
The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020                                             579 

Model Transformations Carried by the Traceability 

Framework for Enterprises in Software Industry 

 

Gullelala Jadoon1, Muhammad Shafi2, and Sadaqat Jan3 
1Department of Information Technology, University of Haripur, Pakistan 

2Faculty of Computing and Information Technology, Sohar University, Oman 
3University of Engineering and Technology, Mardan, Pakistan

Abstract: The developmental paradigm in the software engineering industry has transformed from a programming-oriented 

approach to model-oriented development. At present, model-based development is becoming an emerging method for enterprises 

for constructing software systems and services most proficiently. In Capability Maturity Model Integration (CMMI) Level 2, i.e., 

Managed, we need to sustain the bi-directional trace of the transformed models for the administration of user requirements and 

demands. This goal is achieved by the organization after applying the particular practices suggested by CMMI level 2 process 

area of Requirements Management (RM). It is very challenging for software developers and testers to maintain trace, 

particularly during the evaluation and upgrading phases of development. In our previous research work, we proposed a 

traceability framework for model-based development of applications for software enterprises. This work is the extension of our 

previously presented research work in which we have anticipated the meta-model transformations according to the Software 

Development Life Cycle (SDLC). These meta-models are capable of maintaining the trace information through relations. The 

proposed technique is also verified using a generalized illustration of an application. This transformation practice will give a 

foundation to software designers to maintain traceability links in model-driven development. 

 

Keywords: Requirements Management, traceability, Model-driven, SDLC, CMMI. 

Received February 23, 2020; accepted June 9, 2020 

https://doi.org/10.34028/iajit/17/4A/1 
 

1. Introduction 

Requirements Management (RM) is the foundation of 

software development, as well as the progressive stages 

where there is a conflict between clashing requirements. 

That is the reason RM practices and procedures assume 

a first job in resolving these disputations. RM is 

generally an isolated activity and should be transformed 

and unified at the later development steps. As specified 

by the software experts, presently, there is no authentic 

answer for the joined administration of shared artefacts 

in RM. 

Accordingly, we have to recommend a methodology 

to apply reasonable RM practices to catch the particular 

professional needs of such business systems. Any 

Requirement Management practice must be realized as 

acceptable if it reserves the time and cost; a client is 

devoting. Farther, method assessment can help 

organizations satisfactorily distinguish practices to 

distinguish what is the foremost demand of customers 

and concluding innovative practises for their requests. 

The consolidation of the developing constituents into the 

Quality Function Deployment (QFD) exploits these 

specifications more visibly and understandably to pick 

up the primary thought to progress development 

processes. Earlier work from this research area 

demonstrates that such models can be viably merged to 

distinguish client requirements and enhance system  

 
development. The Product-Service System (PSS) has 

revolved into the most extraordinary practice in 

developing smart data systems and services, which 

include extensive requirements techniques. This 

indication comprises the administration of different 

measurements, for example, platform requirements, 

performance, smartness, scalability, customization, and 

client agreement. A substantial trial is to deal with these 

properties at the primary step of requirements designing 

and to determine the insight of PSS related clashes on 

requirements [28, 38]. Figure 1 shows different 

practices involved at level 2 of Capability Maturity 

Model Integration (CMMI) and their names.  

 

Figure 1. Requirements management. 

https://doi.org/10.34028/iajit/17/4A/1


580                                             The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020 

The activities of RM are executed at the ‘Managed’ 

level of CMMI, i.e., level 2. Numerous software 

companies at this step try to follow these practices; yet, 

they don’t fast-track to process innovation. Such firms 

need evolvement in improving their schemes and 

applying inventive techniques in their procedures to 

make them beneficial [30]. Attaining stage 2 of CMMI 

implicates RM by employing automated and manual 

ways of management. Such practises containing 

traceability enhancement, updation activities, and 

software quality measurement. A wide-ranging scope of 

such practices is under preparation for this purpose [8]. 

The drive of this research is to analyze the previous 

model-oriented traceability framework and propose 

techniques to transform different models while keeping 

the trace links of each meta-model. It also focuses on 

discussing the model, identifying outcomes, and 

suggesting the appropriate method for transformation. 

Our research extends our previously presented work 

based on the traceability framework designed for model-

oriented software development [14]. In the current work, 

the following research statements are addressed: 

1. We are providing an in-depth analysis of previously 

proposed requirements traceability models in the 

literature and their shortcomings. 

