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1. Introduction 

Group signatures, introduced by Chaum and Heyst [5], 

allow members to sign messages anonymously on 

behalf of their group. The identity of the signer is not 

revealed from signatures and can be verified by the 

group public-key. In-case of any dispute, a trusted 

party called group manager can trace the signature and 

reveal the identity of the signer. One of the 

applications of group signatures is cloud security [16]. 

If a particular group member is suspected of an 

illegal activity, then all the signatures generated by that 

member have to be detected. In group signatures, this 

is done by the group manager by opening all the 

signatures. This violates the privacy of all the group 

members and is inefficient (centralized opening by the 

group manager). To overcome these two drawbacks, 

Kiayias et al. [9] defined traceable signatures where in 

addition to the group manager opening the signatures 

individually, he can reveal the tracing trapdoor of a 

suspected group member to his agents and agents can 

detect all the signatures generated by that member 

without revoking the anonymity of remaining group 

members. This also improves scalability as agents can 

run in parallel compared to the traditional group 

signatures. Moreover in traceable signatures, a signer 

can provably claim the authorship of his own 

signatures. Since 2004, a few traceable signature 

schemes were proposed and these are insecure once 

quantum computers come into existence [17]. 

 Lattice-based Cryptography: Since the works of 

Regev [15] and Gentry et al. [7], lattice-based 

cryptography have been an exciting research area. It 

is a promising alternative to classical cryptography 

due to the following reasons: constructions based on 

lattices are secure even in the presence of quantum 

computers, involves simple operations and are based 

on worst-case hardness assumptions. 

 

Gordon et al. [8] introduced the first lattice-based 

group signature scheme. Since then, several lattice-

based group signature schemes with different features 

were proposed [10, 11, 12, 13, 14]. All these schemes 

are proved to be secure in random oracle model. Even 

in the random oracle model, the design of group 

signature schemes with different traceable mechanisms 

is a non-trivial problem. In particular, no lattice-based 

traceable signature scheme has been proposed so far. 

 Contribution: We propose the first traceable 

signature scheme using lattices. Compared to the 

existing lattice-based group signature schemes, our 

scheme has following advantages:  

 User tracing: Agents on receiving the trapdoor of 

a particular group member from group manager 

can open all the signatures generated by that 

member preserving the anonymity of other 

members. 

 Group member can claim the ownership of its 

own previously generated signature preserving 

the privacy of remaining signatures generated by 

that member. 

 Group members can join dynamically. Compared 

to existing lattice-based group signature schemes 

which support dynamic joining [12, 14] the size 

of group public-key is efficient by log N factor, 

where N is the number of members in the group. 

Our scheme satisfies the security requirements, defined 

by Kiayias et al. [9], based on the hardness of two 

average-case lattice problems: Short Integer Solution 

(SIS) and Learning with Errors (LWE). 

 Construction Overview: To achieve dynamic 

joining, we adapt the joining protocol in [12] which 

allows the new members to sample their secret-keys 

and are validated by the group manager. If secret-
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keys are valid, the group manager issues the 

membership certificates. In our scheme, joining 

protocol is same as in [12] except during the 

membership certificate generation. In [12], to 

generate certificate, it uses the encoding function 

defined in [3] which consists of O (log N) matrices 

in group public-key (gpk). To decrease the size of 

gpk, our scheme uses the encoding function defined 

in [1], which consists of 3 matrices. Group manager 

maintains a database that contains all the 

information about registered members.  

During signature generation, signer i generates the 

syndrome on its secret-key and its certificate. These 

syndromes are individually encrypted using Regev 

encryption scheme [7]. Commitment on syndrome 

formed by secret-key is generated using SIS function 

(one-way).  

An interactive zero-knowledge protocol is 

constructed to prove signer is a valid group member, 

ciphertexts are well-formed and commitment generated 

on secret-key syndrome is the correct commitment. 

This protocol is repeated many times to make 

soundness error negligible and is made non-interactive 

using Fiat-Shamir heuristic [6]. Group manager 

possesses the secret-key of regev encryption scheme. 

To achieve signature opening, group manager decrypts 

the syndrome on secret-key and reveals the identity 

using the database (containing the syndromes of all 

secret-keys along with the identities). If all the 

signatures generated by a particular suspected user has 

to be revealed, then group manager generates the 

trapdoor of user i, syndrome on user i certificate and an 

intermediate key that decrypts the ciphertext on this 

syndrome, and is given to the agents. Agents upon 

receiving trapdoor for user i, decrypts the ciphertext 

given in the signature to obtain the syndrome on 

certificate 𝑖 and matches with the syndrome given in 

the trapdoor. Thus, user tracing is achieved in our 

scheme. Signer can claim the signature as his own by 

generating the Non-Interactive Zero-Knowledge 

(NIZK) protocol that the commitment in the signature 

is generated by using its own secret-key. Verifiers 

check the validity of the protocol to verify signature 

claiming. 

 Organization: In section 2, model of traceable 

signatures and cryptographic primitives in lattices is 

presented. Section 3 presents the interactive zero-

knowledge protocol used in our work. Construction 

of our scheme and its security proofs are discussed 

in sections 4 and 5, respectively. Finally, section 6 

concludes our work. 

 

 

 

2. Preliminaries 

2.1. Traceable Signatures 

This section presents the model of traceable signature 

[9]. It consists of following nine algorithms. 

 Setup: On input security parameter 𝑛 ∈ 𝑁, a 

trusted party executes this algorithm and outputs 

the group public-key (gpk) and a group manager 

secret-key (ɡmsk). 

 Join: It is an interactive protocol between Group 

Manager (GM) and user i(Ui). At the end of the 

protocol Ui obtains the secret-key seci and a 

membership certificate certi. GM appends the Ui 

transcript transcripti to the database called 

transcripts, which is a private database 

containing the transcripts of all users.  

 Sign: On input message m, secret-key 𝑠𝑒𝑐𝑖 and 

membership certificate certi this algorithm 

generates the traceable signature ∑ on m. 

 Verify: This algorithm returns 0 or 1 when group 

public-key ɡpk, message m and signature ∑ are 

given as input.  

 Open: Given a valid traceable signature ∑, GM 

using his own secret-key ɡmsk and the database 

transcripts outputs an identity of the signer. 

 Reveal: Given an index i of a group member 

along with its join transcript transcripti. GM 

using his own secret-key outputs the tracing 

trapdoor tracei of user i. 

 Trace: Given a group public-key ɡpk, a valid 

signature ∑, and tracing trapdoor 𝑡𝑟𝑎𝑐𝑒𝑖 of user i 

as input, this algorithm return 1 or 0. 

 Claim: On input ɡpk, a message signature pair 

(m, ∑) given by user i, user i secret-key seci and 

its membership certificate certi this algorithm 

returns the claim τ for an authorship of i for 

signature ∑. 

 Claim-Verify: Given a ɡpk, message-signature 

pair (m, ∑) and claim τ, it returns 1 or 0. 

 Correctness: A traceable signature scheme is correct 

if the following four conditions are satisfied with 

high probability in n, where n is the security 

parameter. Let SignU, RevealU and ClaimU be the 

oracles of Sign, Reveal and Claim algorithms of 

user U respectively. 

a) Sign Correctness: For all m, Verify (m, ɡpk, 

SignU)=1. 

b) Open Correctness: For any m, Open (SignU, ɡpk, m, 

ɡmsk, transcripts)= U. 

c) Trace Correctness: For any m, Trace(ɡpk, SignU, 

RevealU)=1 and for any iʹ≠ U Trace(ɡpk, Signiʹ, 

RevealU)=0. 

d) Claim-Verify Correctness: For all (m, ∑)← SignU 

Claim―Verify (m, ∑, ClaimU, ɡpk)=1  
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Security model of traceable signatures was 

formalized in [9]. A traceable signature scheme is 

secure if it is secure against misidentification, 

anonymity and framing attacks. In all these attacks, 

adversary is given access to the certain oracles 

which share the following variables: 

 State: contains transcripts, secret-keys and 

certificates of all members joined in the group. Siɡs: 

set of members whose signatures are revealed by 

Qsiɡ query. Revs: set of members whose trapdoor is 

revealed by the Qreveal query. N is the number of 

members in the group. U(p): set of honest members 

in the group. U(a): set of adversary controlled 

members in the group and U(b): set of members 

added by the adversary acting asgroup Manager  

(GM). 

