
The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020 539

Query Authentication of Outsourced Spatial

Database

Jun Hong1,2, Tao Wen2, and Quan Guo3
1School of Software, North University of China, China

2School of Computer Science and Engineering, Northeastern University, China
 3Computer Science and Technology, Dalian Neusoft University of Information, China

Abstract: Outsourcing spatial database to a third party is becoming a common practice for more and more individuals and

companies to save the cost of managing and maintaining database, where a data owner delegates its spatial data management

tasks to a third party and grants it to provide query services. However, the third party is not full trusted. Thus, authentication

information should be provided to the client for query authentication. In this paper, we introduce an efficient space

authenticated data structure, called Verifiable Similarity Indexing tree (VSS-tree), to support authenticated spatial query. We

build VSS-tree based on SS-tree which employs bounding sphere rather than bounding rectangle for region shape and extend it

with authentication information. Based on VSS-tree, the third party finds query results and builds their corresponding

verification object. The client performs query authentication using the verification object and the public key published. Finally,

we evaluate the performance and validity of our algorithms, the experiment results show that VSS-tree can efficiently support

spatial query and have better performance than Merkle R tree (MR-tree).

Keywords: Data Outsourcing, KNN, spatial database, cloud computing, query authentication.

Received February 7, 2017; accepted December 24, 2018

https://doi.org/10.34028/iajit/17/4/12

1. Introduction

Spatial database outsourcing is motivated by a large

number of practical applications, such as

environmental monitoring, traffic control, geo-location

services, etc. However, an obvious defect of data

outsourcing is that data are remotely stored on the

semi-trusted third party, which makes the data owner

lose physical control of its own database. Thus,

significant security problems [1, 2] are associated with

data outsourcing, such as data privacy, access control,

data integrity, etc. In particular, query integrity is a

major issue to be resolved. This is especially important

when the results are used as basis for critical decisions.

Since the third party is semi-trusted to users, it may

return incorrect query results. For example, a user

wants to find the three nearest restaurants in Figure 1.

Figure 1. kNN query.

The real result is {a, b, c}, however, the remote

server may return {b, c, f} where f is a paying user. In

the worst cases, query results may include false or

modified records. Therefore, the third party should

provide users with authentication information for query

verification. In data outsourcing, query integrity

includes two aspects: correctness and completeness.

Correctness means that all the records in the results do

exist in data owner’s original database and are not

modified by anyone else. Completeness means that all

the records that satisfy the query condition are in the

query results. In this paper, we propose an efficient

spatial authenticated structure, called

Verifiable Similarity Indexing tree (VSS-tree), for

spatial query authentication. Our contributions are

shown as follows.

 Propose a novel spatial authenticated structure that

improves query verification efficiency and reduces

the size of authentication information;

 Formulate detailed cost analysis for all schemes that

take into account;

 Implement VSS-tree and perform a comprehensive

evaluation and comparison with Merkle R tree (MR-

tree).

The rest of this paper is organized as follows. Section 2

reviews the related work. Section 3 proposes system

model. Section 4 details the VSS-tree. Section 5 shows

the performance cost and experimental results. Finally,

section 6 concludes this paper.

540 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

2. Related Work

In multi-dimensional authentication, Cheng et al. [4]

proposed Verifiable KD tree (VKD-tree) and VR-tree,

where signature chain is applied to KD tree and R tree

to ensure query integrity. However, the computation of

signatures resulted in a large amount of computational

overhead. Yang et al. [22] proposed an authenticated

structure, called MR-tree, for authenticating spatial

queries, and an improved method, using synchronized

cache, is proposed to reduce Verification Object (VO)

size. MR-tree extends R* tree with authentication

information as the MBT. The hash value of a leaf node

is computed as h=hash (R1|R2|…|Rf). An entry E in a

non-leaf node is defined as E=(pi, MBRi, hi), where pi

points to the ith child, MBRi is the minimum boundary

rectangle that encompasses all the regions of its ith

child, hi summarizes all the MBRs and their digests of

the ith child node, i.e., hi=h(MBR1|h1|…|MBRf|hf). A

depth-first traversal is performed on the MR-tree for a

range query. VO includes all the data entries in the

visited leaf nodes and the pair of MBRs and digests in

the sibling nodes pruned of the visited internal nodes.