2. We are analyzing the effectiveness of the proposed 

MDD framework to conclude the traceability of 

requirements for the software industry. 

3. The performance assessment of the proposed 

framework using a real-time application. 

The rest of the paper is structured as follows: section 2 

comprises the literature review, section 3 is based on the 

proposed framework, section 4 covers experiments and 

results while section 5 concludes the paper with future 

directions of the research. 

2. Literature Review 

Buglione et al. [5] concluded that software companies 

are constantly working on their process maturity by 

following different system management models. These 

models can illustrate the process maturity at all phases 

of system development. Using these maturity models, all 

the Software Development Life Cycle (SDLC) activities 

are refined as CMMI describes specific goals and 

practices to be followed at each developmental stage. 

Unal et al. [41] concentrated their research study on ISO 

and CMMI process models to be adopted for standard 

software development. Gonçalves et al. [11] also worked 

on CMMI standard and concluded that it is the 

commonly used evaluation means in software 

production. CMMI DEV provides best practices for 

developers to advance and innovate their processes 

according to the will of customers. Keshta et al. [18] and 

Souali et al. [39] proposed different frameworks for the 

implementation of RM practices, especially the trace 

related features. These trace models have been assessed 

using real application data of software houses. 

Automated tools such as StarUML, DOORS, 

Requirements Requisite Pro, RUT, Capra, and IBM 

Rational Rose are used for RM activities, including 

traceability maintenance [17, 27]. These tools provide 

requirements traceability coverage for the source code 

based development and support code alteration, its 

performance precision, and reliability with the user-

defined requirements [29, 36]. As far as the overhead 

of the application’s multi-platform is addressed, Dubois 

et al. [7] proposed DARWIN4REQ. It is a requirements 

traceability tool capable of preserving the trace links of 

heterogeneous meta-models. In order to target a 

specific functionality of the application for 

maintenance or evaluation, we need to localize that 

component. It is possible only if we have the complete 

links to that component in forwarding and backward 

directions. According to a research study conducted by 

Li et al. [22] there should be a defined trace criterion 

on which the whole system is evaluated. This criterion 

is essential for trace update and retrieval. Among the 

trace methods, the graph-based methodology proposed 

by Schwarz et al. [36] has better performance in the 

case of model-oriented systems but with some 

limitations. For better organization of the code, 

refactoring and semantic coherence are highly 

recommended by the software experts as they yield a 

sound quality system. 

Mahmoud et al. [25] and Guo et al. [12] used 

refactoring and semantics analysis on the source code 

to make it consistent to incorporate better traceability. 

Traceability is viewed as a significant attribute to 

enhance the developmental and maintenance related 

activities both in formal and informal modelling [19, 

34]. Presently lean and agile development 

methodologies known as incremental strategies are 

widely used in software industries because of their 

certain advantages. Paige et al. [31] recommended that 

due to the continuous change in code; in lean 

development, the trace links denigrate. International 

Standard Organization recommends 9001 and 90003 

quality standards to be applied to preserve the 

refactoring and consistency of the source code 

development. Hegedus et al. [13] suggested a query-

based traceability model for model-based development. 

In this method, agile development queries are 

employed to link the meta-models to localize a module. 

ICONIX paradigm proposed by Malinao et al. [26] uses 

Unified Models for the trace of the meta-models like 

use cases using robustness diagram. This paradigm uses 

depth-first search algorithm for design-driven testing in 

use cases and class diagrams. Other requirements 

quality matrices such as completeness, consistency, 

clarity, and correctness are also used to evaluate 

software performance using traceability links [23, 26]. 

Different requirements traceability techniques have 

been proposed by scientists to improve validation and 

maintenance of software. Potdar and Routroy [32] 



Model Transformations Carried by the Traceability Framework for Enterprises ...                                                                  581 

employed a dynamic grouping of the code units to 

maintain change traces in agile modelling due to rapidly 

changing requirements. He suggested agile 

manufacturing enablers, joint with a non-textual 

traceability practise, typically used in an agile 

environment. Tariq et al. [40] proposed trace linkage 

techniques where activities are traced through mapping. 