Oracles which are given access to the adversary are: 

 Qy: returns ɡpk. Qs returns ɡmsk. Qa-join: In the 

join protocol, oracle acts as a group manager and 

adversary acts as a user. Qb-join: In the join 

protocol, adversary acts as a group manager and 

oracle acts as a user. When protocol in Qa-join and 

Qb-join terminates, it adds user i to U(a) and U(b) 

respectively and sets state=state ׀׀ (i, certi, 

transcripti, ⊥), transcripts= transcripwts ׀׀ (i, 

transcripti ). 

 Qp-join: Introduces honest users in the group and 

sets state and transcripts as in Qb-join query.  

 Qsig: On input message m and index i, this oracle 

returns the signature ∑, if an entry is found in 

𝑠𝑡𝑎𝑡𝑒 and adds (i, m, ∑) to siɡs. If no entry is 

found or 𝑖 ∈  𝑈(𝑎) then, it returns ⊥ and Qreveal: 

returns the output of Reveal (i, transcripts) and 

adds i to Revs. Outputs ⊥ if 𝑖 ∈ 𝑈(𝑏) or does not 

exist. 

 Misidentification attack: In this attack, adversary 

can control a set of users in the group through Qa-join 

query. It is allowed to observe the system while 

generating signatures and adding users through Qsiɡ 

and Qb-join queries.In-addition, adversary is allowed 

to access Qreveal which reveals the tracing trapdoor 

of users. Finally, adversary has to generate a valid 

signature that is not opened or traced to a user 

controlled by the adversary. It can be clearly 

explained in the following experiment. 

Experiment 𝐸𝑥𝑝𝐴
𝑚𝑖𝑠(𝑛):(𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘)  ← 𝑆𝑒𝑡𝑢𝑝(1𝑛);  

(𝑚, Σ) ← 𝐴(𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛 , 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔); If 

Verify(𝑚, Σ, 𝑔𝑝𝑘) = 0 then return 0; If 

𝑂pen(𝑚, Σ, 𝑔𝑚𝑠𝑘) = j ∉ 𝑈(𝑎)) or  ∧𝑖∈𝑈(𝑎) Trace(Σ,

Reveal(i)) = 0 then return 1; return 0; A traceable 

signature is secure against misidentification attacks if 

Pr[𝐸𝑥𝑝𝐴
𝑚𝑖𝑠(𝑛) = 1]is negligible in n. 

 Anonymity attack: This attack operates in two 

phases: play and guess. In play phase, adversary has 

access to 𝑄𝑎−𝑗𝑜𝑖𝑛, 𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑠𝑖𝑔 𝑎𝑛𝑑 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 

through which it controls set of users, observes the 

system during addition of members and signature 

generation and can obtain the tracing information of 

any user. At the end of play phase, adversary 

chooses two honest users which are not input to 

𝑄𝑟𝑒𝑣𝑒𝑎𝑙 query and obtains signature generated by 

one of them. In the guess stage, adversary has to 

guess the identity of the signer. This can be 

explained with the following experiment.  

Experiment 𝐸𝑥𝑝𝐴
𝑎𝑛𝑜𝑛(𝑛): (𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) ←

𝑆𝑒𝑡𝑢𝑝(1𝑛); (𝑎𝑢𝑥,𝑚, 𝑖0, 𝑖1) ←
𝐴(𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛 , 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔); If 𝑖0 ∉ 𝑈

(𝑝) or𝑖1 ∉

𝑈(𝑝) or 𝑖0 ∈ 𝑅𝑒𝑣𝑠or𝑖1 ∈ 𝑅𝑒𝑣𝑠then return 0; 𝑏 ←
{0,1}, Σ ← Sign(𝑔𝑝𝑘,𝑚, 𝑠𝑒𝑐𝑖𝑏 , 𝑐𝑒𝑟𝑡𝑖𝑏); 

𝑏′←A(𝑔𝑢𝑒𝑠𝑠, 𝑎𝑢𝑥, Σ: 𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛, 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔)I

f b=𝑏′, then return 1; return 0; A traceable signature is 

said to be secure against anonymity attacks if for any 

probabilistic polynomial-time algorithm A, 

|Pr[𝐸𝑥𝑝𝐴
𝑎𝑛𝑜𝑛(𝑛) = 1] −

1

2
 | is negligible in 𝑛. 

 Framing attacks: In this attack, adversary is allowed 

to control group manager through QS query. It can 

observe the system through Qb-join and Qsig queries. 

The goal of the adversary is either to generate a 

signature that opens or traces to honest user or to 

claim the ownership of the signature generated by 

another user. It can be described by the following 

experiment. 

Experiment 𝐸𝑥𝑝𝐴
𝑓𝑟𝑎(𝑛): (𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) ←

𝑆𝑒𝑡𝑢𝑝(1𝑛); (𝑚, Σ, τ) ← A(𝑄𝑦, 𝑄𝑆, 𝑄𝑏−𝑗𝑜𝑖𝑛 , 𝑄𝑠𝑖𝑔); If 

Verify(𝑚, Σ, 𝑔𝑝𝑘) = 0 then return 0; If 

𝑂pen(𝑚, Σ, 𝑔𝑚𝑠𝑘) ∈

𝑈(𝑏) or ∀𝑖∈𝑈(𝑏)Trace(Σ,   Reveal(i)) = 1then return 1; 

If ∀𝑖∈𝑈(𝑏)(𝑖, Σ) ∈ 𝑠𝑖𝑔𝑠 and 

Claim Verify(𝑚, Σ, τ, 𝑔𝑝𝑘) = 1 then return 1; return 0; 

A traceable signature is secure against framing attacks 

if for any probabilistic polynomial-time adversary A, 

Pr[𝐸𝑥𝑝𝐴
𝑓𝑟𝑎(𝑛) = 1] is negligible in n. 

2.2. Lattices 

For any m linearly independent vectors B= (b1, ..., bm), 

lattice L(B) is defined as 

𝐿(𝐵) = {∑ 𝑥𝑖
𝑚
𝑖=1 𝑏𝑖: 𝑥𝑖 ∈ 𝑍}. 

For any positive real number 𝑠, discrete guassian 

distribution over lattice Λ is defined as DΛ,s(𝑥) =
𝜌𝑠(𝑥) 𝜌𝑠(Λ)⁄ for any 𝑥 ∈ Λ.  

For any 𝑚, 𝑛 ≥ 1, 𝑞 ≥ 2, matrix 𝐴 ∈ 𝑍𝑞
𝑛×𝑚, lattice 

Λ⊥(𝐴) is defined as 

Λ⊥(𝐴) = {𝑒 ∈ 𝑍𝑚: 𝐴𝑒 = 0 𝑚𝑜𝑑 𝑞} 
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(2) 

For any 𝑢 ∈ 𝑍𝑞
𝑛, coset of the lattice Λ𝑢

⊥(𝐴) is defined as 

Λ𝒖
⊥(𝐴) = {𝒆 ∈ 𝑍𝑚: 𝐴𝒆 = 𝒖 𝑚𝑜𝑑 𝑞} 

In our work, we consider two average case lattice 

problems are Short Integer Solution (SIS) and 

Learning With Errors (LWE). 

SISn,m,q,β
p

: Given a uniformly random matrix A ∈

Zq
n×m, find the vector x ∈ Λ⊥(A) such that ||x||p ≤ β. 

LWE𝑛,𝑞,𝜓 : Let n,m ≥ 1,q ≥ 2 and 𝜓 be the 

probability distribution over Z. For ∈ 𝑍𝑞
𝑛, the 

distribution 𝐴𝑠,𝜓 over 𝑍𝑞
𝑛 × 𝑍𝑞is obtained by sampling 

a uniform vector 𝑎 ∈ 𝑍𝑞
𝑛, 𝑒 ∈ 𝜓 and outputting the 

pair (a, aTs+ e). The goal of LWE𝑛,𝑞,𝜓  is to distinguish 

𝑚 samples chosen according to 𝐴𝑠,𝜓 from the 𝑚 

samples chosen according to uniform distribution over 

𝑍𝑞
𝑛 × 𝑍𝑞. 