Based on MR-tree, Yung et al. [17] proposed a

verification scheme for query verification of moving

range queries. The remote server answers the user with

the query results and corresponding safe region where

the query point is currently located. The user verifies

the query results based on the returned safe region.

Furthermore, an optimization scheme is proposed to

reduce VO size, and thus reduces the network

communication overhead. However, extra computation

overhead is required to build the safe area. Zhang et al.

[24] proposed a novel distributed spatial authentication

data structure, called distributed MR-tree, to for query

verification of k-Nearest Neighbour (kNN) queries.

Papadopoulos et al. [13] proposed a scheme that

addressed continuous range processing and

authentication on highly dynamic spatial databases,

where Hilbert curve is used for transforming multiple-

dimensional data into one-dimensional data and then

MBT is built on the transformed data. Ku et al. [8]

employed Hilbert curves to protect the privacy of

outsourced data, and probabilistically replicated and

encrypted a portion of outsourced data for query

authentication. Location-based spatial query is

proposed in [6, 18, 21]. Given a moving query, an

answer and its safe region are returned to the client.

The answer remains the same as long as the query

point is in the safe region. When the query point moves

out of the safe region, another answer along with its

safe region and corresponding VO are returned to the

client.

Hu et al. [5] proposed two authentication schemes

based on R-tree and grid-file index for authenticating

range queries. The first authenticated scheme

introduced an order-insensitive method, the digest of a

non-leaf node is computed as

2 2 2

1((.)) (()) (())mh dig N mbb h dig N h dig N mod n 

Where .N mbb is the minimum bounding rectangle of

node N itself, N1…Nm are children of N. Compared

with MR-tree, it produced more hash computation cost.

The second authenticated scheme, called grid-file

index, used signature chain for query verification,

however, query user has to spend more computing

resources for signature verification.

Lin et al. [11] proposed an authentication method,

called MR-Sky-tree, for location-based sky-line

queries. However, it has to precompute the skyline of

each data object, and thus it needs more time to build

and maintain the MR-Sky-tree than the MR-tree. This

method is more applicable for static or infrequently

updated databases. An improved scheme of MR-Sky-

tree is proposed in [10] for query verification of

continuous skyline queries. Three new technologies:

effective range, visible region and incremental VO, are

proposed to reduce computation and communication

costs.

Li et al. [9] proposed MKD-tree based on sliding

window, which solves the integrity verification of

single and continuous queries of outsourced

multidimensional data streams. A spatial range query

verification scheme is proposed in [3], using grid to

partition spatial data, and using quad-tree to index the

partitioned grid. Quad-tree index has high query

verification efficiency for range queries. Zhang et al.

[23] proposed a new authentication structure

Merkle Grid and R tree (MGR-tree) for verification of

spatial range queries. VO size is reduced by

embedding R-tree in each leaf node of the grid tree,

and thus improved the verification efficiency.

Furthermore, the Hilbert curve and the filter strategy

are used to build an optimal authentication index

MHGR tree to speed up query verification. Jang et al.

[7] proposed a privacy-aware query authentication

scheme which guarantees data confidentiality and

query result integrity for users. In this scheme, a

periodic function-based data grouping scheme is

designed to privately partition a spatial database into

small groups for generating a signature of each group.

The group signature is used to check the integrity of

query results.