Jyoti and Chhabra [15] proposed a non-textual trace 

technique which is uni directional. Though, it offers 

trace in both the directions, the links denigrates while 

mapping code to the outcomes in case of large number 

of modules. Samalikova et al. [34] emphasized the oral 

assessment activities and performed a survey to 

represent trace throughout the appraisal process. Still, 

the results display that it is a uni-directional 

methodology for trace. Gonçalves et al. [11] concerted 

on following HCI codes in handling requirements, but it 

is confined to the user interface of application. Keshta et 

al. [18] has analyzed the performance of systems after 

several alterations are made and proposed a traceability 

framework for processing change in requirements. A. 

Zanatta and Vilain [43] suggested agile scrum methods 

for incremental software development as they are lean 

and flexible, which guarantees links support between 

code and other meta-models. Garzas and Paulk et al. [9] 

suggested scrum mapping methodology to provide bi-

directional trace following CMMI dev. 

Filion et al. [8] designed Atlassian JIRA an automated 

trace tool that provides a discrete bi-directional trace for 

bug tracking and requirements variation management. A 

practice used by visual metaphors has been suggested by 

L. Buglione et al. [5] which works by choosing specific 

development outcomes to combine. Violante et al. [42] 

suggested QFD methodology to achieve CMMI RM 

goals using advanced tool customization. Qasaimeh and 

Abran [33] has recommended an evaluation method for 

code trace management. Beecham et al. [3] proposed a 

RM model yet; the study scope is limited to source code. 

Kahkonen and Abrahamsson [16] has suggested another 

traceability methodology for incremental eXtreme 

Programming (XP) development, limited to code 

artefact. Patrick Mader has joined SQL with VTML by 

means of UML models, especially UML class models 

and use cases, to generate trace requests [25]. Schwarz 

et al. [36] recommended another trace methodology 

called Graph-based traceability, but its preservation is 

complex in case of an additional line of code. 

Laghouaouta et al. [21] used soft goal arrangements to 

supplement models to the up-to-date requirements and 

store a trace hierarchy after thorough regression testing. 

Still, the proficiency got poorer because of an increase in 

response time. Aizenbud-Reshef et al. [1] suggested that 

the intricacy of MDP lies in the preservation of 

traceability relations while combining different 

transformed models. Sango  [35] carried a research study 

for component-based traceability framework that 

utilized the UPPAL automated tool for validation that 

provides trace at the component level only. Seibel et al. 

[37] presented a trace model, which attained 

traceability both manually and in an automated way, 

but it is not a thorough mechanism. Chanda et al. [6] 

recommended a trace practise that maps system 

services to link them to UML classes in Service-

Oriented Architecture (SOA). Gayer et al. [10] 

proposed a lightweight trace mechanism for 

incremental agile-based development suitable for small 

applications. Kahkonen and Abrahamsson [16] 

followed CMMI level 2 practices for agile XP approach 

for providing single- directional trace. 

Throughout this literature review, we came across a 

number of trace techniques that are accompanied by 

some limitations including its incomplete coverage, 

text-based methodologies, source code oriented trace, 

time overhead, weak trace links, lack of meta-model 

trace and trace heterogeneity. 

The uni-directional and bi-directional trace 

performance evaluation conceded after a systematic 

literature review is gathered in the form of the 

following assessment tables.  

 
Table 1. Bi-directional traceability practices. 

Paper Technique used Bi-directional Trace 

Remapping Of CMMI 

Level 2 KPA’s For 
Development Process 

Improvement. [25] 

Mapping 
Bidirectional 
traceability 

Identifying High 

Perceived Value 

Practices Of CMMI 2 

Empirical Study. [30] 

Face-to-face 

questionnaire-

based survey. 

Bidirectional 

traceability 

Toward Implementation 

Of Requirement 

Management Specific 

Practices. [18] 

Workflow model 

for Requirement 

change 

management. 

Bidirectional 

traceability. 

A Case Study Of 
Process Improvement 

With CMMI Dev. And 

Scrum In Spanish 

Companies. [9] 

Scrum 

methodology 

Bidirectional 

traceability 

Extending An Agile 

Method To Support RM 

And Development In 

Conformance To 

CMMI.[43] 

Agile trace 

Development 

Bidirectional 

traceability 

Using The Expert Panel 
To Validate A 

Requirement Process 

Improvement Model. [3] 

RE model 
Bidirectional 

traceability 

Using Atlassian Tools 

For Efficient 

Requirement 

Management. [5] 

Atlassian JIRA, 

confluence Tool 

Bidirectional 

traceability 

The Lego Maturity And 

Capability Model 

Approach. [20] 

A Visual 

component-based 

approach. 