3. Underlying Zero-Knowledge Argument 

System 

Let D, L be positive integers. Libert et al. [12] 

proposed an interactive zero-knowledge protocol for 

the relation R 

𝑅 = {(𝑃, 𝑦; 𝑥) ∈ 𝑍𝑞
𝐷×𝐿 × 𝑍𝑞

𝐷 × 𝑉𝑎𝑙𝑖𝑑: 𝑃𝑥 = 𝑦 𝑚𝑜𝑑𝑞}  

Where Valid is the subset of {−1,0,1}𝐿 satisfying the 

following two conditions: 

1) 𝒙 ∈ 𝑉𝑎𝑙𝑖𝑑 ⇔ 𝑇π(𝒙) ∈ 𝑉𝑎𝑙𝑖𝑑 

2) If 𝒙 ∈ 𝑉𝑎𝑙𝑖𝑑 and π is uniform in S then Tπ(x) is 

uniform in 𝑉𝑎𝑙𝑖𝑑 

Where Tπ is the permutation of L elements and set S is 

the permutation of m elements. 

This section presents the Zero-knowledge Argument 

of knowledge (ZKAoK) for the scheme in section 4. In 

detail, it presents ZKAoK that satisfies the following 

conditions: 

 Signer i is a certified group member i.e, he 

possess a valid secret-key zi and membership 

certificate certi=(i,di,si) 

 The syndrome vi obtained using secret-key 𝑧𝑖 is 

correctly encrypted to ciphertext 𝑐𝑣𝑖=(c1,c2). 

 The syndrome wi obtained using certi and zi is 

correctly encrypted to ciphertext 𝑐𝑤𝑖=(c3,c4).. 

 Commitment b1 is the correct commitment of vi. 

All the above conditions can be defined as a relation 

𝑅′. 

 Definition 1: The relation 𝑅′ is defined as 

𝑅′ = {𝐴, 𝐴1, 𝐴2, 𝑢, 𝐹, 𝐵, 𝐵1, 𝐷, 𝐷0, 𝐺0, 𝐺3, 𝐷1, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 
𝑏1; 𝑖, 𝑧𝑖 , 𝑣𝑖 , 𝑤𝑖 , 𝑑𝑖 , 𝑠𝑖 , 𝑠0

′ , 𝑠1
′ , 𝑥1, 𝑥2, 𝑥3, 𝑥4} 

Where 

𝐴, 𝐴1, 𝐴2, 𝐵, 𝐹, 𝐷, 𝐺3 ∈ 𝑍𝑞
𝑛×𝑚, 𝐷0, 𝐷1 ∈ 𝑍𝑞

2𝑛×2𝑚, 𝐹

∈ 𝑍𝑞
𝟜𝑛×𝟜𝑚, 𝐵1, 𝐺0 ∈ 𝑍𝑞

𝑛×𝟚𝑚, 𝑢 ∈ 𝑍𝑞
𝑛 , 𝑐1, 𝑐3, 𝑐4

∈ 𝑍𝑞
𝑚, 𝑐2 ∈ 𝑍𝑞

2𝑚; 𝑖 ∈ [𝑁], 𝑧𝑖 , 𝑑𝑖 , 𝑠𝑖
∈ [−β, β]2𝑚, 𝑣𝑖 ∈ 𝑍𝑞

𝟜𝑛 , 𝑤𝑖 ∈ 𝑍𝑞
𝟚𝑛, 𝑠0

′ , 𝑠1
′

∈ [−𝑏, 𝑏]𝑛, 𝑥1, 𝑥3, 𝑥4 ∈ [−𝑏, 𝑏]
𝑚, 𝑥2

∈ [−𝑏, 𝑏]2𝑚 

Satisfying 

𝐴𝑑1𝑖 + 𝐴1𝑑2𝑖 + 𝑖𝐴2𝑑2𝑖 = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑖) 
𝑤𝑖 = 𝐷0𝑏𝑖𝑛(𝑣𝑖) + 𝐷1𝑠𝑖𝑚𝑜𝑑 𝑞 𝑎𝑛𝑑 𝑣𝑖 = 𝐹𝑧𝑖𝑚𝑜𝑑 𝑞 

𝑐𝑣𝑖 = (𝑐1, 𝑐2) = (𝐵
𝑇𝑠0
′ + 𝑥1, 𝐺0

𝑇𝑠0
′ + 𝑥2 + 𝑏𝑖𝑛(𝑣𝑖)

𝑞

2
) 

𝑐𝑤𝑖 = (𝑐3, 𝑐4) = (𝐵
𝑇𝑠1
′ + 𝑥3, 𝐺3

𝑇𝑠1
′ + 𝑥4 + 𝑏𝑖𝑛(𝑤𝑖)

𝑞

2
) 

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞 

Since, Libert et al. [12] proposed an interactive zero-

knowledge protocol for relation 𝑅, an interactive zero-

knowledge protocol for relation 𝑅′can be generated by 

transforming the relation 𝑅′to relation 𝑅 (defined in 

Equation (1)). 

3.1. Transformation of 𝐑′ to 𝐑 

To transform the relation to R, we transform Equations 

(2), (3), and (4) to the form 𝑃𝑥 = 𝑦 𝑚𝑜𝑑 𝑞, and define 

a set 𝑉𝑎𝑙𝑖𝑑 such that it satisfies the conditions (1) and 

(2). We define the sets and matrices which are used in 

the transformation. 

 B3m is the set of all vectors in {−1,0,1}3𝑚 having 

equal number of -1,0,1. 𝐵2𝑙 is the set of all 

vectors in {0,1}2𝑙 having hamming weight 𝑙. 
 For any 𝛼 > 0, one can define the sequence 

(𝛼1, 𝛼2, 𝛼3, . . . . , 𝛼𝑝) such that ∑ α𝑖
𝑝
𝑖=1 =

αwhere𝑝 = log𝛽 + 1 [11]. A matrix 𝐻𝑚,𝛼 is 

defined as [α1, α2, α3, … . , α𝑝] ⊗ 𝐼𝑚 ∈ 𝑍
𝑚×𝑚𝑝 

and a matrix 𝐻𝑚,𝛼
∗ is obtained by adding 2𝑚 

columns to Hm,a. 

 We define the matrix 𝑅1 as 𝑅1 = 𝐼4𝑛⊗

[1|2|4| … . |2log𝑞 − 1}] and 𝑅2as 𝑅2 = 𝐼2𝑛⊗

[1|2|4|… . |2log 𝑞 − 1].  

The following lemma is used in the transformation. 

 Lemma 4 [13]: Let m,O be positive integers and 

δ𝑂 =  log 𝑂 + 1. On input a vector 𝑣 ∈ [−O, O]𝑚, 

extension and decomposition technique outputs a 

vector 𝑣∗ ∈ 𝐵3𝑚δ𝑂
 such that 𝐻𝑚,𝑂

∗ 𝑣∗ = 𝑣 

Conversion of all the equations in definition 1 to 𝑃𝑥 =
𝑦 𝑚𝑜𝑑 𝑞 proceeds as follows: 

 Transformation of Equation (2) to the appropriate 

form: Let 𝑖𝑑 ∈  {0,1}𝑙 is the binary representation 

of i and idj represents the j-th bit of id. Let y1=bin(vi) 

and y2= bin (wi) and Equation (2) can be written as 

𝐴𝑑1𝑖 + 𝐴1𝑑2𝑖 + ∑ (2𝑙−𝑖𝐴2)𝑖𝑑𝑖𝑑2𝑖
𝑙
𝑖=1   − 𝐷𝑦2 = 𝑢 

𝐷0𝑦1 + 𝐷1𝑠𝑖 − 𝑅2𝑦2𝑚𝑜𝑑 𝑞 = 0,   𝑅1𝑦1 − 𝐹𝑧𝑖 = 0 𝑚𝑜𝑑 𝑞 

(1) 

(3) 

(4) 

(5) 

(6) 
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Apply lemma (4) to the vectors 𝑑1𝑖and 𝑑2𝑖 to generate 

the vectors 𝑑1𝑖
∗  and 𝑑2𝑖

∗  respectively. Extend𝑦2 ∈
{0,1}𝑚 and 𝑖𝑑 ∈ {0,1}𝑙to 𝑦2̂ and𝑖𝑑∗such that 𝑦2̂ ∈
𝐵2𝑚 and 𝑖𝑑∗ ∈ 𝐵2𝑙. Now, Equation (5) is reduced to 

𝐴∗𝑥11 = 𝑢 𝑚𝑜𝑑 𝑞 

Where 

𝐴∗ = [𝐴𝐻𝑚,𝛽
∗ |𝐴1𝐻𝑚,𝛽

∗ |2𝑙−1𝐴2𝐻𝑚,𝛽
∗ |… . |20𝐴2𝐻𝑚,𝛽

∗ | − 𝐷|0𝑛×𝑚] 

And 

𝑥11 = [𝑑1𝑖
∗ ||𝑑2𝑖

∗ ||𝑖𝑑1
∗𝑑2𝑖
∗ || … ||𝑖𝑑2𝑙

∗ 𝑑2𝑖
∗ ||�̂�2] 

Similarly, Equation (6) is reduced to 

 𝐶𝑥12 = 0 𝑚𝑜𝑑 𝑞  

Where  

𝐶 = (
𝐶1 0
0 𝐶2

)  𝑎𝑛𝑑 𝑥12 = (
𝑡1
𝑡2
) 

 
And 𝐶1 = [𝐷0|0

2𝑛×2𝑚|𝐷1𝐻𝑚,β
∗ |−𝑅2|0

𝑛×𝑚]𝐶2 =

[𝑅1|0
2𝑛×2𝑚| − 𝐹𝐻𝑚,β

∗ ],𝑡1 = [ 𝑦1̂||𝑠𝑖
∗|| 𝑦2̂] and 𝑡2 =

[𝑦1̂||𝑧𝑖
∗]. The vectors 𝑠𝑖

∗and 𝑧𝑖
∗ are obtained by 

applying lemma (4) to si and zi respectively and 𝑦1̂ is 

obtained by extending y1 such that 𝑦1̂ ∈ 𝐵4𝑚.  

