
The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020 965

Traceable Signatures using Lattices

Thakkalapally Preethi and Bharat Amberker

Department of Computer Science and Engineering, National Institute of Technology Warangal, India

Abstract: Traceable Signatures is an extension of group signatures that allow tracing of all signatures generated by a

particular group member without violating the privacy of remaining members. It also allows members to claim the ownership

of previously signed messages. Till date, all the existing traceable signatures are based on number-theoretic assumptions

which are insecure in the presence of quantum computers. This work presents the first traceable signature scheme in lattices,

which is secure even after the existence of quantum computers. Our scheme is proved to be secure in the random oracle model

based on the hardness of Short Integer Solution and Learning with Errors.

Keywords: Traceable Signatures, Lattices, Short Integer Solution, Learning with Errors.

Received October 7, 2019; accepted May 5, 2020

https://doi.org/10.34028/iajit/17/6/15

1. Introduction

Group signatures, introduced by Chaum and Heyst [5],

allow members to sign messages anonymously on

behalf of their group. The identity of the signer is not

revealed from signatures and can be verified by the

group public-key. In-case of any dispute, a trusted

party called group manager can trace the signature and

reveal the identity of the signer. One of the

applications of group signatures is cloud security [16].

If a particular group member is suspected of an

illegal activity, then all the signatures generated by that

member have to be detected. In group signatures, this

is done by the group manager by opening all the

signatures. This violates the privacy of all the group

members and is inefficient (centralized opening by the

group manager). To overcome these two drawbacks,

Kiayias et al. [9] defined traceable signatures where in

addition to the group manager opening the signatures

individually, he can reveal the tracing trapdoor of a

suspected group member to his agents and agents can

detect all the signatures generated by that member

without revoking the anonymity of remaining group

members. This also improves scalability as agents can

run in parallel compared to the traditional group

signatures. Moreover in traceable signatures, a signer

can provably claim the authorship of his own

signatures. Since 2004, a few traceable signature

schemes were proposed and these are insecure once

quantum computers come into existence [17].

 Lattice-based Cryptography: Since the works of

Regev [15] and Gentry et al. [7], lattice-based

cryptography have been an exciting research area. It

is a promising alternative to classical cryptography

due to the following reasons: constructions based on

lattices are secure even in the presence of quantum

computers, involves simple operations and are based

on worst-case hardness assumptions.

Gordon et al. [8] introduced the first lattice-based

group signature scheme. Since then, several lattice-

based group signature schemes with different features

were proposed [10, 11, 12, 13, 14]. All these schemes

are proved to be secure in random oracle model. Even

in the random oracle model, the design of group

signature schemes with different traceable mechanisms

is a non-trivial problem. In particular, no lattice-based

traceable signature scheme has been proposed so far.

 Contribution: We propose the first traceable

signature scheme using lattices. Compared to the

existing lattice-based group signature schemes, our

scheme has following advantages:

 User tracing: Agents on receiving the trapdoor of

a particular group member from group manager

can open all the signatures generated by that

member preserving the anonymity of other

members.

 Group member can claim the ownership of its

own previously generated signature preserving

the privacy of remaining signatures generated by

that member.

 Group members can join dynamically. Compared

to existing lattice-based group signature schemes

which support dynamic joining [12, 14] the size

of group public-key is efficient by log N factor,

where N is the number of members in the group.

Our scheme satisfies the security requirements, defined

by Kiayias et al. [9], based on the hardness of two

average-case lattice problems: Short Integer Solution

(SIS) and Learning with Errors (LWE).

 Construction Overview: To achieve dynamic

joining, we adapt the joining protocol in [12] which

allows the new members to sample their secret-keys

and are validated by the group manager. If secret-

966 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

keys are valid, the group manager issues the

membership certificates. In our scheme, joining

protocol is same as in [12] except during the

membership certificate generation. In [12], to

generate certificate, it uses the encoding function

defined in [3] which consists of O (log N) matrices

in group public-key (gpk). To decrease the size of

gpk, our scheme uses the encoding function defined

in [1], which consists of 3 matrices. Group manager

maintains a database that contains all the

information about registered members.

During signature generation, signer i generates the

syndrome on its secret-key and its certificate. These

syndromes are individually encrypted using Regev

encryption scheme [7]. Commitment on syndrome

formed by secret-key is generated using SIS function

(one-way).

An interactive zero-knowledge protocol is

constructed to prove signer is a valid group member,

ciphertexts are well-formed and commitment generated

on secret-key syndrome is the correct commitment.

This protocol is repeated many times to make

soundness error negligible and is made non-interactive

using Fiat-Shamir heuristic [6]. Group manager

possesses the secret-key of regev encryption scheme.

To achieve signature opening, group manager decrypts

the syndrome on secret-key and reveals the identity

using the database (containing the syndromes of all

secret-keys along with the identities). If all the

signatures generated by a particular suspected user has

to be revealed, then group manager generates the

trapdoor of user i, syndrome on user i certificate and an

intermediate key that decrypts the ciphertext on this

syndrome, and is given to the agents. Agents upon

receiving trapdoor for user i, decrypts the ciphertext

given in the signature to obtain the syndrome on

certificate 𝑖 and matches with the syndrome given in

the trapdoor. Thus, user tracing is achieved in our

scheme. Signer can claim the signature as his own by

generating the Non-Interactive Zero-Knowledge

(NIZK) protocol that the commitment in the signature

is generated by using its own secret-key. Verifiers

check the validity of the protocol to verify signature

claiming.

