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Abstract: Outsourcing spatial database to a third party is becoming a common practice for more and more individuals and 

companies to save the cost of managing and maintaining database, where a data owner delegates its spatial data management 

tasks to a third party and grants it to provide query services. However, the third party is not full trusted. Thus, authentication 

information should be provided to the client for query authentication. In this paper, we introduce an efficient space 

authenticated data structure, called Verifiable Similarity Indexing tree (VSS-tree), to support authenticated spatial query. We 

build VSS-tree based on SS-tree which employs bounding sphere rather than bounding rectangle for region shape and extend it 

with authentication information. Based on VSS-tree, the third party finds query results and builds their corresponding 

verification object. The client performs query authentication using the verification object and the public key published. Finally, 

we evaluate the performance and validity of our algorithms, the experiment results show that VSS-tree can efficiently support 

spatial query and have better performance than Merkle R tree (MR-tree). 
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1. Introduction 

Spatial database outsourcing is motivated by a large 

number of practical applications, such as 

environmental monitoring, traffic control, geo-location 

services, etc. However, an obvious defect of data 

outsourcing is that data are remotely stored on the 

semi-trusted third party, which makes the data owner 

lose physical control of its own database. Thus, 

significant security problems [1, 2] are associated with 

data outsourcing, such as data privacy, access control, 

data integrity, etc. In particular, query integrity is a 

major issue to be resolved. This is especially important 

when the results are used as basis for critical decisions. 

Since the third party is semi-trusted to users, it may 

return incorrect query results. For example, a user 

wants to find the three nearest restaurants in Figure 1. 

 

 

 

 

 

 

 
 

Figure 1. kNN query. 

The real result is {a, b, c}, however, the remote 

server may return {b, c, f} where f is a paying user. In 

the worst cases, query results may include false or  

 
modified records. Therefore, the third party should 

provide users with authentication information for query 

verification. In data outsourcing, query integrity 

includes two aspects: correctness and completeness. 

Correctness means that all the records in the results do 

exist in data owner’s original database and are not 

modified by anyone else. Completeness means that all 

the records that satisfy the query condition are in the 

query results. In this paper, we propose an efficient 

spatial authenticated structure, called 

Verifiable Similarity Indexing tree (VSS-tree), for 

spatial query authentication. Our contributions are 

shown as follows. 

 Propose a novel spatial authenticated structure that 

improves query verification efficiency and reduces 

the size of authentication information; 

 Formulate detailed cost analysis for all schemes that 

take into account; 

 Implement VSS-tree and perform a comprehensive 

evaluation and comparison with Merkle R tree (MR-

tree). 

The rest of this paper is organized as follows. Section 2 

reviews the related work. Section 3 proposes system 

model. Section 4 details the VSS-tree. Section 5 shows 

the performance cost and experimental results. Finally, 

section 6 concludes this paper. 
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2. Related Work 

In multi-dimensional authentication, Cheng et al. [4] 

proposed Verifiable KD tree (VKD-tree) and VR-tree, 

where signature chain is applied to KD tree and R tree 

to ensure query integrity. However, the computation of 

signatures resulted in a large amount of computational 

overhead. Yang et al. [22] proposed an authenticated 

structure, called MR-tree, for authenticating spatial 

queries, and an improved method, using synchronized 

cache, is proposed to reduce Verification Object (VO) 

size. MR-tree extends R* tree with authentication 

information as the MBT. The hash value of a leaf node 

is computed as h=hash (R1|R2|…|Rf). An entry E in a 

non-leaf node is defined as E=(pi, MBRi, hi), where pi 

points to the ith child, MBRi is the minimum boundary 

rectangle that encompasses all the regions of its ith 

child, hi summarizes all the MBRs and their digests of 

the ith child node, i.e., hi=h(MBR1|h1|…|MBRf|hf). A 

depth-first traversal is performed on the MR-tree for a 

range query. VO includes all the data entries in the 

visited leaf nodes and the pair of MBRs and digests in 

the sibling nodes pruned of the visited internal nodes.  

Based on MR-tree, Yung et al. [17] proposed a 

verification scheme for query verification of moving 

range queries. The remote server answers the user with 

the query results and corresponding safe region where 

the query point is currently located. The user verifies 

the query results based on the returned safe region. 