 We combine Equations (7), (8) to obtain  

 𝑃1
∗𝑥1
∗ = 𝑧1𝑚𝑜𝑑 𝑞 

Where 

𝑃1
∗ = (

𝐴∗ 0
0 𝐶

) 𝑥1
∗ = (

𝑥11
𝑥12
) 𝑧1 = (

𝑢
0
) 

 Transformation of Equation (3) to the required 

form: Equation (3) can be written as 

(

 
 

0
𝑞

2
𝑰2𝑚

0
0 )

 
 
𝑦1 +

(

 
 

0
0
0
𝑞

2
𝑰𝑚
)

 
 
𝑦2 +

(

 

𝐵𝑇

𝐺0
𝑇|
𝐼3𝑚
𝐼3
𝑀 | 0

𝐵𝑇

𝐺0
𝑇0|

𝐵𝑇

𝐺3
𝑇| 𝐼2𝑚

)

 

(

 
 
 

𝒔𝟎
′

𝒙𝟏
𝒙𝟐
𝒔𝟏
′

𝒙𝟑
𝒙𝟒)

 
 
 
= (

𝒄𝟏
𝒄𝟐
𝒄𝟑
𝒄𝟒

) 

≡ 𝑄1𝑦1 + 𝑄2𝑦2 + 𝑄3𝑡3 = 𝑧2 

Apply lemma (4) to the vector 𝑡3 to generate 𝑡3
∗ ∈

𝐵3(2𝑛+5𝑚)δ𝑏 and 𝑦1̂ ∈ 𝐵4𝑚, 𝑦2̂ ∈ 𝐵2𝑚 is obtained by 

extending 𝑦1 and 𝑦2 respectively. Equation (10) can be 

written as 

𝑃2
∗𝑥2
∗ = 𝑧2 

Where 
𝑃2
∗ = [𝑄1|0

5𝑚×2𝑚|𝑄2|0
5𝑚×𝑚|𝑄3𝐻𝑚,𝑏

∗ ], 

𝒙2
∗ = [ 𝒚2̂|| 𝒚1̂||𝒕𝟑

∗ ] 

 Transformation of Equation (4) to the required 

form: Let 𝐵1
∗ = [𝐵1|0

𝑛×2𝑚] and 𝑦1̂ ∈ 𝐵4𝑚 is 

obtained by extending 𝑦1 ∈ {0,1}
2𝑚. Therefore, 

Equation (4) can be written as 

 𝑃3
∗𝑥3
∗ = 𝑧3 

Where 𝑃3
∗ = 𝐵1

∗, 𝑥3
∗ = 𝑦1̂ and z3= b1. 

Finally, we combine the Equations (9), (11), and 

(12) as follows: Generate the matrix P, x and y as 

P = (

𝑃1
∗ 0 0

0 𝑃2
∗ 0

0 0 𝑃3
∗
)𝑥 = (

𝑥1
∗

𝑥2
∗

𝑥3
∗
)   and   y = (

𝑧1
𝑧2
𝑧3
) 

Thus, all the equations in relation Rˊ (definition 1) are 

transformed to the form Px= y mod q. 

Let 𝐿 = 22𝑚 + (2𝑙 + 4)3𝑚𝛿𝛽 + 3(2𝑛 + 5𝑚)𝛿𝑏 . 

We define set Valid as follows: 

𝑉𝑎𝑙𝑖𝑑: Set of all vectors {−1,0,1}𝐿 of the form 

𝑔 = [𝑔1||𝑔2||𝑡1𝑔2||… ||𝑡2𝑙𝑔2||𝑔3||𝑔4||𝑔5||𝑔3||𝑔4||𝑔6 

𝑔3||𝑔4||𝑔7||𝑔4] 

Where 𝑔1, 𝑔2, 𝑔5, 𝑔6 ∈ 𝐵3𝑚𝛿𝛽 , 𝑔3 ∈ 𝐵2𝑚, 𝑔4 ∈

𝐵4𝑚, 𝑔7 ∈ 𝐵3(2𝑛+5𝑚)𝛿𝑏 , 𝑡 ∈ 𝐵2𝑙. 

Let 𝑆 = 𝑆3𝑚𝛿𝛽 × 𝑆3𝑚𝛿𝛽 × 𝑆2𝑙 × 𝑆2𝑚 × 𝑆4𝑚 ×

𝑆3𝑚𝛿𝛽 × 𝑆3𝑚𝛿𝛽 × 𝑆3(2𝑛+5𝑚)𝛿𝑏 

Let 𝜋 = (𝜋1, 𝜋2, 𝜏, 𝜋3, 𝜋4, 𝜋5, 𝜋6, 𝜋7) ∈ 𝑆.Define the 

permutation 𝑇𝜋 as 

𝑇𝜋(𝑔)=[𝜋1(𝑔1)||𝜋2(𝑔2)||𝑡𝜏(1)(𝜋2(𝑔2))||....||

𝑡𝜏(2𝑙)(𝜋2(𝑔2))||𝜋3(𝑔3)||𝜋4(𝑔4)||𝜋5(𝑔5)||𝜋3(𝑔3)||

𝜋4(𝑔4)||𝜋6(𝑔6)||𝜋3(𝑔3)||𝜋4(𝑔4)||𝜋7(𝑔7)||𝜋4(𝑔4)] 

By construction of vector x in section 3.1, it belongs to 

set valid. It can be observed if a vector 𝑥 ∈ 𝑉𝑎𝑙𝑖𝑑then 

𝑇π(𝑥) ∈ 𝑉𝑎𝑙𝑖𝑑 and vice-versa. Therefore, both the 

conditions (1 and 2) for valid set are satisfied. Since 

ZKAoK protocol for relation R is given in [12] and our 

relation Rˊ is transformed to R, ZKAoK protocol for 

relation Rˊ is directly constructed from R. 

4. Proposed Scheme 

For any two matrices A and B, concatenation of rows 

and columns are represented by [A׀B] and [A׀׀B] 

respectively. Similar notation is also used for vectors. 
We assume each user Ui has public-key upk[i] and 

secret-key of upk[i] of a signature scheme as in [9]. Let 

n be the security parameter, N is the number of users 

joined the group, 𝑚 = 2𝑛 log 𝑞, 𝑞 = �̃�(𝑙𝑛3) and 𝑞 ≫

𝑁, σ = Ω(√𝑛 log 𝑞 log 𝑛),β = σω(log𝑚). Let 𝑏 =

√𝑛ω(log𝑛), 𝑡 = 𝜔(log 𝑛)and ψ be the 𝑏-bounded 

distribution. We consider three random oracles 

𝐻: {0,1}∗ → {0,1,2}𝑡, 𝐻1: {0,1}
∗ → 𝑍𝑞

𝑛×𝑚 and 

𝐻2: {0,1}
∗ → 𝑍𝑞

𝑛×2𝑚. We use GenTrap and SamplePre 

algorithms presented in [2, 7] for our construction. 

 Setup (1𝑛) 

1. Generate two instances of hard random lattices 

(A,TA) and (B,TB) using algorithm GenTrap 

(n,m,q). 