Bidirectional 

traceability 

An Integrated Approach 

To Support The 
Requirement 

Management (RM) Tool 

Customization For A 

Collaborative Scenario. 

[42] 

QFD, Kano’s 

model and 

Tontini’s method. 

Bidirectional 

traceability 

A Visual Language For 

Modelling And 

Executing Traceability 

Queries. [23] 

Visual Language 

for Modeling 

bidirectional trace. 

(VTML) 

Bidirectional 

traceability 

A Dedicated Approach 
For Model Composition 

Traceability. [21] 

Soft goal Trees. 
Bidirectional 

traceability 

Model Traceability. [1] 
Model-Driven 

Traceability 

Bidirectional 

traceability. 



582                                             The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020 

Also, the findings of the uni-directional trace are 

listed in Table 2. 

Table 2. Uni-directional traceability practices. 

Paper Technique used Uni-directional Trace 

Requirement 

Traceability Through 

Retrieval Using 

Dynamic Integration. 

[15] 

Automatic 
technique 

merged with 

non-textual 

based 

techniques. 

Text-based uni-

directional traceability. 

Process Mining Support 

For Capability Maturity 

Model Integration Based 
Software Process 

Assessment. [34] 

Interviews, oral 

audit sessions, 

process reviews, 
quality manuals. 

Uni-directional 

traceability. 

An Audit Model For 

ISO 9001 Traceability 

Requirements in Agile 

XP Environment. [33] 

Code 

Evaluation. 

 

Uni-directional code 

traceability. 

Achieving CMMI Level 

2 With Enhanced 

Extreme Programming 

Approach. [16] 

An agile 

method, extreme 

programming. 

Uni-directional 

traceability. 

A Component-Based 
Model-Driven Approach 

With Traceability Of 

Concerns. [35] 

UPPAL tool. 
Uni-directional 

component traceability. 

Dynamic Hierarchical 

Mega Models: 

Comprehensive 

Traceability 

And Its Efficient 

Maintenance. [4] 

Model-Driven 

Automated and 

manual 

Traceability. 

Comprehensive 

traceability is not 

covered. 

Traceability Between 

Service Component And 
Class: A Model 

Based Approach. [6] 

A model-

oriented trace 
mechanism for 

Services. 

Uni-directional 

traceability for service-
based systems only. 

3. Proposed Framework 

In our previous work, we proposed a model-based 

traceability framework for MDD that is proficient of 

identifying and locating each requirement from Software 

Requirement Specification (SRS) to respective meta-

model of the application because of the limitations in 

previous research studies [14]. The corresponding trace 

tables reserve the complete trace information. The 

framework represents different meta-models of Unified 

Modelling Language (UML) such as use case, class 

models, and ERD, etc., that are transformed to form a 

complete system, as shown in Figure 2. 

 

Figure 2. Proposed traceability framework. 

In Figure 2, M1 is representing the first UML Model; 

M2 is identifying the second UML Model, while M3 is 

representing the third UML Model, and so on. M1 is the 

SRS document which is representing five requirements 

R1, R2, R3, R4, and R5 represented by trace T1, T2, 

T3, T4, and T5. M1 model is transformed into M2, 

which is the UML use-case model. Here we have five 

use case models U1, U2, U3, U4, and U5 representing 

the particular requirements and trace numbers. 

Similarly, the M2 model is transformed into M3, which 

is the entity-relationship diagram. It results in the 

comprehensive traceability of the ERD. M3 model is 

transformed into M4, which represents the class 

diagrams of the system C1, C2, C3, C4, and C5. The 

traces of these diagrams are updated in the trace table 

as T1, T2, T3, T4, and T5, respectively. M4 model is 

transformed into M5, which is the system generated 

from the UML models. Its generalized trace is 

represented by TE2, as shown in the framework above. 

We can further extend this framework up to several 

transformed models where the respective trace 

information is recorded in the corresponding trace 

table. 

4. Model Transformations 

As we know that in model-driven development, the 

initial model is transformed into a number of meta-

models, as shown in Figure 3, where each derived 

model represents specific developmental information. 

The transformations are represented by T1, T2, T3, and 

T4. 

 



Model Transformations Carried by the Traceability Framework for Enterprises ...                                                                  583 

 
Figure 3. Meta-Model transformations. 

In Figure 2, Model 1 represents the Software 

Requirements specification, Model 2 represents the 

Usecase/Sequence models, Model 3 represents Entity 

Relationship Diagram, Model 4 represents Class 

Diagrams, and Model 5 represents the required system 

model which is a platform-specific model of the desired 

application. 