 Organization: In section 2, model of traceable

signatures and cryptographic primitives in lattices is

presented. Section 3 presents the interactive zero-

knowledge protocol used in our work. Construction

of our scheme and its security proofs are discussed

in sections 4 and 5, respectively. Finally, section 6

concludes our work.

2. Preliminaries

2.1. Traceable Signatures

This section presents the model of traceable signature

[9]. It consists of following nine algorithms.

 Setup: On input security parameter 𝑛 ∈ 𝑁, a

trusted party executes this algorithm and outputs

the group public-key (gpk) and a group manager

secret-key (ɡmsk).

 Join: It is an interactive protocol between Group

Manager (GM) and user i(Ui). At the end of the

protocol Ui obtains the secret-key seci and a

membership certificate certi. GM appends the Ui

transcript transcripti to the database called

transcripts, which is a private database

containing the transcripts of all users.

 Sign: On input message m, secret-key 𝑠𝑒𝑐𝑖 and

membership certificate certi this algorithm

generates the traceable signature ∑ on m.

 Verify: This algorithm returns 0 or 1 when group

public-key ɡpk, message m and signature ∑ are

given as input.

 Open: Given a valid traceable signature ∑, GM

using his own secret-key ɡmsk and the database

transcripts outputs an identity of the signer.

 Reveal: Given an index i of a group member

along with its join transcript transcripti. GM

using his own secret-key outputs the tracing

trapdoor tracei of user i.

 Trace: Given a group public-key ɡpk, a valid

signature ∑, and tracing trapdoor 𝑡𝑟𝑎𝑐𝑒𝑖 of user i

as input, this algorithm return 1 or 0.

 Claim: On input ɡpk, a message signature pair

(m, ∑) given by user i, user i secret-key seci and

its membership certificate certi this algorithm

returns the claim τ for an authorship of i for

signature ∑.

 Claim-Verify: Given a ɡpk, message-signature

pair (m, ∑) and claim τ, it returns 1 or 0.

 Correctness: A traceable signature scheme is correct

if the following four conditions are satisfied with

high probability in n, where n is the security

parameter. Let SignU, RevealU and ClaimU be the

oracles of Sign, Reveal and Claim algorithms of

user U respectively.

a) Sign Correctness: For all m, Verify (m, ɡpk,

SignU)=1.

b) Open Correctness: For any m, Open (SignU, ɡpk, m,

ɡmsk, transcripts)= U.

c) Trace Correctness: For any m, Trace(ɡpk, SignU,

RevealU)=1 and for any iʹ≠ U Trace(ɡpk, Signiʹ,

RevealU)=0.

d) Claim-Verify Correctness: For all (m, ∑)← SignU

Claim―Verify (m, ∑, ClaimU, ɡpk)=1

Traceable Signatures using Lattices 967

Security model of traceable signatures was

formalized in [9]. A traceable signature scheme is

secure if it is secure against misidentification,

anonymity and framing attacks. In all these attacks,

adversary is given access to the certain oracles

which share the following variables:

 State: contains transcripts, secret-keys and

certificates of all members joined in the group. Siɡs:

set of members whose signatures are revealed by

Qsiɡ query. Revs: set of members whose trapdoor is

revealed by the Qreveal query. N is the number of

members in the group. U(p): set of honest members

in the group. U(a): set of adversary controlled

members in the group and U(b): set of members

added by the adversary acting asgroup Manager

(GM).

Oracles which are given access to the adversary are:

 Qy: returns ɡpk. Qs returns ɡmsk. Qa-join: In the

join protocol, oracle acts as a group manager and

adversary acts as a user. Qb-join: In the join

protocol, adversary acts as a group manager and

oracle acts as a user. When protocol in Qa-join and

Qb-join terminates, it adds user i to U(a) and U(b)

respectively and sets state=state ׀׀ (i, certi,

transcripti, ⊥), transcripts= transcripwts ׀׀ (i,

transcripti).

 Qp-join: Introduces honest users in the group and

sets state and transcripts as in Qb-join query.

 Qsig: On input message m and index i, this oracle

returns the signature ∑, if an entry is found in

𝑠𝑡𝑎𝑡𝑒 and adds (i, m, ∑) to siɡs. If no entry is

found or 𝑖 ∈ 𝑈(𝑎) then, it returns ⊥ and Qreveal:

returns the output of Reveal (i, transcripts) and

adds i to Revs. Outputs ⊥ if 𝑖 ∈ 𝑈(𝑏) or does not

exist.

 Misidentification attack: In this attack, adversary

can control a set of users in the group through Qa-join

query. It is allowed to observe the system while

generating signatures and adding users through Qsiɡ

and Qb-join queries.In-addition, adversary is allowed

to access Qreveal which reveals the tracing trapdoor

of users. Finally, adversary has to generate a valid

signature that is not opened or traced to a user

controlled by the adversary. It can be clearly

explained in the following experiment.

Experiment 𝐸𝑥𝑝𝐴
𝑚𝑖𝑠(𝑛):(𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) ← 𝑆𝑒𝑡𝑢𝑝(1𝑛);

(𝑚, Σ) ← 𝐴(𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛 , 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔); If

Verify(𝑚, Σ, 𝑔𝑝𝑘) = 0 then return 0; If

𝑂pen(𝑚, Σ, 𝑔𝑚𝑠𝑘) = j ∉ 𝑈(𝑎)) or ∧𝑖∈𝑈(𝑎) Trace(Σ,

Reveal(i)) = 0 then return 1; return 0; A traceable

signature is secure against misidentification attacks if

Pr[𝐸𝑥𝑝𝐴
𝑚𝑖𝑠(𝑛) = 1]is negligible in n.