Polynomial Identity Random Synopses (PIRS)

verification scheme is proposed in [19, 20] to support

verification of grouped aggregation queries. However,

PIRS can only probabilistically verify the integrity of

the query results. A publicly verifiable grouped

aggregation queries on outsourced data streams is

proposed in [12]. The data owner defines the group in

advance, and the data in the data stream is divided into

different groups according to the group conditions. The

data owner and the service provider maintain the

aggregate value of each group incrementally. Since the

group information needs to be determined in advance,

the data owner and service provider have to spend a lot

Query Authentication of Outsourced Spatial Database 541

of storage space to maintain the group aggregation

results. Wu et al. [14] proposed a new authentication

data structures, MIR-tree and MIR*-tree, that enable

authentication of Moving top-k Spatial Keyword

(MkSK) query. Xu et al. [16] proposed a dynamic

ordered index structure, called Doit Tree, to realize

integrity verification of aggregated queries for

multidimensional data.

3. System Model

Figure 2 illustrates our system model. It consists of

three parts: Data Owner (DO), client and Cloud

Service Provider (CSP).

Figure 2. System model.

DO first gets a key pair from a trustful key

distribution center, including a private key and a public

key. Next, DO builds the authenticated spatial data

structure and signs the digest of the root node to obtain

signature sroot. Finally, DO outsources the database

along with sroot to the CSP. CSP hosts the outsourced

databases and provides query service for remote

clients. CSP is semi-trusted, it performs our

verification scheme honestly, but it may process the

queries incorrectly. Once receiving a query, CSP

traverses the authenticated structure and returns the

query results along with corresponding VO for query

verification. The client verifies the query results based

on the VO and public key DO published. The clients

only trust the public key. The main symbol list is

shown in Table 1.

Table 1. Symbol list.

fl Fanout of leaf node Ss Size of a signature

fi Fanout of internal node Sh Size of a hash digest

hroo

t Digest of root node SM Size of MBR of the MR-tree

sroot Signature of root node SC Size of bounding sphere of the VSS-tree.

d Dimension of data object Sd Size of a data object

|D| Data cardinality Si Size of an integer

H Height of a tree Sb Size of the disk block

Ca File access overhead Sd Size of a data object

Ch Cost of hash operation |p| Size of pointer pointed to a data object

Cs
Cost of signature

operation

4. VSS-tree

SS-tree [15] is a multi-dimensional index structure

designed for similarity indexing of multi-dimensional

data. The structure of SS-tree is shown in Figure 3.

Figure 3. Structure of SS-tree.

Unlike R and R* tree, SS-tree adopts bounding

sphere rather than bounding rectangle as region shape

which reduces the overlap area between neighbour

nodes, and thus enhances the performance on nearest

neighbor queries. Another advantage of using

bounding sphere is that it only spends nearly half

storage compared to the bounding rectangle. Because a

bounding sphere is determined by a center and a

radius, the storage cost is the dimensionality of a

multidimensional point plusing an integer, while a

rectangle is determined by the lower and upper bound

of each dimension, and the storage of a rectangle is

double of dimensionality. Obviously, the degree of SS-

tree is almost twice that of MR-tree, and thus reduces

the height of tree.

Verifiable SS-tree (VSS-tree) is built based on SS-

tree. The authenticated structure of VSS-tree is shown

in Figure 4. Each entry in the internal node is

associated with a digest computed by a hash function.

The digest of root node, denoted as hroot, is signed and

the signature sroot is published to the CSP.

Figure 4. Structure of VSS-tree.

The structure of leaf node of VSS-tree is defined as

1: (,.,) ()

: (,) (1)

f

i

Leaf E E m f M

E p I i f

 

 

Where m and M represent the minimum and maximum

number of branches of leaf nodes, respectively. Each

entry in leaf nodes contains a pointer p and an n-

dimensional feature vector. The structure of internal

node of VSS-tree is defined as:

1: (,...,) ()

: (, , ,)

f

i

Node E E m f M

E C p w h

 

Where C denotes the minimum bounding sphere that

encompasses all the regions of its ith child, p is a

pointer that points to its ith child, w denotes the

542 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

number of points contained in the subtree whose top is

the child C. The digest h summarizes the boundary

spheres and digests of all its children, that is,

h=h(C1|h1|…|Cf|hf).