5. Experiments and Results 

To validate the performance of our proposed trace 

model, we have selected an android application 

Mathematical Logic developed by Kuczynski [20], a 

professor at the University of California. The primary 

user interface of the application is depicted in Figure 4.  

 
Figure 4. Mathematical logic application. 

The application is developed to aid the students in 

understanding basic mathematical concepts like 

Calculus, Boolean algebra, and important theorems. The 

suggested traceability framework is applied to the 

application mentioned above and generated the 

following meta-model transformations shown in Figures 

5, 6, 7, 8, and 9. 

In Figure 5, M1 is presented that depicts the core 

requirements of the application. Each requirement is 

mapped to its related trace. M1 is Platform independent 

model showing the SRS.  

 

Figure 5. Model 1. 

In Figure 6, M2 is presented that is the use case 

model of the application. Each requirement is 

represented by a use case which is further mapped to 

the trace table.  

 

Figure 6. Model 2. 

In Figure 7, M3 is presented, which is the entity-

relationship diagram of the application. The basic 

entities are represented as E1, E2, and E3. In the trace 

table, each requirement is mapped to its previous trace 

number, followed by the entity information in the third 

column of the table. It is clear that the previous trace 

information is preserved in the upcoming tables, and 

the trace links are maintained, which helps during 

software testing. In the ER Diagram, we can put all the 

necessary details used to understand that entity and can 

also show the relationships among all the entities. This 

will help to understand the complete functionality of 

the application.  



584                                             The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020 

 

Figure 7. Model 3. 

In Figure 8 below, M4 is represented, which shows 

the class diagrams of the application. The trace table has 

also been updated to map the respective classes.  

 

Figure 8. Model 4. 

In Figure 9, M5 is shown, which is the required 

android application platform-specific model. The trace 

table shows the requirement, followed by the trace 

number, corresponding class, and entity. In this way, all 

the link information is maintained.  

 

Figure 9. Model 5. 

With the help of this traceability framework, we can 

sustain the links of previous meta-models. This 

traceability of previous and fore coming models is very 

useful for verification purposes and also during the 

software maintenance phase. The trace tables provided 

are used to record the exact links of all the modules 

throughout the application. This traceability is 

traversed in both the forward and backward directions. 

From the above experiment, it is clear that the proposed 

framework is most suitable for model-oriented 

applications as compared to the ordinary agile 

applications. In Figure 10, we have shown the 

traceability coverage in agile and model-driven projects 

based on the previous study.  

In our earlier research, we applied the proposed 

framework on five agile-based projects. We measured 

the percentage of traceability at the phases of 

requirements engineering, architecture, and design, 

detailed design, modelling, development, and coding 

and maintenance. It shows 90% trace coverage at the 

stages of development and coding.  

Similarly, the framework is applied to the remaining 

model-based projects, and the trace coverage 

percentage on the various developmental phases is 

analyzed. The trace results yield better performance in 

the case of model-based applications, i.e., up to 95%. 

The only step that showed less performance is the 

development and coding phase. This is because the 

traceability framework is a UML based methodology 

that does not cover the source code based trace.  

In Figure 10, the trace performance comparison of 

both the agile development and model-based 

development are combined. This graph shows that the 

trace convergence is least in agile development as 

compared to the other one. The traditional development 

shows better results in source code development while 

in model-based development; it is less at this phase. 

This is because there is less emphasis on source code in 

model-based development, and the system is generated 

through model transformations.  

 

Figure 10. MDD and traditional development. 

6. Conclusions 

From this research study, we can conclude that the 

performance of our suggested framework has shown 

improved results for small and medium model-driven 

software systems. In the case of traditional 

development, the trace links are hard to update by the 



Model Transformations Carried by the Traceability Framework for Enterprises ...                                                                  585 

developers whenever any modifications are made to the 

system. This results in a weak quality system that doesn’t 

provide maintenance support and affects the reputation 

of the enterprise. 

On the other hand, the experiments proved that 

model-based systems are easy to maintain and traverse 

because there is minimal code development, and all the 

development artefacts are models. Our proposed 

framework can be applied to any model-based 

application designed by the organization to generate and 

maintain the trace information very efficiently and 

effectively. The future work comprises refining this 

model-based framework to make it more applicable and 

efficient to larger software systems. Moreover, we can 

further generate the trace results of different applications 

in different small and medium enterprises and compare 

trace efficiency.  