 Anonymity attack: This attack operates in two

phases: play and guess. In play phase, adversary has

access to 𝑄𝑎−𝑗𝑜𝑖𝑛, 𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑠𝑖𝑔 𝑎𝑛𝑑 𝑄𝑟𝑒𝑣𝑒𝑎𝑙

through which it controls set of users, observes the

system during addition of members and signature

generation and can obtain the tracing information of

any user. At the end of play phase, adversary

chooses two honest users which are not input to

𝑄𝑟𝑒𝑣𝑒𝑎𝑙 query and obtains signature generated by

one of them. In the guess stage, adversary has to

guess the identity of the signer. This can be

explained with the following experiment.

Experiment 𝐸𝑥𝑝𝐴
𝑎𝑛𝑜𝑛(𝑛): (𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) ←

𝑆𝑒𝑡𝑢𝑝(1𝑛); (𝑎𝑢𝑥,𝑚, 𝑖0, 𝑖1) ←
𝐴(𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛 , 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔); If 𝑖0 ∉ 𝑈

(𝑝) or𝑖1 ∉

𝑈(𝑝) or 𝑖0 ∈ 𝑅𝑒𝑣𝑠or𝑖1 ∈ 𝑅𝑒𝑣𝑠then return 0; 𝑏 ←
{0,1}, Σ ← Sign(𝑔𝑝𝑘,𝑚, 𝑠𝑒𝑐𝑖𝑏 , 𝑐𝑒𝑟𝑡𝑖𝑏);

𝑏′←A(𝑔𝑢𝑒𝑠𝑠, 𝑎𝑢𝑥, Σ: 𝑄𝑝−𝑗𝑜𝑖𝑛, 𝑄𝑎−𝑗𝑜𝑖𝑛, 𝑄𝑟𝑒𝑣𝑒𝑎𝑙 , 𝑄𝑠𝑖𝑔)I

f b=𝑏′, then return 1; return 0; A traceable signature is

said to be secure against anonymity attacks if for any

probabilistic polynomial-time algorithm A,

|Pr[𝐸𝑥𝑝𝐴
𝑎𝑛𝑜𝑛(𝑛) = 1] −

1

2
 | is negligible in 𝑛.

 Framing attacks: In this attack, adversary is allowed

to control group manager through QS query. It can

observe the system through Qb-join and Qsig queries.

The goal of the adversary is either to generate a

signature that opens or traces to honest user or to

claim the ownership of the signature generated by

another user. It can be described by the following

experiment.

Experiment 𝐸𝑥𝑝𝐴
𝑓𝑟𝑎(𝑛): (𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) ←

𝑆𝑒𝑡𝑢𝑝(1𝑛); (𝑚, Σ, τ) ← A(𝑄𝑦, 𝑄𝑆, 𝑄𝑏−𝑗𝑜𝑖𝑛 , 𝑄𝑠𝑖𝑔); If

Verify(𝑚, Σ, 𝑔𝑝𝑘) = 0 then return 0; If

𝑂pen(𝑚, Σ, 𝑔𝑚𝑠𝑘) ∈

𝑈(𝑏) or ∀𝑖∈𝑈(𝑏)Trace(Σ, Reveal(i)) = 1then return 1;

If ∀𝑖∈𝑈(𝑏)(𝑖, Σ) ∈ 𝑠𝑖𝑔𝑠 and

Claim Verify(𝑚, Σ, τ, 𝑔𝑝𝑘) = 1 then return 1; return 0;

A traceable signature is secure against framing attacks

if for any probabilistic polynomial-time adversary A,

Pr[𝐸𝑥𝑝𝐴
𝑓𝑟𝑎(𝑛) = 1] is negligible in n.

2.2. Lattices

For any m linearly independent vectors B= (b1, ..., bm),

lattice L(B) is defined as

𝐿(𝐵) = {∑ 𝑥𝑖
𝑚
𝑖=1 𝑏𝑖: 𝑥𝑖 ∈ 𝑍}.

For any positive real number 𝑠, discrete guassian

distribution over lattice Λ is defined as DΛ,s(𝑥) =
𝜌𝑠(𝑥) 𝜌𝑠(Λ)⁄ for any 𝑥 ∈ Λ.

For any 𝑚, 𝑛 ≥ 1, 𝑞 ≥ 2, matrix 𝐴 ∈ 𝑍𝑞
𝑛×𝑚, lattice

Λ⊥(𝐴) is defined as

Λ⊥(𝐴) = {𝑒 ∈ 𝑍𝑚: 𝐴𝑒 = 0 𝑚𝑜𝑑 𝑞}

968 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

(2)

For any 𝑢 ∈ 𝑍𝑞
𝑛, coset of the lattice Λ𝑢

⊥(𝐴) is defined as

Λ𝒖
⊥(𝐴) = {𝒆 ∈ 𝑍𝑚: 𝐴𝒆 = 𝒖 𝑚𝑜𝑑 𝑞}

In our work, we consider two average case lattice

problems are Short Integer Solution (SIS) and

Learning With Errors (LWE).

SISn,m,q,β
p

: Given a uniformly random matrix A ∈

Zq
n×m, find the vector x ∈ Λ⊥(A) such that ||x||p ≤ β.