Furthermore, an optimization scheme is proposed to 

reduce VO size, and thus reduces the network 

communication overhead. However, extra computation 

overhead is required to build the safe area. Zhang et al. 

[24] proposed a novel distributed spatial authentication 

data structure, called distributed MR-tree, to for query 

verification of k-Nearest Neighbour (kNN) queries. 

Papadopoulos et al. [13] proposed a scheme that 

addressed continuous range processing and 

authentication on highly dynamic spatial databases, 

where Hilbert curve is used for transforming multiple-

dimensional data into one-dimensional data and then 

MBT is built on the transformed data. Ku et al. [8] 

employed Hilbert curves to protect the privacy of 

outsourced data, and probabilistically replicated and 

encrypted a portion of outsourced data for query 

authentication. Location-based spatial query is 

proposed in [6, 18, 21]. Given a moving query, an 

answer and its safe region are returned to the client. 

The answer remains the same as long as the query 

point is in the safe region. When the query point moves 

out of the safe region, another answer along with its 

safe region and corresponding VO are returned to the 

client.  

Hu et al. [5] proposed two authentication schemes 

based on R-tree and grid-file index for authenticating 

range queries. The first authenticated scheme 

introduced an order-insensitive method, the digest of a 

non-leaf node is computed as 

2 2 2

1( ( . )) ( ( )) ( ( ))mh dig N mbb h dig N h dig N mod n   

Where .N mbb  is the minimum bounding rectangle of 

node N itself, N1…Nm are children of N. Compared 

with MR-tree, it produced more hash computation cost. 

The second authenticated scheme, called grid-file 

index, used signature chain for query verification, 

however, query user has to spend more computing 

resources for signature verification.  

Lin et al. [11] proposed an authentication method, 

called MR-Sky-tree, for location-based sky-line 

queries. However, it has to precompute the skyline of 

each data object, and thus it needs more time to build 

and maintain the MR-Sky-tree than the MR-tree. This 

method is more applicable for static or infrequently 

updated databases. An improved scheme of MR-Sky-

tree is proposed in [10] for query verification of 

continuous skyline queries. Three new technologies: 

effective range, visible region and incremental VO, are 

proposed to reduce computation and communication 

costs. 

Li et al. [9] proposed MKD-tree based on sliding 

window, which solves the integrity verification of 

single and continuous queries of outsourced 

multidimensional data streams. A spatial range query 

verification scheme is proposed in [3], using grid to 

partition spatial data, and using quad-tree to index the 

partitioned grid. Quad-tree index has high query 

verification efficiency for range queries. Zhang et al. 

[23] proposed a new authentication structure 

Merkle Grid and R tree (MGR-tree) for verification of 

spatial range queries. VO size is reduced by 

embedding R-tree in each leaf node of the grid tree, 

and thus improved the verification efficiency. 

Furthermore, the Hilbert curve and the filter strategy 

are used to build an optimal authentication index 

MHGR tree to speed up query verification. Jang et al. 

[7] proposed a privacy-aware query authentication 

scheme which guarantees data confidentiality and 

query result integrity for users. In this scheme, a 

periodic function-based data grouping scheme is 

designed to privately partition a spatial database into 

small groups for generating a signature of each group. 

The group signature is used to check the integrity of 

query results. 

Polynomial Identity Random Synopses (PIRS) 

verification scheme is proposed in [19, 20] to support 

verification of grouped aggregation queries. However, 

PIRS can only probabilistically verify the integrity of 

the query results. A publicly verifiable grouped 

aggregation queries on outsourced data streams is 

proposed in [12]. The data owner defines the group in 

advance, and the data in the data stream is divided into 

different groups according to the group conditions. The 

data owner and the service provider maintain the 

aggregate value of each group incrementally. Since the 

group information needs to be determined in advance, 

the data owner and service provider have to spend a lot 
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of storage space to maintain the group aggregation 

results. Wu et al. [14] proposed a new authentication 

data structures, MIR-tree and MIR*-tree, that enable 

authentication of Moving top-k Spatial Keyword 

(MkSK) query. Xu et al. [16] proposed a dynamic 

ordered index structure, called Doit Tree, to realize 

integrity verification of aggregated queries for 

multidimensional data.  

3. System Model 

Figure 2 illustrates our system model. It consists of 

three parts: Data Owner (DO), client and Cloud 

Service Provider (CSP).  

 

 

 

 

 

 

 

 

Figure 2. System model. 