The center of a bounding sphere, represented as an

n-dimensional point 1 2(, ,.,)fx x x x , is the centroid of all

the data points of its children, and is computed

according to Equation (1).

1

1

. .

(1)

.

f

j i j

j

i f

j

j

C x C w

x j f

C w







  





Where Cj denotes the jth node, Cj.xi denotes the ith

dimensional coordinate of the center of Cj, (1)i i d 

is an index of dimensions, Cj.w is the number of points

contained in the subtree whose top is the child Cj. The

radius of a bounding sphere is computed according to

Equation (2).

1
 || -m C . ||)+a (.x j

j f
jx x Cr r

 


Where Cj.x and Cj.r represent the center and radius of

child Cj, respectively, ||x-Cj.x|| is the distance between

the center x and the center of child Cj.

4.1. Authenticated Query

4.1.1. Authenticated Range Query

In dealing with a range query Q, range query

algorithm, as shown in Algorithm.1, performs a depth-

first traversal on the VSS-tree to find query results and

build VO.

Starting from the root node, range query algorithm

visits all the entries in the internal nodes that overlap

with query Q.

Algorithm 1: RangeQuery

Input: Node n, Query Q

Output: VO

Append [to VO

for each entry E in n

{

 if n is a leaf node then

 Append E to VO

 else

 if dis(Q, E)≤ Q.r + E.r

 RangeQuery(E.p, Q)

 else

 append (E.C, E.h) to VO

}

Append] to VO

VO includes three types of objects:

 A special token pair [and] that identify the

boundaries of a node.

 All the data entries of the visited leaf nodes.

 The pair of bounding spheres and their

corresponding digests of entries pruned that do not

overlap with the query range.

The query client sequentially reads objects from VO to

verify that:

 Each data object in VO is either a member of query

results or outside query Q.

 No bounding sphere pruned in VO overlaps Q.

 The rebuilt hroot agrees with sroot.

If all the above items pass the verification, the client

can confirm that the query results are correct and

complete. Verification process is shown in Algorithm

2.

Algorithm 2 :Verification

Input: VO

Output: Circle, hash

str=null, Circle=null, Result=null

for each entry E in VO do

{

if E is a data object

{

 if E overlaps the query Q

 insert E into to the Result

 str = str | the binary representation of E

 recompute Circle to include E

 }

 if E is [then

 (Cl, Hl) = Verification (VO)

if E is a pair of Circle/Digest (Cl, Hl)

{

 recomputed Circle to include Cl

 str=str|Cl|Hl

 }

 if e is]

 return (Circle, hash(str))

}

4.1.2. Authenticated kNN Query

As shown in Algorithm 3, kNN search algorithm finds

k nearest neighbours of query point q. Essentially, kNN

search algorithm gradually increases the search radius

with query point q as the center, so that the search area

just contains k data points. KnnList contains k nearest

neighbours of q, Knn.MaxDist represents the maximum

distance between q and the data points in KnnList. The

value of Knn.MaxDist is defined as  , if KnnList

contains less than k data objects.

Algorithm 3: kNNSearch

Input: n, q, k

Output: KnnList, VO

append [to VO

if n is a leaf node

 for each entry E in n

 {

 Append E to VO

 if dist(q, E) ≤ Knn.MaxDist then

 knnList.add(E.id, distance(q, E))

 }

else

{

 for each entry E in n

 insert(BranchList, dist(q, E), E)

 sort(BranchList) by ascending

(1)

(2)

Query Authentication of Outsourced Spatial Database 543

 for each entry E in BranchList

 {

 if dist(q, E) ≤ Knn.MaxDist

 kNNSearch(E.p, q, k)

 else

 append (E.C, E.h) to VO

}

 }

append] to VO

During kNN traversal, if the currently visited node is an

internal node, all its entries and their distances to q are

inserted into the sorted list BranchList. Next, kNN

search algorithm iterates through BranchList and

recursively invokes Algorithm 3 on its visited child

nodes. Once the distance of an entry to q is greater than

Knn.MaxDist, the iteration will be terminated and the

pairs (Circle,Hash) of the remaining entries in

BranchList are inserted into VO. If the currently

visited node is a leaf node and KnnList contains less

than k data objects, the visited data is directly inserted

into KnnList, otherwise, only the data whose distance

to q is less than Knn.MaxDist is inserted into KnnList.