LWE𝑛,𝑞,𝜓 : Let n,m ≥ 1,q ≥ 2 and 𝜓 be the

probability distribution over Z. For ∈ 𝑍𝑞
𝑛, the

distribution 𝐴𝑠,𝜓 over 𝑍𝑞
𝑛 × 𝑍𝑞is obtained by sampling

a uniform vector 𝑎 ∈ 𝑍𝑞
𝑛, 𝑒 ∈ 𝜓 and outputting the

pair (a, aTs+ e). The goal of LWE𝑛,𝑞,𝜓 is to distinguish

𝑚 samples chosen according to 𝐴𝑠,𝜓 from the 𝑚

samples chosen according to uniform distribution over

𝑍𝑞
𝑛 × 𝑍𝑞.

3. Underlying Zero-Knowledge Argument

System

Let D, L be positive integers. Libert et al. [12]

proposed an interactive zero-knowledge protocol for

the relation R

𝑅 = {(𝑃, 𝑦; 𝑥) ∈ 𝑍𝑞
𝐷×𝐿 × 𝑍𝑞

𝐷 × 𝑉𝑎𝑙𝑖𝑑: 𝑃𝑥 = 𝑦 𝑚𝑜𝑑𝑞}

Where Valid is the subset of {−1,0,1}𝐿 satisfying the

following two conditions:

1) 𝒙 ∈ 𝑉𝑎𝑙𝑖𝑑 ⇔ 𝑇π(𝒙) ∈ 𝑉𝑎𝑙𝑖𝑑

2) If 𝒙 ∈ 𝑉𝑎𝑙𝑖𝑑 and π is uniform in S then Tπ(x) is

uniform in 𝑉𝑎𝑙𝑖𝑑

Where Tπ is the permutation of L elements and set S is

the permutation of m elements.

This section presents the Zero-knowledge Argument

of knowledge (ZKAoK) for the scheme in section 4. In

detail, it presents ZKAoK that satisfies the following

conditions:

 Signer i is a certified group member i.e, he

possess a valid secret-key zi and membership

certificate certi=(i,di,si)

 The syndrome vi obtained using secret-key 𝑧𝑖 is

correctly encrypted to ciphertext 𝑐𝑣𝑖=(c1,c2).

 The syndrome wi obtained using certi and zi is

correctly encrypted to ciphertext 𝑐𝑤𝑖=(c3,c4)..

 Commitment b1 is the correct commitment of vi.

All the above conditions can be defined as a relation

𝑅′.

 Definition 1: The relation 𝑅′ is defined as

𝑅′ = {𝐴, 𝐴1, 𝐴2, 𝑢, 𝐹, 𝐵, 𝐵1, 𝐷, 𝐷0, 𝐺0, 𝐺3, 𝐷1, 𝑐1, 𝑐2, 𝑐3, 𝑐4,
𝑏1; 𝑖, 𝑧𝑖 , 𝑣𝑖 , 𝑤𝑖 , 𝑑𝑖 , 𝑠𝑖 , 𝑠0

′ , 𝑠1
′ , 𝑥1, 𝑥2, 𝑥3, 𝑥4}

Where

𝐴, 𝐴1, 𝐴2, 𝐵, 𝐹, 𝐷, 𝐺3 ∈ 𝑍𝑞
𝑛×𝑚, 𝐷0, 𝐷1 ∈ 𝑍𝑞

2𝑛×2𝑚, 𝐹

∈ 𝑍𝑞
𝟜𝑛×𝟜𝑚, 𝐵1, 𝐺0 ∈ 𝑍𝑞

𝑛×𝟚𝑚, 𝑢 ∈ 𝑍𝑞
𝑛 , 𝑐1, 𝑐3, 𝑐4

∈ 𝑍𝑞
𝑚, 𝑐2 ∈ 𝑍𝑞

2𝑚; 𝑖 ∈ [𝑁], 𝑧𝑖 , 𝑑𝑖 , 𝑠𝑖
∈ [−β, β]2𝑚, 𝑣𝑖 ∈ 𝑍𝑞

𝟜𝑛 , 𝑤𝑖 ∈ 𝑍𝑞
𝟚𝑛, 𝑠0

′ , 𝑠1
′

∈ [−𝑏, 𝑏]𝑛, 𝑥1, 𝑥3, 𝑥4 ∈ [−𝑏, 𝑏]
𝑚, 𝑥2

∈ [−𝑏, 𝑏]2𝑚

Satisfying

𝐴𝑑1𝑖 + 𝐴1𝑑2𝑖 + 𝑖𝐴2𝑑2𝑖 = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑖)
𝑤𝑖 = 𝐷0𝑏𝑖𝑛(𝑣𝑖) + 𝐷1𝑠𝑖𝑚𝑜𝑑 𝑞 𝑎𝑛𝑑 𝑣𝑖 = 𝐹𝑧𝑖𝑚𝑜𝑑 𝑞

𝑐𝑣𝑖 = (𝑐1, 𝑐2) = (𝐵
𝑇𝑠0
′ + 𝑥1, 𝐺0

𝑇𝑠0
′ + 𝑥2 + 𝑏𝑖𝑛(𝑣𝑖)

𝑞

2
)

𝑐𝑤𝑖 = (𝑐3, 𝑐4) = (𝐵
𝑇𝑠1
′ + 𝑥3, 𝐺3

𝑇𝑠1
′ + 𝑥4 + 𝑏𝑖𝑛(𝑤𝑖)

𝑞

2
)

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞

Since, Libert et al. [12] proposed an interactive zero-

knowledge protocol for relation 𝑅, an interactive zero-

knowledge protocol for relation 𝑅′can be generated by

transforming the relation 𝑅′to relation 𝑅 (defined in

Equation (1)).