References 

[1] Aizenbud-Reshef N., Nolan B., Rubin J., and 

Shaham-Gafni Y., “Model Traceability,” IBM 

Systems Journal, vol. 45, no. 3, pp. 515-526, 2006. 

[2] Babar M., Khattak A., Arif F., and Tariq M., “An 

Improved Framework for Modelling Data 

Warehouse Systems Using UML Profile,” The 

International Arab Journal of Information 

Technology, vol. 17, no. 4, pp. 562-571, 2020. 

[3] Beecham S., Hall T., Britton C., Cottee M., and 

Rainer A., “Using an Expert Panel to Validate a 

Requirements Process Improvement Model,” 

Journal of Systems and Software, vol. 76, no. 3, pp. 

251-275, 2005. 

[4] Bokhari M. and Siddiqui S., “Metrics for 

Requirements Engineering and Automated 

Requirements Tools,” in Proceedings of 5th 

National Conference Computing For Nation 

Development, New Delhi, 2011. 

[5] Buglione L., Wangenheim C., Hauck J., and 

McCaffery F., “The LEGO Maturity and 

Capability Model Approach,” in Proceedings of 5th 

World Congress for Software Quality, Shanghai, 

2011. 

[6] Chanda J., Sengupta S., Kanjilal A., and 

Bhattacharya S., “Traceability Between Service 

Component and Class: a Model Based Approach,” 

ACM SIGSOFT Software Engineering Notes, vol. 

37, no. 6, pp. 1-5, 2012.  

[7] Dubois H., Peraldi-Frati M., and Lakhal F., “A 

Model for Requirements Traceability in a 

Heterogeneous Model-Based Design Process: 

Application to Automotive Embedded Systems,” 

in Proceedings of 15th IEEE International 

Conference on Engineering of Complex Computer 

Systems, Oxford, pp. 233-242, 2010. 

[8] Filion L., Daviot N., Bel J., and Gagnon M., 

“Using Atlassian Tools for Efficient Requirements 

Management: an Industrial Case Study,” in 

Proceedings of Annual IEEE International 

Systems Conference, Montreal, pp. 1-6, 2017. 

[9] Garzas J. and Paulk M., “A Case Study of 

Software Process Improvement with CMMI-

DEV and Scrum in Spanish Companies,” Journal 

of Software: Evolution and Process, vol. 25, no. 

12, pp. 1325-1333, 2013. 

[10] Gayer S., Herrmann A., Keuler T., Riebisch M., 

and Antonino P., “Lightweight Traceability for 

the Agile Architect,” Computer, vol. 49, no. 5, pp. 

64-71, 2016. 

[11] Gonçalves T., Oliveira K., and Kolski C., “A 

Study About HCI in Practice of Interactive 

System Development Using CMMI-DEV,” in 

Proceedings of 29th Conference on l'Interaction 

Homme-Machine, Poitiers, pp. 169-177, 2017. 

[12] Guo J., Cheng J., and Cleland-Huang J., 

“Semantically Enhanced Software Traceability 

Using Deep Learning Techniques,” in 

Proceedings of IEEE/ACM 39th International 

Conference on Software Engineering, Buenos 

Aires, pp. 3-14, 2017. 

[13] Hegedus A., Horvath A., Rath I., Starr R., and 

Varro D., “Query-Driven Soft Traceability Links 

For Models,” Software and Systems Modeling, 

vol. 15, no. 3, pp. 733-756, 2016. 

[14] Jadoon G., Shafi M., and Jan S., “A Model-

Oriented Requirements Traceability Framework 

for Small and Medium Software Industries,” in 

Proceedings of International Arab Conference on 

Information Technology, Al Ain, pp. 91-96, 2019. 

[15] Jyoti and Chhabra J., “Requirements Traceability 

Through Information Retrieval Using Dynamic 

Integration of Structural and Co-change 

Coupling,” in Proceedings of 1st International 

Conference on Advanced Informatics for 

Computing Research, Jalandhar, pp. 107-118, 

2017. 

[16] Kahkonen T. and Abrahamsson P., “Achieving 

CMMI Level 2 with Enhanced Extreme 

Programming Approach,” in Proceedings of 

International Conference on Product Focused 

Software Process Improvement, Kansai Science 

City, pp. 378-392, 2004. 