DO first gets a key pair from a trustful key 

distribution center, including a private key and a public 

key. Next, DO builds the authenticated spatial data 

structure and signs the digest of the root node to obtain 

signature sroot. Finally, DO outsources the database 

along with sroot to the CSP. CSP hosts the outsourced 

databases and provides query service for remote 

clients. CSP is semi-trusted, it performs our 

verification scheme honestly, but it may process the 

queries incorrectly. Once receiving a query, CSP 

traverses the authenticated structure and returns the 

query results along with corresponding VO for query 

verification. The client verifies the query results based 

on the VO and public key DO published. The clients 

only trust the public key. The main symbol list is 

shown in Table 1. 

Table 1. Symbol list. 

fl Fanout of leaf node Ss Size of a signature 

fi Fanout of internal node Sh Size of a hash digest 

hroo

t Digest of root node SM Size of MBR of the MR-tree 

sroot Signature of root node SC Size of bounding sphere of the VSS-tree. 

d Dimension of data object Sd Size of a data object 

|D| Data cardinality Si Size of an integer 

H Height of a tree Sb Size of the disk block 

Ca File access overhead Sd Size of a data object 

Ch Cost of hash operation |p| Size of pointer pointed to a data object 

Cs 
Cost of signature 

operation 
  

4. VSS-tree 

SS-tree [15] is a multi-dimensional index structure 

designed for similarity indexing of multi-dimensional 

data. The structure of SS-tree is shown in Figure 3.  

 

 

 

 

 

 

 

Figure 3. Structure of SS-tree. 

Unlike R and R* tree, SS-tree adopts bounding 

sphere rather than bounding rectangle as region shape 

which reduces the overlap area between neighbour 

nodes, and thus enhances the performance on nearest 

neighbor queries. Another advantage of using 

bounding sphere is that it only spends nearly half 

storage compared to the bounding rectangle. Because a 

bounding sphere is determined by a center and a 

radius, the storage cost is the dimensionality of a 

multidimensional point plusing an integer, while a 

rectangle is determined by the lower and upper bound 

of each dimension, and the storage of a rectangle is 

double of dimensionality. Obviously, the degree of SS-

tree is almost twice that of MR-tree, and thus reduces 

the height of tree. 

Verifiable SS-tree (VSS-tree) is built based on SS-

tree. The authenticated structure of VSS-tree is shown 

in Figure 4. Each entry in the internal node is 

associated with a digest computed by a hash function. 

The digest of root node, denoted as hroot, is signed and 

the signature sroot is published to the CSP. 

 

 

 

 

 

 

 

 

 

Figure 4. Structure of VSS-tree. 

The structure of leaf node of VSS-tree is defined as 

1: ( ,., ) ( )

: ( , ) (1 )

f

i

Leaf E E m f M

E p I i f

 

 
 

Where m and M represent the minimum and maximum 

number of branches of leaf nodes, respectively. Each 

entry in leaf nodes contains a pointer p and an n-

dimensional feature vector. The structure of internal 

node of VSS-tree is defined as: 

1: ( ,..., ) ( )

: ( , , , )

f

i

Node E E m f M

E C p w h

 
 

Where C denotes the minimum bounding sphere that 

encompasses all the regions of its ith child, p is a 

pointer that points to its ith child, w denotes the 
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number of points contained in the subtree whose top is 

the child C. The digest h summarizes the boundary 

spheres and digests of all its children, that is, 

h=h(C1|h1|…|Cf|hf). 

The center of a bounding sphere, represented as an 

n-dimensional point 1 2( , ,., )fx x x x , is the centroid of all 

the data points of its children, and is computed 

according to Equation (1). 

1

1

. .

(1 )

.

f

j i j

j

i f

j

j

C x C w

x j f

C w







  





 

Where Cj denotes the jth node, Cj.xi denotes the ith 

dimensional coordinate of the center of Cj, (1 )i i d   

is an index of dimensions, Cj.w is the number of points 

contained in the subtree whose top is the child Cj. The 

radius of a bounding sphere is computed according to 

Equation (2). 

1
 ||  -m  C . || )+a (  .x j

j f
jx x Cr r

 
  

Where Cj.x and Cj.r represent the center and radius of 

child Cj, respectively, ||x-Cj.x|| is the distance between 

the center x  and the center of child Cj. 