3.1. Transformation of 𝐑′ to 𝐑

To transform the relation to R, we transform Equations

(2), (3), and (4) to the form 𝑃𝑥 = 𝑦 𝑚𝑜𝑑 𝑞, and define

a set 𝑉𝑎𝑙𝑖𝑑 such that it satisfies the conditions (1) and

(2). We define the sets and matrices which are used in

the transformation.

 B3m is the set of all vectors in {−1,0,1}3𝑚 having

equal number of -1,0,1. 𝐵2𝑙 is the set of all

vectors in {0,1}2𝑙 having hamming weight 𝑙.
 For any 𝛼 > 0, one can define the sequence

(𝛼1, 𝛼2, 𝛼3, , 𝛼𝑝) such that ∑ α𝑖
𝑝
𝑖=1 =

αwhere𝑝 = log𝛽 + 1 [11]. A matrix 𝐻𝑚,𝛼 is

defined as [α1, α2, α3, … . , α𝑝] ⊗ 𝐼𝑚 ∈ 𝑍
𝑚×𝑚𝑝

and a matrix 𝐻𝑚,𝛼
∗ is obtained by adding 2𝑚

columns to Hm,a.

 We define the matrix 𝑅1 as 𝑅1 = 𝐼4𝑛⊗

[1|2|4| … . |2log𝑞 − 1}] and 𝑅2as 𝑅2 = 𝐼2𝑛⊗

[1|2|4|… . |2log 𝑞 − 1].

The following lemma is used in the transformation.

 Lemma 4 [13]: Let m,O be positive integers and

δ𝑂 = log 𝑂 + 1. On input a vector 𝑣 ∈ [−O, O]𝑚,

extension and decomposition technique outputs a

vector 𝑣∗ ∈ 𝐵3𝑚δ𝑂
 such that 𝐻𝑚,𝑂

∗ 𝑣∗ = 𝑣

Conversion of all the equations in definition 1 to 𝑃𝑥 =
𝑦 𝑚𝑜𝑑 𝑞 proceeds as follows:

 Transformation of Equation (2) to the appropriate

form: Let 𝑖𝑑 ∈ {0,1}𝑙 is the binary representation

of i and idj represents the j-th bit of id. Let y1=bin(vi)

and y2= bin (wi) and Equation (2) can be written as

𝐴𝑑1𝑖 + 𝐴1𝑑2𝑖 + ∑ (2𝑙−𝑖𝐴2)𝑖𝑑𝑖𝑑2𝑖
𝑙
𝑖=1   − 𝐷𝑦2 = 𝑢

𝐷0𝑦1 + 𝐷1𝑠𝑖 − 𝑅2𝑦2𝑚𝑜𝑑 𝑞 = 0, 𝑅1𝑦1 − 𝐹𝑧𝑖 = 0 𝑚𝑜𝑑 𝑞

(1)

(3)

(4)

(5)

(6)

Traceable Signatures using Lattices 969

Apply lemma (4) to the vectors 𝑑1𝑖and 𝑑2𝑖 to generate

the vectors 𝑑1𝑖
∗ and 𝑑2𝑖

∗ respectively. Extend𝑦2 ∈
{0,1}𝑚 and 𝑖𝑑 ∈ {0,1}𝑙to 𝑦2̂ and𝑖𝑑∗such that 𝑦2̂ ∈
𝐵2𝑚 and 𝑖𝑑∗ ∈ 𝐵2𝑙. Now, Equation (5) is reduced to

𝐴∗𝑥11 = 𝑢 𝑚𝑜𝑑 𝑞

Where

𝐴∗ = [𝐴𝐻𝑚,𝛽
∗ |𝐴1𝐻𝑚,𝛽

∗ |2𝑙−1𝐴2𝐻𝑚,𝛽
∗ |… . |20𝐴2𝐻𝑚,𝛽

∗ | − 𝐷|0𝑛×𝑚]

And

𝑥11 = [𝑑1𝑖
∗ ||𝑑2𝑖

∗ ||𝑖𝑑1
∗𝑑2𝑖
∗ || … ||𝑖𝑑2𝑙

∗ 𝑑2𝑖
∗ ||�̂�2]

Similarly, Equation (6) is reduced to

 𝐶𝑥12 = 0 𝑚𝑜𝑑 𝑞

Where

𝐶 = (
𝐶1 0
0 𝐶2

) 𝑎𝑛𝑑 𝑥12 = (
𝑡1
𝑡2
)

And 𝐶1 = [𝐷0|0

2𝑛×2𝑚|𝐷1𝐻𝑚,β
∗ |−𝑅2|0

𝑛×𝑚]𝐶2 =

[𝑅1|0
2𝑛×2𝑚| − 𝐹𝐻𝑚,β

∗],𝑡1 = [𝑦1̂||𝑠𝑖
∗|| 𝑦2̂] and 𝑡2 =

[𝑦1̂||𝑧𝑖
∗]. The vectors 𝑠𝑖

∗and 𝑧𝑖
∗ are obtained by

applying lemma (4) to si and zi respectively and 𝑦1̂ is

obtained by extending y1 such that 𝑦1̂ ∈ 𝐵4𝑚.