The verification process is shown in Algorithm 4,

the client first computes Knn.MaxDist, and then

sequentially read objects from VO to verify that:

 The distances between the data points not in the

results and q are greater than Knn.MaxDist.

 The distances between the bounding spheres pruned

and q are greater than Knn.MaxDist.

 The rebuilt hash hroot agrees with sroot.

Algorithm 4: kNNVerification

Input: VO, KnnList

Output: hash

str = null; C = null

for each entry E in VO

{

 if E is a data object

 if E.dist(q)≤Knn.MaxDist and E.id in KnnList

 continue

 else

 alarm the client

 str = str | the binary representation of E

 if E is [then

 Hl= kNNVerification(VO, KnnList)

 if E is a pair of Circle/Digest (Cl, Hl) then

 str=str|Cl|Hl

 if e is] then

return (hash(str))

}

4.2. Dynamic Operation

VSS-tree supports dynamic operations of outsourced

spatial database, including insertion, update and

deletion. Update can be performed as a deletion

followed by an insertion. Thus, we only focus on

insertion and deletion. VSS-tree adopts the update

algorithms of R*-tree. Both the minimum utilization of

block and reinsert fraction of VSS-tree are set to 40%.

When performing a deletion, the deletion algorithm

first locates the leaf node Nl that contains the data

object to be deleted, and then deletes it from Nl. If Nl

underflows, Nl is deleted and all its rest data are

reinserted to the VSS-tree. Otherwise, Nl and its

affected ancestors are readjusted from bottom to top.

Insertion is more complex than deletion. When

inserting a new entry, the insertion algorithm locates

the node N whose center is nearest to the new entry. If

N is full, reinsertion will be executed, if it is still full

after reinsertion, the split algorithm will be executed.

In general, there are three cases and corresponding

operations when inserting a new entry E into a node N:

 N has space, E is inserted there.

 N overflows, a part of its entries farthest from the

center are deleted and reinserted into VSS-tree.

 N still overflows after reinsertion, split algorithm

will split N into two nodes. The split algorithm

calculates its coordinate variance to the centers of

its children on each dimension and chooses the

dimension with the highest variance to split it.

4.3. Proof of Query Verification

Proof of correctness: Suppose that there exists forged

or modified data in query results. We know that all the

data objects are involved in computing the digest hroot,

and the digest is computed by a one-way and collision-

resistant hash function. Any modification to a record

makes the digest different from the original one.

Furthermore, the digest of forged or altered data has to

participate in the reconstruction of hroot, which makes

the rebuilt hroot different from the original one, and thus

disagree with sroot.
Proof of completeness: Let E in the leaf node

nL is

one of the query results, but not included in the results.

In order to pass the verification, CSP must make the

rebuilt hroot match Sroot, either E or the pair (Circle,

hash) of Ln should be included in VO. For the first

case, the verification algorithm can determine that E is

one of the results. For the latter case, the client can

detect that Ln overlaps Q, but is not visited by the

search algorithm which violates the query verification

algorithm.

5. Cost and Experiment Analysis

We first theoretically analyze the performance

parameters of the VSS tree and compare them with

MR-tree. Next, we conduct an exhaustive experimental

evaluation to validate the effectiveness and efficiency

of VSS-tree

5.1. Cost Analysis

The main performance parameters of VSS-tree

considered are as follows: node fanout, index size and

construction cost. Index size affects the storage cost of

the member that stores the index. Index construction

544 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

cost affects the party that builds the authenticated

spatial tree. If VSS-tree is built by DO and transmitted

to CSP, it affects the communication cost between DO

and CSP. As described in section 4, the fanout of leaf

node is computed as:

/ (| |)l b df S S p 

The fanout of internal node is computed as:

/ (| |)VSS

i b C H if S S S p S   

The fanout of MR-tree is computed as follows.