4.1. Authenticated Query  

4.1.1. Authenticated Range Query 

In dealing with a range query Q, range query 

algorithm, as shown in Algorithm.1, performs a depth-

first traversal on the VSS-tree to find query results and 

build VO.  

Starting from the root node, range query algorithm 

visits all the entries in the internal nodes that overlap 

with query Q.  

Algorithm 1: RangeQuery 

Input: Node n, Query Q 

Output: VO 

Append [ to VO 

for each entry E in n  

{ 

    if n is a leaf node then 

        Append E to VO 

    else  

    if dis(Q, E)≤ Q.r + E.r  

        RangeQuery(E.p, Q) 

    else  

        append (E.C, E.h) to VO 

} 

Append ] to VO 

VO includes three types of objects: 

 A special token pair [and] that identify the 

boundaries of a node. 

 All the data entries of the visited leaf nodes. 

 The pair of bounding spheres and their 

corresponding digests of entries pruned that do not 

overlap with the query range. 

The query client sequentially reads objects from VO to 

verify that: 

 Each data object in VO is either a member of query 

results or outside query Q. 

 No bounding sphere pruned in VO overlaps Q. 

 The rebuilt hroot agrees with sroot. 

If all the above items pass the verification, the client 

can confirm that the query results are correct and 

complete. Verification process is shown in Algorithm 

2. 

Algorithm 2 :Verification 

Input: VO 

Output: Circle, hash 

str=null, Circle=null, Result=null 

for each entry E in VO do 

{ 

if E is a data object  

{ 

        if E overlaps the query Q  

           insert E into to the Result 

        str = str | the binary representation of E 

       recompute Circle to include E 

    } 

   if E is [ then 

 (Cl, Hl) = Verification (VO) 

if E is a pair of Circle/Digest (Cl, Hl)  

{ 

        recomputed Circle to include Cl 

        str=str|Cl|Hl 

    } 

   if e is ]  

        return (Circle, hash(str)) 

} 

4.1.2. Authenticated kNN Query 

As shown in Algorithm 3, kNN search algorithm finds 

k nearest neighbours of query point q. Essentially, kNN 

search algorithm gradually increases the search radius 

with query point q as the center, so that the search area 

just contains k data points. KnnList contains k nearest 

neighbours of q, Knn.MaxDist represents the maximum 

distance between q and the data points in KnnList. The 

value of Knn.MaxDist is defined as  , if KnnList 

contains less than k data objects.  

Algorithm 3: kNNSearch 

Input: n, q, k 

Output: KnnList, VO 

append [ to VO 

if n is a leaf node 

    for each entry E in n 

    { 

        Append E to VO 

        if dist(q, E) ≤ Knn.MaxDist  then 

            knnList.add(E.id, distance(q, E)) 

    } 

else  

{ 

    for each entry E in n 

        insert(BranchList, dist(q, E), E) 

         sort(BranchList) by ascending 

(1) 

(2) 
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         for each entry E in BranchList 

        { 

        if dist(q, E) ≤ Knn.MaxDist  

            kNNSearch(E.p, q, k) 

        else  

    append (E.C, E.h) to VO 

} 

     } 

append ] to VO 

During kNN traversal, if the currently visited node is an 

internal node, all its entries and their distances to q are 

inserted into the sorted list BranchList. Next, kNN 

search algorithm iterates through BranchList and 

recursively invokes Algorithm 3 on its visited child 

nodes. Once the distance of an entry to q is greater than 

Knn.MaxDist, the iteration will be terminated and the 

pairs (Circle,Hash) of the remaining entries in 

BranchList are inserted into VO. If the currently 

visited node is a leaf node and KnnList contains less 

than k data objects, the visited data is directly inserted 

into KnnList, otherwise, only the data whose distance 

to q is less than Knn.MaxDist is inserted into KnnList. 

The verification process is shown in Algorithm 4, 

the client first computes Knn.MaxDist, and then 

sequentially read objects from VO to verify that: 

 The distances between the data points not in the 

results and q are greater than Knn.MaxDist. 

 The distances between the bounding spheres pruned 

and q are greater than Knn.MaxDist. 

 The rebuilt hash hroot agrees with sroot. 