 We combine Equations (7), (8) to obtain

 𝑃1
∗𝑥1
∗ = 𝑧1𝑚𝑜𝑑 𝑞

Where

𝑃1
∗ = (

𝐴∗ 0
0 𝐶

) 𝑥1
∗ = (

𝑥11
𝑥12
) 𝑧1 = (

𝑢
0
)

 Transformation of Equation (3) to the required

form: Equation (3) can be written as

(

0
𝑞

2
𝑰2𝑚

0
0)

𝑦1 +

(

0
0
0
𝑞

2
𝑰𝑚
)

𝑦2 +

(

𝐵𝑇

𝐺0
𝑇|
𝐼3𝑚
𝐼3
𝑀 | 0

𝐵𝑇

𝐺0
𝑇0|

𝐵𝑇

𝐺3
𝑇| 𝐼2𝑚

)

(

𝒔𝟎
′

𝒙𝟏
𝒙𝟐
𝒔𝟏
′

𝒙𝟑
𝒙𝟒)

= (

𝒄𝟏
𝒄𝟐
𝒄𝟑
𝒄𝟒

)

≡ 𝑄1𝑦1 + 𝑄2𝑦2 + 𝑄3𝑡3 = 𝑧2

Apply lemma (4) to the vector 𝑡3 to generate 𝑡3
∗ ∈

𝐵3(2𝑛+5𝑚)δ𝑏 and 𝑦1̂ ∈ 𝐵4𝑚, 𝑦2̂ ∈ 𝐵2𝑚 is obtained by

extending 𝑦1 and 𝑦2 respectively. Equation (10) can be

written as

𝑃2
∗𝑥2
∗ = 𝑧2

Where
𝑃2
∗ = [𝑄1|0

5𝑚×2𝑚|𝑄2|0
5𝑚×𝑚|𝑄3𝐻𝑚,𝑏

∗],

𝒙2
∗ = [𝒚2̂|| 𝒚1̂||𝒕𝟑

∗]

 Transformation of Equation (4) to the required

form: Let 𝐵1
∗ = [𝐵1|0

𝑛×2𝑚] and 𝑦1̂ ∈ 𝐵4𝑚 is

obtained by extending 𝑦1 ∈ {0,1}
2𝑚. Therefore,

Equation (4) can be written as

 𝑃3
∗𝑥3
∗ = 𝑧3

Where 𝑃3
∗ = 𝐵1

∗, 𝑥3
∗ = 𝑦1̂ and z3= b1.

Finally, we combine the Equations (9), (11), and

(12) as follows: Generate the matrix P, x and y as

P = (

𝑃1
∗ 0 0

0 𝑃2
∗ 0

0 0 𝑃3
∗
)𝑥 = (

𝑥1
∗

𝑥2
∗

𝑥3
∗
) and y = (

𝑧1
𝑧2
𝑧3
)

Thus, all the equations in relation Rˊ (definition 1) are

transformed to the form Px= y mod q.

Let 𝐿 = 22𝑚 + (2𝑙 + 4)3𝑚𝛿𝛽 + 3(2𝑛 + 5𝑚)𝛿𝑏 .

We define set Valid as follows:

𝑉𝑎𝑙𝑖𝑑: Set of all vectors {−1,0,1}𝐿 of the form

𝑔 = [𝑔1||𝑔2||𝑡1𝑔2||… ||𝑡2𝑙𝑔2||𝑔3||𝑔4||𝑔5||𝑔3||𝑔4||𝑔6

𝑔3||𝑔4||𝑔7||𝑔4]

Where 𝑔1, 𝑔2, 𝑔5, 𝑔6 ∈ 𝐵3𝑚𝛿𝛽 , 𝑔3 ∈ 𝐵2𝑚, 𝑔4 ∈

𝐵4𝑚, 𝑔7 ∈ 𝐵3(2𝑛+5𝑚)𝛿𝑏 , 𝑡 ∈ 𝐵2𝑙.

Let 𝑆 = 𝑆3𝑚𝛿𝛽 × 𝑆3𝑚𝛿𝛽 × 𝑆2𝑙 × 𝑆2𝑚 × 𝑆4𝑚 ×

𝑆3𝑚𝛿𝛽 × 𝑆3𝑚𝛿𝛽 × 𝑆3(2𝑛+5𝑚)𝛿𝑏

Let 𝜋 = (𝜋1, 𝜋2, 𝜏, 𝜋3, 𝜋4, 𝜋5, 𝜋6, 𝜋7) ∈ 𝑆.Define the

permutation 𝑇𝜋 as

𝑇𝜋(𝑔)=[𝜋1(𝑔1)||𝜋2(𝑔2)||𝑡𝜏(1)(𝜋2(𝑔2))||....||

𝑡𝜏(2𝑙)(𝜋2(𝑔2))||𝜋3(𝑔3)||𝜋4(𝑔4)||𝜋5(𝑔5)||𝜋3(𝑔3)||

𝜋4(𝑔4)||𝜋6(𝑔6)||𝜋3(𝑔3)||𝜋4(𝑔4)||𝜋7(𝑔7)||𝜋4(𝑔4)]

By construction of vector x in section 3.1, it belongs to

set valid. It can be observed if a vector 𝑥 ∈ 𝑉𝑎𝑙𝑖𝑑then

𝑇π(𝑥) ∈ 𝑉𝑎𝑙𝑖𝑑 and vice-versa. Therefore, both the

conditions (1 and 2) for valid set are satisfied. Since

ZKAoK protocol for relation R is given in [12] and our

relation Rˊ is transformed to R, ZKAoK protocol for

relation Rˊ is directly constructed from R.