2. Choose matrices (A1,A2,D) uniformly over 𝑍𝑞
𝑛×𝑚, 

F is sampled uniformly from 𝑍𝑞
𝟜𝑛×𝟜𝑚, (D0,D1) is 

uniformly chosen over 𝑍𝑞
2𝑛×2𝑚, B1 is uniformly 

chosen over 𝑍𝑞
𝑛×2𝑚 and vector 𝑢 is chosen 

uniformly over 𝑍𝑞
𝑛. 

𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0, 𝐷1, 𝐹, 𝑢) and 𝑔𝑚𝑠𝑘 =
(𝑇𝐴, 𝑇𝐵) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Note: The size of gpk is O (nm log q). 

Join (GM,Ui). 

1. User Ui chooses a vector 𝑧𝑖 ← 𝐷𝑍4𝑚 ,σ and compute 

a vector vi=Fzimod q. Generate a signature on vi i.e., 

𝑠𝑖𝑔𝑖 = sign𝑢𝑠𝑘[𝑖](𝑣𝑖). Send vi and siɡi to GM. 

2. GM verifies siɡi is valid signature of vector vi using 

upk[i] and was not previously generated by another 

user. If it is valid, then GM sets i=N+1 and 

computes user dependent matrix Ai as 𝐴𝑖 =
[𝐴|𝐴1 + 𝑖𝐴2] ∈ 𝑍𝑞

𝑛×2𝑚and short vector𝑑𝑖  =

[𝑑1𝑖||𝑑2𝑖] ∈ 𝑍
2𝑚 such that  

 𝐴𝑖𝑑𝑖 = 𝑢 + 𝑢𝑖 𝑚𝑜𝑑 𝑞 

Where 𝑢𝑖 = 𝐷 𝑏𝑖𝑛(𝐷0𝑏𝑖𝑛(𝑣𝑖) + 𝐷1𝑠𝑖)and 𝑠𝑖 is chosen 

according to 𝐷𝑍2𝑚,σ and send (𝑖, 𝑑𝑖, 𝑠𝑖) to 𝑈𝑖 

3. 𝑈𝑖 checks whether (𝑖, 𝑑𝑖, 𝑠𝑖) satisfies Equation 

(14),||𝑑𝑗𝑖||
∞
≤  β for 𝑗 ∈ {1,2} 𝑎𝑛𝑑 ||𝑠𝑖||∞ ≤ β 

If the conditions are valid then, 𝑠𝑒𝑐𝑖 = 𝑧𝑖 , 𝑐𝑒𝑟𝑡𝑖 =
(𝑖, 𝑑𝑖 , 𝑠𝑖) and stores the 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖 =
(𝑠𝑖𝑔𝑖, 𝑣𝑖, 𝑖, 𝑑𝑖 , 𝑠𝑖, 𝑢𝑝𝑘[𝑖]) in the database transcripts 

which is the private database of GM. 

Sign (𝑔𝑝𝑘, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑒𝑐𝑖, 𝑚) 

1. Generate the one-time signature key-pair (VK, SK) 

Compute vi=Fzi mod q and wi=D0bin(vi)+D1si mod q. 

2. Encrypt the vector 𝑣𝑖 using dual Regev Encryption 

scheme [7]. Let 𝐺0 = H2(𝑉𝐾). Choose 𝑠0
′ ←

𝜓𝑛,𝑥1 ← 𝜓
𝑚 and 𝑥2  ←  𝜓

2𝑚. 

𝑐𝑣𝑖 = (𝑐1, c2) = (𝐵
𝑇𝑠0
′ + 𝑥1, 𝐺0

𝑇𝑠0
′ + 𝑥2 + 𝑏𝑖𝑛(𝑣𝑖) (

𝑞

2
)) 

3. Similarly, encrypt the vector wi Let G1=H1(certi). 

Choose s1
′ ← ψnand compute G2 ∈ Zq

m×n such that 

G2s1
′=0 mod q and proceed if one such G2 is found 

otherwise repeat. Let G3=G1+G2
T. Choose x3, x4 ←

 ψm 

𝑐𝑤𝑖 = (𝑐3, 𝑐4) = (𝐵
𝑇𝑠1
′ + 𝑥3, 𝐺1

𝑇𝑠1
′ + 𝑥4 + 𝑏𝑖𝑛(𝑤𝑖) (

𝑞

2
)) 

4. Generate the commitment for vi as  

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞 

5. Generate a NIZK protocol Π to prove there exists i ∈
[N],(zi, d1i, d2i, si) has infinity bound 

β,(s0
′ , s1

′ , x1, x2, x3, x4)has infinity bound b and there 

exists vi and wi that satisfies Equations (2), (3) and 

(4). This can be generated by running the interactive 

protocol in section 3 t times and converting it into 

non-interactive using Fiat-Shamir heuristic [6] i.e., 

Π=(CMT,CH,RSP} where 

CH(ch1… . , cht)H(CMT,m, {ci}i=1
4 , VK, G3, b1) ∈

 {0, 1, 2}t. 
6. Compute the one-time signature 𝑠𝑖𝑔 =
OSign(SK, ({𝑐𝑖}𝑖=1

4 , 𝑏1, Π)) 

 

Σ = (𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1) 

Verify(m, ɡpk, ∑). 

1. Check whether protocol Π is valid. 

2. Check whether sig is a valid signature on 

({𝑐𝑖}𝑖=1
4 , 𝑏1, Π ) using VK. 

Return 1 iff all the conditions are valid. 

Open (∑, ɡpk, m, ɡmsk, transcripts)  

1. Compute G0=H2(VK) Decrypt 𝑐𝑣𝑖 using 𝑇𝐵 as 

follows: Using 𝑇𝐵, compute a small-norm matrix 

𝐸0 ∈ 𝑍
𝑚×2𝑚 such that BE0=G0 mod q. Obtain 

𝑏𝑖𝑛(𝑣𝑖) by computing (𝑐2 −
𝐸0
𝑇𝑐1
𝑞

2

) 

2. Compute 𝑣𝑖 = 𝑅1⊗𝑏𝑖𝑛(𝑣𝑖)and search in the 

database transcripts for transcripti in which vi is the 

entry. If such transcript is found output the signer 

𝑖 otherwise output ⊥. 

Reveal (ɡmsk, i, transcripts)  

1. Parse ɡmsk=(TA,TB) and obtain 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖 =
(𝑠𝑖𝑔𝑖, 𝑣𝑖 , 𝑖, 𝑑𝑖, 𝑠𝑖, 𝑢𝑝𝑘[𝑖]) from the database 

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠. Compute 𝑤𝑖 = 𝐷0𝑏𝑖𝑛(𝑣𝑖) +
𝐷1𝑠𝑖𝑚𝑜𝑑 𝑞 

2. Let G1=H1(i,di,si). Compute the small norm matrix 

𝐸𝑖 ∈ 𝑍
𝑚×𝑚 using 𝑇𝐵such that BEi=G1 mod q. 

tracei=(wi,Ei). 

Trace (ɡpk,∑, tracei) 

1. Parse tracei=(wi,Ei) and signature Σ = (𝑐𝑣𝑗, 𝑐𝑤𝑗, Π, 

VK, sig,𝐺3, 𝑏1). 

2. Decrypt 𝑐𝑤𝑗 using 𝐸𝑖 and obtain bin (wj). 

3. Compute 𝑤𝑗 = 𝑅2⊗𝑏𝑖𝑛(𝑤𝑗) and return 1 iff 𝑤𝑗 is 

equal to the 𝑤𝑖 which is given as a part of 𝑡𝑟𝑎𝑐𝑒𝑖. 

Claim (m,∑,seci,certi,ɡpk)  

1. Parse the signature Σ = (𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1) 

2. Generate the NIZK proof of knowledge 𝜋 that there 

exists 𝑧𝑖such that  

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞 where 𝑣𝑖 = 𝐹𝑧𝑖  𝑚𝑜𝑑 𝑞 

This is possible only if user has the secret-key zi and 

generated the signature Σ. 

Output: 𝜏= 𝜋 

Claim Verify(𝑚,𝛴, 𝜏, 𝑔𝑝𝑘) 

Parse 𝜏= 𝜋 and signature Σ(𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1). 

Check the validity of protocol 𝜋 and return 1 if it is 

valid.  

 Correctness: 

 Sign Correctness: By completeness of protocol ∏ 

and correctness of one-time signature scheme, 

Verify algorithm returns 1 with high probability.  

(14) 

(15) 

(16) 

(17) 

(18) 
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 Open Correctness: By correctness of Dual-Regev 

Encryption Scheme [7], open algorithm returns 

the identity U with high probability. 