[17] Kamalabalan K., Uruththirakodeeswaran T., 

Thiyagalingam G., Wijesinghe D., Perera I., 

Meedeniya D., and Balasubramaniam D., “Tool 

Support for Traceability of Software Artefacts,” 

in Proceedings of Moratuwa Engineering 

Research Conference, Moratuwa, pp. 318-323, 

2015. 

[18] Keshta I., Niazi M., and Alshayeb M., “Towards 

Implementation of Requirements Management 

Specific Practices (SP1.3 and SP1.4) for Saudi 

Arabian Small and Medium Sized Software 

Development Organizations,” IEEE Access, vol. 

5, pp. 24162-24183, 2017.  



586                                             The International Arab Journal of Information Technology, Vol. 17, No. 4A, Special Issue 2020 

[19] Kleffmann M., Rohl S., Gruhn V., and Book M., 

“Establishing and Navigating Trace Links between 

Elements of Informal Diagram Sketches,” in 

Proceedings of IEEE/ACM 8th International 

Symposium on Software and Systems Traceability, 

Florence, pp. 1-7, 2015. 

[20] Kuczynski J., “Mathematical Logic,” Google 

Playstore, Available at: 

https://play.google.com/store/apps/detail?id=com.

shinwari.mathematicallogic, Last Visited, 2019. 

[21] Laghouaouta Y., Anwar A., Nassar M., and 

Coulette B., “A Dedicated Approach for Model 

Composition Traceability,” Information and 

Software Technology, vol. 91, pp. 142-159, 2017. 

[22] Li Z., Chen M., Huang L., Ng V., and Geng R., 

“Tracing Requirements in Software Design,” in 

Proceedings of International Conference on 

Software and System Process, Paris, pp. 25-29, 

2017. 

[23] Mader P. and Cleland-Huang J., “A Visual 

Language for Modeling and Executing 

Traceability Queries,” Software and Systems 

Modeling, vol. 12, no. 3, pp. 537-553, 2013. 

[24] Mader P. and Egyed A., “Do Developers Benefit 

From Requirements Traceability When Evolving 

And Maintaining A Software System?,” Empirical 

Software Engineering, vol. 20, no. 2, pp. 413-441, 

2015. 

[25] Mahmoud A. and Niu N., “Supporting 

Requirements to Code Traceability Through 

Refactoring,” Requirements Engineering, vol. 19, 

no. 3, pp. 309-329, 2014. 

[26] Malinao J., Tiu K., Lozano L., Pascua S., Chua R., 

Magboo M., and Caro J., “A Metric for User 

Requirements Traceability in Sequence, Class 

Diagrams, and Lines-Of-Code via Robustness 

Diagrams,” Theory and Practice of Computation, 

Springer, 2013. 

[27] Maro S. and Steghofer J., “Capra: A Configurable 

and Extendable Traceability Management Tool,” 

in Proceedings of IEEE 24th International 

Requirements Engineering Conference, Beijing, 

pp. 407-408, 2016. 

[28] Mavin A., Wilkinson P., Teufl S., Femmer H., 

Eckhardt J., and Mund J., “Does Goal-Oriented 

Requirements Engineering Achieve Its Goal?,” in 

Proceedings of 25th IEEE International 

Requirements Engineering Conference, Lisbon, 

pp. 174-183, 2017. 

[29] Nassar B. and Scandariato R., “Traceability 

Metrics as Early Predictors of Software Defects,” 

in Proceedings of IEEE International Conference 

on Software Architecture, Gothenburg, pp. 235-

238, 2017. 

[30] Niazi M. and Babar M., “Identifying High 

Perceived Value Practices of CMMI Level 2: An 

Empirical Study,” Information and Software 

Technology, vol. 51, no. 8, pp. 1231-1243, 2009. 

[31] Paige R., Matragkas N., and Rose L., “Evolving 

models in Model-Driven Engineering: State-of-

the-art and Future Challenges,” Journal of 

Systems and Software, vol. 111, pp. 272-280, 

2016. 

[32] Potdar P. and Routroy S., “Analysis of Agile 

Manufacturing Enablers: A Case Study,” 

Materials Today: Proceedings, vol. 5, no. 2, pp. 

4008-4015, 2018. 

[33] Qasaimeh M. and Abran A., “An Audit Model for 

ISO 9001 Traceability Requirements in Agile-XP 

Environments,” Journal of Software, vol. 8, no. 7, 

pp. 1556-1567, 2013. 