4. Proposed Scheme

For any two matrices A and B, concatenation of rows

and columns are represented by [A׀B] and [A׀׀B]

respectively. Similar notation is also used for vectors.
We assume each user Ui has public-key upk[i] and

secret-key of upk[i] of a signature scheme as in [9]. Let

n be the security parameter, N is the number of users

joined the group, 𝑚 = 2𝑛 log 𝑞, 𝑞 = �̃�(𝑙𝑛3) and 𝑞 ≫

𝑁, σ = Ω(√𝑛 log 𝑞 log 𝑛),β = σω(log𝑚). Let 𝑏 =

√𝑛ω(log𝑛), 𝑡 = 𝜔(log 𝑛)and ψ be the 𝑏-bounded

distribution. We consider three random oracles

𝐻: {0,1}∗ → {0,1,2}𝑡, 𝐻1: {0,1}
∗ → 𝑍𝑞

𝑛×𝑚 and

𝐻2: {0,1}
∗ → 𝑍𝑞

𝑛×2𝑚. We use GenTrap and SamplePre

algorithms presented in [2, 7] for our construction.

 Setup (1𝑛)

1. Generate two instances of hard random lattices

(A,TA) and (B,TB) using algorithm GenTrap

(n,m,q).

2. Choose matrices (A1,A2,D) uniformly over 𝑍𝑞
𝑛×𝑚,

F is sampled uniformly from 𝑍𝑞
𝟜𝑛×𝟜𝑚, (D0,D1) is

uniformly chosen over 𝑍𝑞
2𝑛×2𝑚, B1 is uniformly

chosen over 𝑍𝑞
𝑛×2𝑚 and vector 𝑢 is chosen

uniformly over 𝑍𝑞
𝑛.

𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0, 𝐷1, 𝐹, 𝑢) and 𝑔𝑚𝑠𝑘 =
(𝑇𝐴, 𝑇𝐵)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

970 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

Note: The size of gpk is O (nm log q).

Join (GM,Ui).

1. User Ui chooses a vector 𝑧𝑖 ← 𝐷𝑍4𝑚 ,σ and compute

a vector vi=Fzimod q. Generate a signature on vi i.e.,

𝑠𝑖𝑔𝑖 = sign𝑢𝑠𝑘[𝑖](𝑣𝑖). Send vi and siɡi to GM.

2. GM verifies siɡi is valid signature of vector vi using

upk[i] and was not previously generated by another

user. If it is valid, then GM sets i=N+1 and

computes user dependent matrix Ai as 𝐴𝑖 =
[𝐴|𝐴1 + 𝑖𝐴2] ∈ 𝑍𝑞

𝑛×2𝑚and short vector𝑑𝑖 =

[𝑑1𝑖||𝑑2𝑖] ∈ 𝑍
2𝑚 such that

 𝐴𝑖𝑑𝑖 = 𝑢 + 𝑢𝑖 𝑚𝑜𝑑 𝑞

Where 𝑢𝑖 = 𝐷 𝑏𝑖𝑛(𝐷0𝑏𝑖𝑛(𝑣𝑖) + 𝐷1𝑠𝑖)and 𝑠𝑖 is chosen

according to 𝐷𝑍2𝑚,σ and send (𝑖, 𝑑𝑖, 𝑠𝑖) to 𝑈𝑖

3. 𝑈𝑖 checks whether (𝑖, 𝑑𝑖, 𝑠𝑖) satisfies Equation

(14),||𝑑𝑗𝑖||
∞
≤ β for 𝑗 ∈ {1,2} 𝑎𝑛𝑑 ||𝑠𝑖||∞ ≤ β

If the conditions are valid then, 𝑠𝑒𝑐𝑖 = 𝑧𝑖 , 𝑐𝑒𝑟𝑡𝑖 =
(𝑖, 𝑑𝑖 , 𝑠𝑖) and stores the 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖 =
(𝑠𝑖𝑔𝑖, 𝑣𝑖, 𝑖, 𝑑𝑖 , 𝑠𝑖, 𝑢𝑝𝑘[𝑖]) in the database transcripts

which is the private database of GM.

Sign (𝑔𝑝𝑘, 𝑐𝑒𝑟𝑡𝑖, 𝑠𝑒𝑐𝑖, 𝑚)

1. Generate the one-time signature key-pair (VK, SK)

Compute vi=Fzi mod q and wi=D0bin(vi)+D1si mod q.

2. Encrypt the vector 𝑣𝑖 using dual Regev Encryption

scheme [7]. Let 𝐺0 = H2(𝑉𝐾). Choose 𝑠0
′ ←

𝜓𝑛,𝑥1 ← 𝜓
𝑚 and 𝑥2 ← 𝜓

2𝑚.

𝑐𝑣𝑖 = (𝑐1, c2) = (𝐵
𝑇𝑠0
′ + 𝑥1, 𝐺0

𝑇𝑠0
′ + 𝑥2 + 𝑏𝑖𝑛(𝑣𝑖) (

𝑞

2
))

3. Similarly, encrypt the vector wi Let G1=H1(certi).

Choose s1
′ ← ψnand compute G2 ∈ Zq

m×n such that

G2s1
′=0 mod q and proceed if one such G2 is found

otherwise repeat. Let G3=G1+G2
T. Choose x3, x4 ←

 ψm

𝑐𝑤𝑖 = (𝑐3, 𝑐4) = (𝐵
𝑇𝑠1
′ + 𝑥3, 𝐺1

𝑇𝑠1
′ + 𝑥4 + 𝑏𝑖𝑛(𝑤𝑖) (

𝑞

2
))

4. Generate the commitment for vi as

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞

5. Generate a NIZK protocol Π to prove there exists i ∈
[N],(zi, d1i, d2i, si) has infinity bound

β,(s0
′ , s1

′ , x1, x2, x3, x4)has infinity bound b and there

exists vi and wi that satisfies Equations (2), (3) and

(4). This can be generated by running the interactive

protocol in section 3 t times and converting it into

non-interactive using Fiat-Shamir heuristic [6] i.e.,

Π=(CMT,CH,RSP} where

CH(ch1… . , cht)H(CMT,m, {ci}i=1
4 , VK, G3, b1) ∈

 {0, 1, 2}t.
6. Compute the one-time signature 𝑠𝑖𝑔 =
OSign(SK, ({𝑐𝑖}𝑖=1

4 , 𝑏1, Π))

Σ = (𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1)

Verify(m, ɡpk, ∑).