 Trace Correctness: We know SiɡnU and RevealU 

oracles generate the signature and tracing 

trapdoor of user U respectively. By Reveal 

algorithm in section 4, the tracing trapdoor is 

(wU,EU). By correctness of dual Regev encryption 

scheme, EUreturnswU. Therefore, Trace 

(ɡpk,SignU,RevealU)=1 is satisfied with high 

probability. Next, we need to prove Trace 

(ɡpk,Signiˊ,RevealU)=0 for any 𝑖 ′ ≠ 𝑈. During 

trace algorithm in section (4), we decrypt (c3,c4) 

using EU and obtain bin (wi). But, (c3,c4) is the 

encryption of wiˊ and 𝐸𝑈  which is the trapdoor of 

user U does not decrypt to wiˊ correctly. Assume 

decryption algorithm returns wjˊ. Since, wU is 

statistically close to uniform, the probability that 

wjˊ=wU is negligible. Therefore, 

Trace(ɡpk,Signiˊ,RevealU)=1is negligible for 

any 𝑖 ′ ≠ 𝑈. 

 Claim-Verify Correctness: By completeness of 

protocol π generated by claimU, Claim-Verify 

algorithm returns 1 for all (m,∑)←SiɡnU.  

5. Security 

5.1. Misidentification Attacks 

 Theorem 2: Our scheme is secure against 

misidentification attacks based on the hardness of 

SIS assumption. 

 proof: Assume, there exists an adversary A breaking 

the security of our scheme against misidentification 

attacks with non-negligible probability. We 

construct an algorithm B that solves SIS instance 

𝐴 = [𝐴1|𝐴2] ∈ 𝑍𝑞
𝑛×2𝑚with non-negligible 

probability. A coin is uniformly chosen over {1,2} 

and 𝑖∗
$
← [𝑁]. 

coin=1 

 Setup: 

 Assign the matrix 𝐴 = 𝐴1. Run Gen Trap (n,m,q) 

and obtain (𝐴2, 𝑇𝐴2) and (B,TB). Sample the 

matrices 𝑅, 𝑅′ uniformly over {−1,1}𝑚×𝑚 and 

compute 𝐴1 = 𝐴𝑅 − 𝑖
∗𝐴2. 

 Sample the matrices D0, D1 uniformly over 

𝑍𝑞
2𝑛×2𝑚, 𝐷 = 𝐴2𝑅

′, matrix B1 over 𝑍𝑞
𝑛×2𝑚 and 

matrix F∈ 𝑍𝑞
4𝑛×4𝑚.  

 Vector 𝑒 is chosen according to D𝑍𝑚,𝜎 and 

compute 𝑢 = 𝐴𝑒 𝑚𝑜𝑑 𝑞. 

Send 𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0 , 𝐷1, 𝑢, 𝐹) to A 

 Queries: 

 QP-join: Increments 𝑁 and compute 𝐴𝑁 = [𝐴|𝐴1 +
𝑁𝐴2]. Using 𝑇𝐴2 obtain 𝑑𝑁 = [𝑑𝑁,1||𝑑𝑁,2]. Let sN 

is chosen according to D𝑍2𝑚 ,𝜎 and 𝑧𝑁 are chosen 

according to D𝑍4𝑚,𝜎. Let certN=(N,dN,sN), secN=zN 

and add N to the set U(p). 

 Qa-join: When A triggers join protocol by sending 

vi,B chooses N such that 𝑁 ≠ 𝑖∗.When A 

provides 𝑠𝑖𝑔𝑖 such that it is a valid signature on vi 

under upk[i]. Using 𝑇𝐴2 obtain the vector 𝑑𝑁 =

[𝑑𝑁,1||𝑑𝑁,2] such that 𝐴𝑁𝑑𝑁 = 𝑢 +

𝐷(𝑏𝑖𝑛(𝐷0 𝑏𝑖𝑛(𝑣𝑁) + 𝐷1𝑠𝑁)) 𝑚𝑜𝑑 𝑞 where 𝑠𝑁 is 

chosen according to D𝑍2𝑚 ,𝜎. Send certN=(N,dN, 

sN) to A and add N to the set U(a). 

 Qsiɡ: If 𝑖 ∉  𝑈(𝑝) or 𝑖 = 𝑖∗ then abort. Otherwise, 

generate the signature ∑ on message m using 

seci. 

 Qreveal: On input index i, if 𝑖 ∉  𝑈(𝑝) or i=i* then 

abort. Otherwise, algorithm B searches in the 

database transcripts for the entry (. , . , 𝑖, 𝑑𝑖 , 𝑠𝑖, . ). 

Using transcriptsi obtain tracei and add i to 

Revs. 

 Forgery: A outputs (m∗, Σ∗)such that Verify 

(gpk,m∗, Σ∗)=1. IfOpen((m∗, Σ∗, gmsk) = j ∈
U(a)orj ≠ i∗abort. Otherwise, parse Π ∗ =
(CMT, CH, RSP) and Σ∗ =
(cvj

∗, cwj
∗, Π∗, VK∗, G3

∗, b1
∗, sig∗). A must have 

queried the random oracle H on input 

(CMT,m∗, VK∗, {ci
∗}i=1
4 , G3

∗ , b1
∗) with high 

probability. Otherwise,  

Pr [{𝑐ℎ}i=1
𝑡 = H(CMT,𝑚∗, 𝑉𝐾∗, {𝑐𝑖

∗}i=1
4 , 𝐺3

∗, 𝑏1
∗)] ≤

1

3t
 

Therefore with 𝜀 − 3−𝑡probability, there exists an 

index 𝜅∗ ≤ QH. At this stage, algorithm B runs A with 

same input and random tape as in original execution. 

Pick 𝜅∗ as the target point and replay A many times 

with the same random tape and input. Each time, first 

𝜅∗ − 1 queries are answered as 𝑟1, … . , 𝑟𝜅∗−1 and 

from𝜅∗𝑡ℎ query the answers are uniformly chosen 

from {1, 2, 3}t. The Improved Forking Lemma [4] 

implies that, with probability greater than 
1

2
, B can 

obtain a 3-fork involving tuple 

(CMT,𝑚∗, 𝑉𝐾∗, {𝑐𝑖
∗}i=1
4 , 𝐺3

∗, 𝑏1
∗) and open to the 

𝑏𝑖𝑛(𝑣𝑖
∗) which is uniquely determined by (𝑐1

∗, 𝑐2
∗). Let 

the answers of B with respect to the 3-fork branches be  

𝑟𝜅∗
(1)
= (𝑐ℎ1

(1)
, … . , 𝑐ℎ𝑡

(1)
) 𝑟𝜅∗

(2)
= (𝑐ℎ1

(2)
, … . , 𝑐ℎ𝑡

(2)
) 

𝑟𝜅∗
(3)
= (𝑐ℎ1

(3)
, … . , 𝑐ℎ𝑡

(3)
) 

Pr [∃𝑗 ∈ [𝑡]: {𝑐ℎ𝑗
(1)
, 𝑐ℎ𝑗

(2)
, 𝑐ℎ𝑗

(3)
} = {1,2,3}] = (1 − (

7

9
)t) 

If such j exists, parse the 3-forgeries corresponding to 

3-fork branches to obtain (RSP𝑗
(1)
, RSP𝑗

(2)
, RSP𝑗

(3)
). 

Given three different challenges and three valid 

responses for same commitment CMTj, using witness 

extractionprocedure, the witness (𝑗, 𝑑𝑗 =

(19) 

(20) 
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[𝑑1𝑗||𝑑2𝑗], 𝑧𝑗 , 𝑠𝑗) can be extracted. Algorithm B aborts 

if j≠i*. We know𝐴𝑗𝑑𝑗 = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑗) 𝑚𝑜𝑑 𝑞 where 

wj=D0bin(vj)+D1sjmod q. Therefore,  

[𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1𝑗||𝑑2𝑗] = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑗) 𝑚𝑜𝑑 𝑞 

𝐴1̅̅ ̅ (𝑑1𝑗 + 𝑅𝑑2𝑗 − 𝑒) − 𝐴2𝑅
′𝑏𝑖𝑛(𝑤𝑗))= 0 mod q 

Let 𝑥 =  [𝑑1𝑗 + 𝑅𝑑2𝑗 − 𝑒|| − 𝑅
′𝑏𝑖𝑛(𝑤𝑗)]. Since the 

vector 𝑢statistically hides 𝑒  inΛ𝑢
⊥(𝐴1),𝑥  ≠

0.Therefore, 𝑥 is a solution to SIS instance i.e., 𝐴𝑥 =

0 𝑚𝑜𝑑 𝑞 and ||𝑥|| ≤ √𝑚(𝛽(𝑚 + 2) +𝑚). 