[34] Samalikova J., Kusters R., Trienekens J., and 

Weijters A., “Process Mining Support for 

Capability Maturity Model Integration-Based 

Software Process Assessment, in Principle and in 

Practice,” Journal of Software: Evolution and 

Process, vol. 26, no. 7, pp. 714-728, 2014. 

[35] Sango M., “A Component-Based Model-Driven 

Approach with Traceability of Concerns: Railway 

RBC Handover Case Study,” in Proceedings of 

Young Reseachers Seminar, Rome, 2015. 

[36] Schwarz H., Ebert J., and Winter A., “Graph-

Based Traceability: a Comprehensive Approach,” 

Software and Systems Modeling, vol. 9, no. 4, pp. 

473-492, 2010. 

[37] Seibel A., Neumann S., and Giese H., “Dynamic 

Hierarchical Mega Models: Comprehensive 

Traceability and its Efficient Maintenance,” 

Software and Systems Modeling, vol. 9, no. 4, pp. 

493-528, 2010. 

[38] Song W., “Requirement Management for 

Product-Service Systems: Status Review and 

Future Trends,” Computers in Industry, vol. 85, 

pp. 11-22, 2017. 

[39] Souali K., Rahmaoui O., and Ouzzif M., “An 

Overview of Traceability: Definitions and 

Techniques,” in Proceedings of 4th IEEE 

International Colloquium on Information Science 

and Technology, Tangier, pp. 789-793, 2014. 

[40] Tariq A., Khan S., and Iftikhar S., “Remapping of 

CMMI level-2 KPA’s for Development Process 

Improvement of Software-As-A-Service (Saas) 

Cloud Environment,” in Proceedings of 

International Conference on Open Source 

Systems and Technologies, Lahore, pp. 43-51, 

2014. 

[41] Unal A., Karaomer R.B., and Kaynak O., 

“Analysis of the Practices for the CMMI-SVC in 

an ISO/IEC 20000-1 Certified Organization,” in 

Proceedings of European Conference on 

Software Process Improvement, vol. 567-577, 

2017. 

[42] Violante M., Vezzetti E., and Alemanni M., “An 

Integrated Approach to Support The Requirement 

Management (RM) Tool Customization for a 

Collaborative Scenario,” International Journal 

https://play.google.com/store/apps/detail?id=com.shinwari.mathematicallogic
https://play.google.com/store/apps/detail?id=com.shinwari.mathematicallogic


Model Transformations Carried by the Traceability Framework for Enterprises ...                                                                  587 

on Interactive Design and Manufacturing, vol. 11, 

no. 2, pp. 191-204, 2017. 

[43] Zanatta A. and Vilain P., “Extending an Agile 

Method to Support Requirements Management 

and Development in Conformance to CMMI,” 

HIFEN, vol. 30, no. 58, 2006. 

 
Gullelala Jadoon received her M.S. 

and Bachelors’ degree in Software 

Engineering from University of 

Engineering and Technology, 

Peshawar, Pakistan. She received 

University Gold Medal in Bachelors’ 

in Software Engineering. She also 

received distinction in MS thesis titled, “Traceability 

Model for Requirements Management: Implementation 

of CMMI practices”. She is currently working as 

Lecturer with the Department of Information 

Technology, University of Haripur, Pakistan. She has 

supervised a number of students’ research projects in the 

field of computer science and software engineering. 

 

Muhammad Shafi did his bachelor 

from Ghulam Ishaq khan Institute of 

Engineering Sciences and Technology 

and PhD from Loughborough 

university UK in 2005 and 2010 

respectively. He has served at various 

universities including University of 

Engineering and Technology Peshawar, University of 

Science and Technology Bannu, Islamic University in 

Medina Saudi Arabia and Air University Islamabad. 

Currently, he is serving as associate professor at Sohar 

University in Oman. Computer vision, machine learning, 

human computer interaction, mobile computing, and 

software engineering are his areas of research. He has 

published more than 50 papers in various reputed 

journals and conferences. He has also worked in 

software development projects for various multinational 

companies. 

 

Sadaqat Jan received his Ph.D. 

degree from Brunel University, 

London, UK.  He is working as a 

professor in the Department of 

Computer Software Engineering, 

University of Engineering and 

Technology, Mardan. His research 

interests include semantic web, data mining, HCI, 

requirement engineering, and knowledge engineering. 

 