Algorithm 4: kNNVerification 

Input: VO, KnnList 

Output: hash 

str = null; C = null 

for each entry E in VO  

{ 

    if E is a data object 

        if E.dist(q)≤Knn.MaxDist and E.id in KnnList  

            continue 

        else 

            alarm the client 

        str = str | the binary representation of E 

    if E is [ then 

        Hl= kNNVerification(VO, KnnList) 

    if E is a pair of Circle/Digest (Cl, Hl) then 

       str=str|Cl|Hl 

    if e is ] then 

return (hash(str)) 

} 

4.2. Dynamic Operation 

VSS-tree supports dynamic operations of outsourced 

spatial database, including insertion, update and 

deletion. Update can be performed as a deletion 

followed by an insertion. Thus, we only focus on 

insertion and deletion. VSS-tree adopts the update 

algorithms of R*-tree. Both the minimum utilization of 

block and reinsert fraction of VSS-tree are set to 40%. 

When performing a deletion, the deletion algorithm 

first locates the leaf node Nl that contains the data 

object to be deleted, and then deletes it from Nl. If Nl 

underflows, Nl is deleted and all its rest data are 

reinserted to the VSS-tree. Otherwise, Nl and its 

affected ancestors are readjusted from bottom to top. 

Insertion is more complex than deletion. When 

inserting a new entry, the insertion algorithm locates 

the node N whose center is nearest to the new entry. If 

N is full, reinsertion will be executed, if it is still full 

after reinsertion, the split algorithm will be executed. 

In general, there are three cases and corresponding 

operations when inserting a new entry E into a node N: 
 
 N has space, E is inserted there. 

 N overflows, a part of its entries farthest from the 

center are deleted and reinserted into VSS-tree. 

 N still overflows after reinsertion, split algorithm 

will split N into two nodes. The split algorithm 

calculates its coordinate variance to the centers of 

its children on each dimension and chooses the 

dimension with the highest variance to split it. 

4.3. Proof of Query Verification 

Proof of correctness: Suppose that there exists forged 

or modified data in query results. We know that all the 

data objects are involved in computing the digest hroot, 

and the digest is computed by a one-way and collision-

resistant hash function. Any modification to a record 

makes the digest different from the original one. 

Furthermore, the digest of forged or altered data has to 

participate in the reconstruction of hroot, which makes 

the rebuilt hroot different from the original one, and thus 

disagree with sroot.  
Proof of completeness: Let E in the leaf node

nL  is 

one of the query results, but not included in the results. 

In order to pass the verification, CSP must make the 

rebuilt hroot match Sroot, either E or the pair (Circle, 

hash) of Ln should be included in VO. For the first 

case, the verification algorithm can determine that E is 

one of the results. For the latter case, the client can 

detect that Ln overlaps Q, but is not visited by the 

search algorithm which violates the query verification 

algorithm. 

5. Cost and Experiment Analysis 

We first theoretically analyze the performance 

parameters of the VSS tree and compare them with 

MR-tree. Next, we conduct an exhaustive experimental 

evaluation to validate the effectiveness and efficiency 

of VSS-tree 

5.1. Cost Analysis 

The main performance parameters of VSS-tree 

considered are as follows: node fanout, index size and 

construction cost. Index size affects the storage cost of 

the member that stores the index. Index construction 
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cost affects the party that builds the authenticated 

spatial tree. If VSS-tree is built by DO and transmitted 

to CSP, it affects the communication cost between DO 

and CSP. As described in section 4, the fanout of leaf 

node is computed as: 

/ ( | |)l b df S S p   

The fanout of internal node is computed as: 

/ ( | | )VSS

i b C H if S S S p S     

The fanout of MR-tree is computed as follows. 

( | |)/ MR

i b hMf S S S p    

The fanout of VSS-tree and MR-tree under different 

dimensions are shown in Table 2. 

Table 2. Fanout of ASDS. 

Index/Dimension 3 6 12 

VSS-tree 50 39 26 

MR-tree 46 29 17 
 

The height of the VSS-tree is computed as: 

1 log (| | / )
if lH D f   

Compared with MR-tree, SM is greater than (SC+Si), 

because the former is denoted and stored by two n-

dimensional data, while the latter is an n-dimensional 

data plusing an integer. So the height of VSS-tree is 

lower than that of MR-tree as shown in Table 3. 