Coin=2 

 Setup: 

 Assign the matrix 𝐴 = 𝐴1 and 𝐷 = 𝐴2. Run 

GenTrap (n,m,q) obtain (𝐴2, 𝑇𝐴2) and (B,TB). 

Compute 𝐴1 = 𝐴𝑅 − 𝑖
∗𝐴2 whereR uniformly 

over {−1,1}𝑚×𝑚 

 Sample the matrix 𝐷0 uniformly over 𝑍𝑞
2𝑛×2𝑚 

and matrices F, B1 are uniformly chosen over 

𝑍𝑞
4𝑛×4𝑚 × 𝑍𝑞

𝑛×2𝑚 respectively. Let (D1,𝑇𝐷1) is 

obtained using GenTrap (2n,2m,q). Let 𝐴𝑖∗ =
[𝐴|𝐴1 + 𝑖

∗𝐴2]. 
 Let 𝑑1𝑖∗  and 𝑑2𝑖∗ are chosen according to D𝑍𝑚,𝜎. 

Compute 𝑢 = 𝐴𝑖∗𝑑𝑖∗- 𝐷𝑏𝑖𝑛(𝑐
′) where 𝑐′ is 

uniformly chosen over 𝑍𝑞
𝑛. 

 Send 𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0 , 𝐷1, 𝑢, 𝐹) to 

A. 

 Queries: QP-join, Qsig and Qreveal: Answer similarly as 

in coin=1. For Qa-join query proceed as follows If 

𝑖 ≠ 𝑖∗then, proceed as in case of coin=1. If i=i∗: 

Recall 𝑑𝑖∗and cˊ. If A provides valid signature on 𝑣𝑖∗  
then using 𝑇𝐷1obtain 𝑠𝑖∗such that 𝐷1𝑠𝑖∗= 𝑐′-

𝐷0 𝑏𝑖𝑛(𝑣𝑖∗). Send 𝑐𝑒𝑟𝑡𝑖∗ = (𝑖
∗, 𝑑𝑖∗ , 𝑠𝑖∗)to A. 

 Forgery: A outputs(𝑚∗,Σ∗) and abort 

if Open((𝑚∗,Σ∗, 𝑔𝑚𝑠𝑘) = j ∉ 𝑈(𝑎) or 𝑗 ≠
𝑖∗.Proceed if Verify (𝑔𝑝𝑘,𝑚∗,Σ∗)=1, 

Open((𝑚∗,Σ∗, 𝑔𝑚𝑠𝑘) = j ∈ 𝑈(𝑎) and ⋀𝑖 ∈𝑈(𝑎) 

Trace (Σ∗, Reveal(𝑖))=0. Using forking lemma and 

knowledge extractor we obtain (𝑑∗, 𝑧∗, 𝑠𝑖∗). Since 

Trace (Σ∗, Reveal(𝑖∗))=0, 𝑤∗ = 𝐷0𝑏𝑖𝑛(𝑣
∗) +

𝐷1𝑠
∗ ≠ 𝐷0𝑏𝑖𝑛(𝑣𝑖∗) + 𝐷1𝑠𝑖∗ = 𝑤𝑖∗and we 

know [𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1
∗||𝑑2

∗] − 𝐷𝑏𝑖𝑛(𝑤∗) =
 [𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1𝑖∗||𝑑2𝑖∗] − 𝐷𝑏𝑖𝑛(𝑤𝑖∗) = 𝑢. Therefore, 

�̅� = [𝑑1
∗ − 𝑑1𝑖∗||𝑅(𝑑2

∗ − 𝑑2𝑖∗)||𝑤
∗ −𝑤𝑖∗]is a 

solution to SIS instance i.e., 𝐴 ̅�̅� = 0 𝑚𝑜𝑑 𝑞, 𝑥  ≠

0,and ||�̅�|| ≤ √𝑚(2𝛽 + 2𝑚𝛽 + 1). 

5.2. Anonymity Attacks 

 Theorem3: Our scheme is secure against anonymity 

attacks based on the zero-knowledge property of 

NIZK protocol Πand hardness of LWE. 

 Proof: To prove our scheme is secure against 

anonymity attacks, we define two games 𝐺0
(𝑏)

and 

G7. Game 𝐺0
(𝑏)

 is the original anonymity game 

where challenge signature is generated by one of the 

users and game G7 is the anonymity game where 

challenge signature is generated independent of both 

the users. We show that challenge signatures 

generated in both these games are computationally 

indistinguishable. This is because, if signatures 

generated in both these games are indistinguishable, 

then the advantage of adversary guessing the signer 

is negligible. To prove the signatures generated in 

these two games are indistinguishable, we define 

intermediate games 

𝐺1
(𝑏)
, 𝐺2
(𝑏)
, 𝐺3
(𝑏)
, 𝐺4
(𝑏)
, 𝐺5
(𝑏)
and𝐺6

(𝑏)
. 

 𝐺𝑎𝑚𝑒 𝐺0
(𝑏)
: This is the original anonymity game. In 

precise, challenger runs setup algorithm to generate 

(ɡpk,ɡmsk) and gives ɡpk to adversary A. Challenger 

answers all the queries of the adversary. At some 

point, A sends the challenge message 𝑚∗and two 

identities 𝑖0 and 𝑖1. Challenger uniformly chooses 

one of the identity 𝑏 ∈ {0,1}and generates the 

challenge signatureΣ∗ =
(𝑐𝑣𝑖𝑏
∗ , 𝑐𝑤𝑖𝑏

∗ , 𝑏1
∗,Π∗, 𝑠𝑖𝑔∗, 𝑉𝐾∗, 𝐺3

∗). Finally, A outputs 

the bit 𝑏′  ∈ {0,1}. 

 𝐺𝑎𝑚𝑒 𝐺1
(𝑏)
: In this experiment, we slightly change 

𝐺𝑎𝑚𝑒 𝐺0
(𝑏)

 as follows: At the beginning of the 

game, the challenger generates the one-time 

signature key pair (𝑉𝐾∗, 𝑆𝐾∗) which will be used in 

the challenge phase. If A requests the opening of a 

valid signature Σ∗ = (𝑐𝑣𝑗 , 𝑐𝑤𝑗 , Π, 𝑉𝐾, 𝐺3, 𝑏1, 𝑠𝑖𝑔) 

where 𝑉𝐾 = 𝑉𝐾∗the challenger returns a random bit 

and aborts. 

 𝐺𝑎𝑚𝑒 𝐺2
(𝑏)
: In this game, we program the random 

oracle H2in the following way: at the beginning of 

the game, choose a uniformly random matrix 𝐺0 ∈
 𝑍𝑞
𝑛×2𝑚 and set H2(VK∗)=G0. From the adversary’s 

view, the distribution of G0 is statistically close to 

the one in the real attack game, as in [7]. As for 

other queries, for each fresh H2 queries on VK, the 

challenger samples small-norm matrices 𝐸0 ∈

 D𝑍𝑚,𝜎
2𝑚  and programs the oracle such that 

H2(VK)=BE0 mod q. The chosen matrices 𝐸0are 

retained for later use.  

 𝐺𝑎𝑚𝑒 𝐺3
(𝑏)
: In this game, we program the random 

oracle H1 in the following way: At the beginning of 

the game, a uniform matrix 𝐺1
∗ ∈  𝑍𝑞

𝑛×𝑚 is 

uniformly chosen and in the challenge phase, set 

H1(𝑐𝑒𝑟𝑡𝑖𝑏) = 𝐺1
∗. For other H1 queries, fresh query 

on input𝑐𝑒𝑟𝑡𝑖, challenger samples Ei according to 

D𝑍𝑚,𝜎
𝑚  and set H1(certi)=BEi mod q. Retain Ei for 

later use. From the adversary view, the distribution 

of 𝐺1
∗. is same as in 𝐺𝑎𝑚𝑒 𝐺0

(𝑏)
. 

(21) 
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 𝐺𝑎𝑚𝑒 𝐺4
(𝑏)
: In this game, we modify the way of 

handling the open and reveal queries. Challenger 

uniformly chooses a matrix 𝐵∗ uniformly over 

𝑍𝑞
𝑛×𝑚 and to answer any reveal query of user 𝑖, it 

recalls Ei, computes wi using certi and returns as 

tracei. To answer any open query recall E0 

generated in 𝐺𝑎𝑚𝑒 𝐺2
(𝑏)
. 