(| |)/ MR

i b hMf S S S p  

The fanout of VSS-tree and MR-tree under different

dimensions are shown in Table 2.

Table 2. Fanout of ASDS.

Index/Dimension 3 6 12

VSS-tree 50 39 26

MR-tree 46 29 17

The height of the VSS-tree is computed as:

1 log (| | /)
if lH D f 

Compared with MR-tree, SM is greater than (SC+Si),

because the former is denoted and stored by two n-

dimensional data, while the latter is an n-dimensional

data plusing an integer. So the height of VSS-tree is

lower than that of MR-tree as shown in Table 3.

Table 3. Height of ASDS.

 data size(×1000)

Index/size 10 20 30 40 50 60 70~100

VSS(d = 6) 3 3 3 3 4 4 4

MR(d = 6) 3 3 4 4 4 4 4

VSS(d = 12) 3 4 4 4 4 4 4

MR(d = 12) 4 4 4 4 4 4 5

The storage cost of the VSS-tree is denoted as

2

1

(| | /)
H

i

index b i l
i

S s f D f




 

The initial construction overhead of the VSS-tree is

1

0

()
H

VSS i

init S H i
i

C C C f




  

5.2. Experiment Analysis

All experiments were performed with a Pentium Dual-

Core 2.60GHz CPU and 4.0G RAM. All the programs

were implemented in Java with 2Kbytes page size.

Each experiment was repeated 100 times and the

average was used to compare the performance of the

two ASDS. The data cardinality varies from 1×104 to

1×105 and the data points are uniformly distributed in

the data set. We evaluate and compare the performance

parameters of MR-tree and VSS-tree from the

following aspects: construction time, index size, query

processing time, disk accesses, VO size and query

integrity verification time.

Figure 5 illustrates construction time under different

data dimensions and data cardinalities, respectively.

The time includes: reading data from file, hash

computation and construction of authenticated

structure. The horizontal axis indicates data cardinality

and the vertical axis indicates construction time.

Figure 5. Construction-time vs. data cardinality and dimension.

The construction time of VSS-tree is slightly longer

than that of MR-tree under the same dimension. The

reason is that the computation of bounding sphere is

more complex than that of MBR. A bounding sphere is

represented by a centroid and a radius and computed

according to Equations (1) and (2), respectively. The

computation involves addition and multiplication

operations, while computation of MBR only involves

comparison operation.

Figure 6 illustrates the index size of two

authenticated trees. The storage space of MR-tree is

larger than that of VSS-tree. This is because the

storage of a rectangle is double of n-dimension, while

the storage of a bounding sphere is an n-dimensional

point plusing an integer.

Figure 6. Index size vs. data cardinality.

Query processing cost only influences the CSP

which determines the response speed of query

processing. Figure 7 illustrates the query processing

time of kNN query. Because kNN can be replaced by a

range query whose query results just include k data

points, the performance of range query is not discussed

here. kNN query is executed with random query

location. The value of k is set to 3.

(3)

(4)

(5)

(6)

(7)

(8)

Query Authentication of Outsourced Spatial Database 545

Figure 7. Query time vs. data cardinality.

The query time includes finding query results and

building verification object. As can be seen from

Figure 7, the query processing time based on VSS-tree

is much shorter than that based on MR-tree. The reason

is that using bounding sphere not only reduces the

height of VSS-tree but also reduces the overlap area

between nodes, and thus avoids unnecessary disk

accesses.

VO size influences the network transmission

overhead between CSP and clients. Figure 8 shows the

VO size under different data cardinality and

dimension. The VO size built based on VSS-tree is

much smaller than that based on MR-tree. This is

because the VSS-tree has more fanout and smaller

diameter than the MR-tree under the same condition.

Figure 8. VO size vs. data cardinality.