Table 3. Height of ASDS. 

 data size( ×1000) 

Index/size 10 20 30 40 50 60 70~100 

VSS(d = 6) 3 3 3 3 4 4 4 

MR(d = 6) 3 3 4 4 4 4 4 

VSS(d = 12) 3 4 4 4 4 4 4 

MR(d = 12) 4 4 4 4 4 4 5 

The storage cost of the VSS-tree is denoted as 

2

1

( | | / )
H

i

index b i l
i

S s f D f




   

The initial construction overhead of the VSS-tree is 

1

0

( )
H

VSS i

init S H i
i

C C C f




    

5.2. Experiment Analysis 

All experiments were performed with a Pentium Dual-

Core 2.60GHz CPU and 4.0G RAM. All the programs 

were implemented in Java with 2Kbytes page size. 

Each experiment was repeated 100 times and the 

average was used to compare the performance of the 

two ASDS. The data cardinality varies from 1×104 to 

1×105 and the data points are uniformly distributed in 

the data set. We evaluate and compare the performance 

parameters of MR-tree and VSS-tree from the 

following aspects: construction time, index size, query 

processing time, disk accesses, VO size and query 

integrity verification time.  

Figure 5 illustrates construction time under different 

data dimensions and data cardinalities, respectively. 

The time includes: reading data from file, hash 

computation and construction of authenticated 

structure. The horizontal axis indicates data cardinality 

and the vertical axis indicates construction time. 

 

Figure 5. Construction-time vs. data cardinality and dimension. 

The construction time of VSS-tree is slightly longer 

than that of MR-tree under the same dimension. The 

reason is that the computation of bounding sphere is 

more complex than that of MBR. A bounding sphere is 

represented by a centroid and a radius and computed 

according to Equations (1) and (2), respectively. The 

computation involves addition and multiplication 

operations, while computation of MBR only involves 

comparison operation. 

Figure 6 illustrates the index size of two 

authenticated trees. The storage space of MR-tree is 

larger than that of VSS-tree. This is because the 

storage of a rectangle is double of n-dimension, while 

the storage of a bounding sphere is an n-dimensional 

point plusing an integer. 

 

Figure 6. Index size vs. data cardinality. 

Query processing cost only influences the CSP 

which determines the response speed of query 

processing. Figure 7 illustrates the query processing 

time of kNN query. Because kNN can be replaced by a 

range query whose query results just include k data 

points, the performance of range query is not discussed 

here. kNN query is executed with random query 

location. The value of k is set to 3. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Figure 7. Query time vs. data cardinality. 

The query time includes finding query results and 

building verification object. As can be seen from 

Figure 7, the query processing time based on VSS-tree 

is much shorter than that based on MR-tree. The reason 

is that using bounding sphere not only reduces the 

height of VSS-tree but also reduces the overlap area 

between nodes, and thus avoids unnecessary disk 

accesses.  

VO size influences the network transmission 

overhead between CSP and clients. Figure 8 shows the 

VO size under different data cardinality and 

dimension. The VO size built based on VSS-tree is 

much smaller than that based on MR-tree. This is 

because the VSS-tree has more fanout and smaller 

diameter than the MR-tree under the same condition. 

 

Figure 8. VO size vs. data cardinality. 

Figure 9 illustrates disk accesses of kNN query 

based on VSS-tree and MR-tree. The vertical axis 

indicates the number of disk accesses. It can be seen 

that the VSS-tree needs fewer disk accesses than the 

MR-tree. The reason is that VSS-tree has more fanout 

than MR-tree which reduce the height of authenticated 

tree. Furthermore, VSS-tree reduces the overlap area 

between nodes, and thus avoids unnecessary disk 

accesses. 

 

Figure 9. Number of disk reads. 

Verification cost only burdens the client. Figure 10 

show the verification time on the client size. 

 

Figure 10. Verification time. 

Since VO size based on VSS-tree are smaller than that 

based on MR-tree on the same condition, the 

verification time based on VSS-tree is shorter than that 

based on MR-tree. 

6. Conclusions 

In this paper, a new authenticated spatial index VSS-

tree is proposed for spatial query verification. 

Theoretical analysis proves that VSS-tree can ensure 

the correctness and completeness of query results. The 

cost analysis and experiment results show that the 

query processing, query verification and network 

communication cost of VSS-tree is better than those of 

MR-tree.  

In the future, we will combine query verification 

technique and privacy-preserving technique to perform 

query verification on outsourced encrypted data. 
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