 𝐺𝑎𝑚𝑒 𝐺5
(𝑏)
: In this game, we change the generation 

of challenge signature. Instead of generating NIZK 

protocol Π∗ using the witness, simulate the protocol 

and obtain Π′. The challenge signature is Σ∗ =
(𝑐𝑣𝑖𝑏
∗ , 𝑐𝑤𝑖𝑏

∗ , 𝑏1
∗, Π′, 𝑠𝑖𝑔∗, 𝑉𝐾∗, 𝐺3

∗). By zero-

knowledge protocol of Π∗, the challenge signature 

generated in this game is computationally 

indistinguishable from signature generated in 

𝐺𝑎𝑚𝑒 𝐺2
(𝑏)

 

 𝐺𝑎𝑚𝑒 𝐺6
(𝑏)
: We change the way of generating the 

challenge signature. We modify the generation of 

challenge cipher texts (𝑐1
∗, 𝑐2

∗, 𝑐3
∗, 𝑐4

∗). Instead of 

using encryption scheme [7], return random 

ciphertexts 

(𝑐1
∗, 𝑐2

∗) = (𝑟1, 𝑟2 + 𝑏𝑖𝑛(𝑣𝑖𝑏)
𝑞

2
) 

(𝑐3
∗, 𝑐4

∗) = (𝑟3, 𝑟4 + 𝑏𝑖𝑛(𝑤𝑖𝑏)
𝑞

2
) 

Where the vectors (r1, r2, r3, r4), are uniformly chosen 

over (𝑍𝑞
𝑚 × 𝑍𝑞

2𝑚 × 𝑍𝑞
𝑛 × 𝑍𝑞

𝑚). The challenge signature 

generated in this game is computationally 

indistinguishable from ∑∗ in 𝐺𝑎𝑚𝑒 𝐺5
(𝑏)

 based on the 

hardness of decision version of LWE assumption.  

 Game G7: Finally, we make a slight modification in 

generation of Σ∗compared to the previous game. 

Ciphertexts (𝑐1
∗, 𝑐2

∗, 𝑐3
∗, 𝑐4

∗) is uniformly sampled 

over (𝑍𝑞
𝑚 × 𝑍𝑞

2𝑚 × 𝑍𝑞
𝑛 × 𝑍𝑞

𝑚). Signature generated 

in this game is indistinguishable from the signature 

in previous game.  

Challenge signature Σ∗ in the last game is independent 

of bit 𝑏 ∈ {0,1}. Therefore, advantage of adversary in 

this game is 0. We proved that the challenge signature 

generated in game G7 is computationally 

indistinguishable from the original anonymity game. 

Therefore, advantage of adversary in original 

anonymity game is negligible. 

5.3. Framing Attacks 

 Theorem 3: Our scheme is secure against framing 

attacks based on the hardness of SIS assumption 

 Proof: Let A be an adversary that generates a 

forgery (m*,∑*) which opens to the honest user 

𝑖∗who did not sign the message m*. We construct an 

algorithm B that solves an instance of SIS 

assumption i.e., given a matrix 𝐴 ̅ ∈ 𝑍𝑞
4𝑛×4𝑚 as 

input, algorithm B finds the vector 𝑥 such that 

𝐴 ̅𝑥 = 0 𝑚𝑜𝑑 𝑞and‖𝑥‖  ≤  2𝛽√𝑚. 

Algorithm B 

 Setup: Obtain (ɡpk,ɡmsk) using Setup(1n) with one 

modification. Instead of uniformly choosing 𝐹 ∈
𝑍𝑞
4𝑛×4𝑚, we assign 𝐹 = 𝐴 ̅.  

Queries: 

 QY: returns the public-key 𝑔𝑝𝑘. 
 QS: returns 𝑔𝑚𝑠𝑘 to A 

 Qb-join: A can corrupt the group manager and 

introduces new user through Qb-join protocol. At 

each query, B runs join protocol on behalf on the 

honest user Ui.  

 QSig : If A requests for the signature on message m 

of user I and 𝑖 ∈ 𝑈(𝑏)then, recall (certi,seci) and 

generate signature using Sign(ɡpk,seci,certi,m) 

algorithm. 

 Forgery: Let A outputs (𝑚∗,Σ∗, 𝜏∗ ) such that 

Verify (ɡpk,m*,∑*)=1 with non-negligible 

probability 𝜀. Let Σ∗ =
(𝑐𝑣∗ , 𝑐𝑤∗ ,Π

∗, 𝑉𝐾∗, 𝐺3
∗, 𝑏1

∗, 𝑠𝑖𝑔∗).Obtain witness 

(𝑗, 𝑑𝑗 = [𝑑1𝑗||𝑑2𝑗], 𝑧
∗, 𝑠∗) using witness extraction 

procedure similar to the steps in misidentification 

attack (coin=1). We consider three cases where A 

returns 1 in Exp𝑓𝑟𝑎
A (𝑛) and show that B solves SIS 

instance in all these cases. 

 𝑂𝑝𝑒𝑛(Σ∗, 𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) = 𝑖∗ ∈ 𝑈(𝑏) 
 ∀𝑖∈𝑈(𝑏)𝑇𝑟𝑎𝑐𝑒(Σ

∗, Reveal(𝑖)) = 1 

 ∀𝑖∈𝑈(𝑏)(𝑖, Σ
∗) ∈ 𝑆𝑖𝑔𝑠 𝑎𝑛𝑑 𝐶𝑙𝑎𝑖𝑚 − 𝑉𝑒𝑟𝑖𝑓𝑦(Σ∗, 𝜏∗) = 1 

 Case1: Open algorithm decrypts and obtain the 

vector vi*. Recall zi* when answering Qb-join query 

such that Fzi* = vi*. We know vi*= Fz*. In adversary 

view, 𝑧𝑖∗  is chosen according to DΛ⊥𝑣𝑖∗(𝐹),𝜎
, it has 

atleast 𝑛 bits of min-entropy. Therefore, x= z* _ zi*
 is 

a solution to SIS instance i.e., 𝐹𝑥 = 0 𝑚𝑜𝑑 𝑞and 

𝑥 ≤  2𝛽 √𝑚. 

 Case2: 𝑇𝑟𝑎𝑐𝑒(Σ∗, Reveal(𝑗∗)) = 1 where 𝑗∗  ∈ 𝑈(𝑏) 

then, 𝐷0𝑏𝑖𝑛(𝑣𝑖∗) + 𝐷1𝑠𝑖∗ = 𝐷0𝑏𝑖𝑛 (𝑣𝑗∗) + 𝐷1𝑠𝑗∗ This 

is possible only if 𝑣𝑖∗ = 𝑣𝑗∗  and 𝑠𝑖∗ = 𝑠𝑗∗. If 𝑣𝑖∗ =

 𝑣𝑗∗ then 𝐹𝑧𝑖∗ = 𝐹𝑧𝑗∗. Therefore, 𝑥 = 𝑧𝑖∗ − 𝑧𝑗∗is a 

solution to SIS instance.  

 Case3: If ∀𝑖∈𝑈(𝑏)(𝑖, Σ
∗) ∈ 𝑆𝑖𝑔𝑠 𝑎𝑛𝑑 𝐶𝑙𝑎𝑖𝑚 −

𝑉𝑒𝑟𝑖𝑓𝑦(Σ∗, 𝜏∗) = 1 Let (𝑗∗, Σ∗)  ∈ 𝑆𝑖𝑔𝑠 recall zj* 

from Qb-join protocol such that vj*= Fzj*. Using 

improved forking lemma and witness extractor 

procedure, obtain z* from 𝜏∗ such that vj*= Fz*. Let 

x= zj* ˗ z* which is a solution to our SIS instance. 

6. Conclusions 

This work presents the first traceable signature scheme 

based on lattices. Compared to the existing lattice-

(23) 

(22) 
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based schemes our scheme has additional features like 

signature claiming and user opening. As agents can run 

in parallel, user tracing is scalable. Our scheme is 

based on the work of [12]. Compared to the scheme in 

[12], our scheme supports signature claiming, user 

opening and size of ɡpk is efficient by logN factor, 

where N is the number of members in the group. Our 

scheme is proved to be secure based on LWE and SIS 

assumptions in random oracle model. Construction of 

lattice-based traceable signature without random-oracle 

is the future work. 
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