery constraint. But, in real experiments, battery life 

could be a deciding factor on which approach to use as 

the traversal time depends on the battery life. 

We study the impact of spiral and zigzag algorithms 

on coverage percentages and traversal times. UAV’s 

maximum speed was set to 5 m/s and the desired 

overlap percentage was set to 0%. UAVs traverse the 

same area using zigzag and spiral algorithm. We 

compare coverage percentage and time taken between 

them. Table 3 shows that there is about 10% 

improvement in the coverage percentage when 

traversing using spiral path but at the cost of 50% extra 

time as it require the drone to handle more turns than 

the zig-zag traversal. 

Table 3. Traverse algorithm. 

 Zig-Zag Spiral 

Coverage 71% 83% 

Time (seconds) 140 205 

 

Along different regularities, we study the impact of 

different parameters. Desired overlap percentage 

impacts both the achieved overlap and coverage 

percentages. Overall, there is clearly a relationship 

between the coverage percentage and the traversal 

time. Using spiral algorithm and/or segmented paths do 

increase the coverage percentage but also the traversal 

time. Optimization of these algorithms could further 

enhance the resultant coverage, overlap, and time 

duration. The simulation experiment does not have 

battery constraint. But, in real experiments, battery life 

could be a deciding factor on which approach to use as 

the traversal time depends on the battery life. 

10. Conclusions and Future Work 

In this work, we have reported on our progress. We 

focused on the agent’s traversal pattern as it is the most 

essential task the agent should execute in the search 

mission. As for an application such as a search and 

find application, agents should scan each point in the 

traversed area at least once. Otherwise, UAVs might 

miss some objects. Success to cover a spot is a 

function of many factors such as: the number of 

captured frames per second, the height of the camera, 

the speed of the drone, the number of waypoints in an 

area, the width of the cameras field of view, GPS 

error... etc. In this work, we have investigated most of 

these aspects and related them using available means 

of simulation under different path traversal strategies 

or/and several factors. The aim was to find 

optimization problems for further improvements. We 

identified the limitations relevant to each traversal 

algorithms. In fact the new traversal algorithm 

developed such as segmented and spiral has shown 

performance improvement in many aspects. In future 

work, we aim to work on algorithms that produce 

optimized paths. We will explore whether we can 

exploit cognition techniques to estimate the error and 

suggest proper reactions. 
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