Figure 9 illustrates disk accesses of kNN query

based on VSS-tree and MR-tree. The vertical axis

indicates the number of disk accesses. It can be seen

that the VSS-tree needs fewer disk accesses than the

MR-tree. The reason is that VSS-tree has more fanout

than MR-tree which reduce the height of authenticated

tree. Furthermore, VSS-tree reduces the overlap area

between nodes, and thus avoids unnecessary disk

accesses.

Figure 9. Number of disk reads.

Verification cost only burdens the client. Figure 10

show the verification time on the client size.

Figure 10. Verification time.

Since VO size based on VSS-tree are smaller than that

based on MR-tree on the same condition, the

verification time based on VSS-tree is shorter than that

based on MR-tree.

6. Conclusions

In this paper, a new authenticated spatial index VSS-

tree is proposed for spatial query verification.

Theoretical analysis proves that VSS-tree can ensure

the correctness and completeness of query results. The

cost analysis and experiment results show that the

query processing, query verification and network

communication cost of VSS-tree is better than those of

MR-tree.

In the future, we will combine query verification

technique and privacy-preserving technique to perform

query verification on outsourced encrypted data.

Reference

[1] Armbrust M., Fox A., Griffith R., Joseph A.,

Katz R, and Konwinski A., Lee G., Patternson D.,

Rabkin A., Syoica I., and Zharia M “A View of

Cloud Computing,” Communications of The

ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] Ayyub S. and Kaushik P., “Secure Searchable

Image Encryption in Cloud Using Hyper Chaos,”

The International Arab Journal of Information

Technology, vol. 16, no. 2, pp. 251-259, 2019.

[3] Bo N., Xiaoxia P., Yuju L., and Xinyu P., “Query

Authentications Based on A Fixed Grid

Partitioning Quad-Tree Index in LBS Big Data,”

Journal of Tsinghua University (Science and

Technology), vol. 56, no. 7, pp. 785-792, 2016.

[4] Cheng W., Pang H., and Tan k., “Authenticating

Multi-Dimensional Query Results in Data

Publishing,” in Proceedings of IFIP Annual

Conference on Data and Applications Security

and Privacy, Berlin, pp. 60-73, 2006.

[5] Hu H., Xu J., Chen Q., and Yang Z.,

“Authenticating Location-Based Services

Without Compromising Location Privacy,” in

546 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020

Proceedings of Acm Sigmod International

Conference on Management of Data, Scottsdale

Arizona, pp. 301-312, 2012.

[6] Hu L., Ku W., Bakiras S., and Shahabi C.,

“Verifying Spatial Queries using Voronoi

Neighbours,” in Proceedings of 18th

SIGSPATIAL International Conference Advances

in Geographic Information Systems, California,

pp. 350-359, 2010.

[7] Jang M., Yoon M., and Chang J., “A Privacy-

Aware Query Authentication Index for Database

Outsourcing,” in Proceedings of International

Conference on Big Data and Smart Computing,

Bangkok, pp. 72-76, 2014.

[8] Ku W., Hu L., Shahabi C., and Wang H., “A

Query Integrity Assurance Scheme for Accessing

Outsourced Spatial Databases,” Geoinformatica,

vol. 17, no. 1, pp. 97-124, 2013.

[9] Li F., Yi K., Hadjieleftheriou M., and Kollios G.,

“Proof-Infused Streams: Enabling Authentication

of Sliding Window Queries on Streams,” in

Proceedings of 33rd International Conference on

Very Large Data Bases, Vienna, pp. 147-158,

2007.

[10] Lin X., Xu J., and Gu J., “Continuous Skyline

Queries With Integrity Assurance in Outsourced

Spatial Databases,” in Proceedings of

International Conference on Web-Age

Information Management, Berlin, pp. 114-126,

2012.

[11] Lin X., Xu J., and Hu H., “Authentication of

Location-Based Skyline Queries,” in

Proceedings Of 20th ACM International

Conference on Information and Knowledge

Management, Glasgow, pp. 1583-1588, 2011.

[12] Nath S. and Venkatesan R., “Publicly Verifiable

Grouped Aggregation Queries on Outsourced

Data Streams,” in Proceeding of IEEE 29th

International Conference on Data Engineering

(ICDE), Brisbane, pp. 517-528, 2013.

[13] Papadopoulos S., Yang Y., Bakiras S., and

Papadias D., “Continuous Spatial

Authentication,” in Proceedings of International

Symposium on Spatial and Temporal Databases,

Berlin, pp. 62-79, 2009.

[14] Wu D., Choi B., Xu J., and Jensen C.,

“Authentication of Moving Top-K Spatial

Keyword Queries,” IEEE Transactions on

Knowledge and Data Engineering, vol. 27, no. 4,

pp. 922-935, 2015.

[15] White D. and Jain R., “Similarity Indexing with

The Ss-Tree,” in Proceedings of 12th

International Conference on Data Engineering,

New Orleans, pp. 516-523, 1996.

[16] Xu J. and Chang E., “Authenticating Aggregate

Range Queries Over Multidimensional Dataset,”

IACR Cryptology Eprint Archive, vol. 2010, pp.

50, 2012.

[17] Yung D., Lo E., and Yiu M., “Authentication of

Moving Range Queries,” In Proceedings of 21st

ACM International Conference on Information

and Knowledge Management, Maui, pp. 1372-

1381, 2012.

[18] Yung D., Li Y., Lo E., and Yiu M., “Efficient

Authentication of Continuously Moving Knn

Queries,” IEEE Transactions on Mobile

Computing, vol. 14, no. 9, pp. 1806-1819, 2015.

[19] Yi K., Li F., Hadjieleftheriou M., Kollios G., and

Srivastava D., “Randomized Synopses for Query

Assurance on Data Streams,” in Proceedings of

24th International Conference on Data

Engineering, Cancún, pp. 416-425, 2008.

[20] Yi K., Li F., Cormode G., Hadjieleftheriou M.,

Kollios G., and Srivastava D., “Small Synopses

for Group-By Query Verification on outsourced

Data Streams,” ACM Transactions on Database

Systems, vol. 34, no. 3, pp. 1-42, 2009.

[21] Yiu M., Lo E., and Yung D., “Authentication of

Moving Knn Queries,” in Proceeding of IEEE

27th International Conference on Data

Engineering, Hannover, pp. 565-576, 2011.

[22] Yang Y., Papadopoulos S., Papadias D., and

Kollios G., “Authenticated Indexing for

Outsourced Spatial Databases,” vary large Data

Bases Journal, vol. 18, no. 3, pp. 631-648, 2009.

[23] Zhang B., Dong B., and Wang H., “AuthPDB:

Query Authentication for Outsourced

Probabilistic Databases,” arXiv preprint

arXiv:1808.08297, 2018.

[24] Zhang C., Xu C., Xu J., and Choi B.,

“Distributed Knn Query Authentication,” in

Proceedings of 19th IEEE International

Conference on Mobile Data Management,
Aalborg, pp. 167-176, 2018.

Query Authentication of Outsourced Spatial Database 547

Jun Hong received the Master

degree in computer science from

North University of China in 2007,

China. He received his Ph.D. degree

from Northeastern University in

2019, China. His current research

interests are network security, cloud

computing.

Tao Wen is a PhD supervisor of

Northeastern University, China. He

received his Ph.D. degree from

Northeastern University in 1993,

China. Since 2000, he has been the

president of Dalian Neusoft Institute

of Information, China. He has

authored more than 60 refereed journals and

conference papers. His research interests are network

security, wireless sensor networks and service-oriented

computing．

Quan Guo received his Ph.D.

degree from Dalian University of

Technology in 2005, China. Since

2011, he has been the vice-president

of Dalian Neusoft Institute of

Information, China. He has authored

more than 40 refereed journals and

conference papers. His research

interests include network security, computer grid and

optimal algorithm．