1. Check whether protocol Π is valid.

2. Check whether sig is a valid signature on

({𝑐𝑖}𝑖=1
4 , 𝑏1, Π) using VK.

Return 1 iff all the conditions are valid.

Open (∑, ɡpk, m, ɡmsk, transcripts)

1. Compute G0=H2(VK) Decrypt 𝑐𝑣𝑖 using 𝑇𝐵 as

follows: Using 𝑇𝐵, compute a small-norm matrix

𝐸0 ∈ 𝑍
𝑚×2𝑚 such that BE0=G0 mod q. Obtain

𝑏𝑖𝑛(𝑣𝑖) by computing (𝑐2 −
𝐸0
𝑇𝑐1
𝑞

2

)

2. Compute 𝑣𝑖 = 𝑅1⊗𝑏𝑖𝑛(𝑣𝑖)and search in the

database transcripts for transcripti in which vi is the

entry. If such transcript is found output the signer

𝑖 otherwise output ⊥.

Reveal (ɡmsk, i, transcripts)

1. Parse ɡmsk=(TA,TB) and obtain 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖 =
(𝑠𝑖𝑔𝑖, 𝑣𝑖 , 𝑖, 𝑑𝑖, 𝑠𝑖, 𝑢𝑝𝑘[𝑖]) from the database

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠. Compute 𝑤𝑖 = 𝐷0𝑏𝑖𝑛(𝑣𝑖) +
𝐷1𝑠𝑖𝑚𝑜𝑑 𝑞

2. Let G1=H1(i,di,si). Compute the small norm matrix

𝐸𝑖 ∈ 𝑍
𝑚×𝑚 using 𝑇𝐵such that BEi=G1 mod q.

tracei=(wi,Ei).

Trace (ɡpk,∑, tracei)

1. Parse tracei=(wi,Ei) and signature Σ = (𝑐𝑣𝑗, 𝑐𝑤𝑗, Π,

VK, sig,𝐺3, 𝑏1).

2. Decrypt 𝑐𝑤𝑗 using 𝐸𝑖 and obtain bin (wj).

3. Compute 𝑤𝑗 = 𝑅2⊗𝑏𝑖𝑛(𝑤𝑗) and return 1 iff 𝑤𝑗 is

equal to the 𝑤𝑖 which is given as a part of 𝑡𝑟𝑎𝑐𝑒𝑖.

Claim (m,∑,seci,certi,ɡpk)

1. Parse the signature Σ = (𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1)

2. Generate the NIZK proof of knowledge 𝜋 that there

exists 𝑧𝑖such that

𝑏1 = 𝐵1𝑏𝑖𝑛(𝑣𝑖) 𝑚𝑜𝑑 𝑞 where 𝑣𝑖 = 𝐹𝑧𝑖 𝑚𝑜𝑑 𝑞

This is possible only if user has the secret-key zi and

generated the signature Σ.

Output: 𝜏= 𝜋

Claim Verify(𝑚,𝛴, 𝜏, 𝑔𝑝𝑘)

Parse 𝜏= 𝜋 and signature Σ(𝑐𝑣𝑖 , 𝑐𝑤𝑖 , Π, 𝑉𝐾, 𝑠𝑖𝑔, 𝐺3, 𝑏1).

Check the validity of protocol 𝜋 and return 1 if it is

valid.

 Correctness:

 Sign Correctness: By completeness of protocol ∏

and correctness of one-time signature scheme,

Verify algorithm returns 1 with high probability.

(14)

(15)

(16)

(17)

(18)

Traceable Signatures using Lattices 971

 Open Correctness: By correctness of Dual-Regev

Encryption Scheme [7], open algorithm returns

the identity U with high probability.

 Trace Correctness: We know SiɡnU and RevealU

oracles generate the signature and tracing

trapdoor of user U respectively. By Reveal

algorithm in section 4, the tracing trapdoor is

(wU,EU). By correctness of dual Regev encryption

scheme, EUreturnswU. Therefore, Trace

(ɡpk,SignU,RevealU)=1 is satisfied with high

probability. Next, we need to prove Trace

(ɡpk,Signiˊ,RevealU)=0 for any 𝑖 ′ ≠ 𝑈. During

trace algorithm in section (4), we decrypt (c3,c4)

using EU and obtain bin (wi). But, (c3,c4) is the

encryption of wiˊ and 𝐸𝑈 which is the trapdoor of

user U does not decrypt to wiˊ correctly. Assume

decryption algorithm returns wjˊ. Since, wU is

statistically close to uniform, the probability that

wjˊ=wU is negligible. Therefore,

Trace(ɡpk,Signiˊ,RevealU)=1is negligible for

any 𝑖 ′ ≠ 𝑈.

 Claim-Verify Correctness: By completeness of

protocol π generated by claimU, Claim-Verify

algorithm returns 1 for all (m,∑)←SiɡnU.

5. Security

5.1. Misidentification Attacks

 Theorem 2: Our scheme is secure against

misidentification attacks based on the hardness of

SIS assumption.

 proof: Assume, there exists an adversary A breaking

the security of our scheme against misidentification

attacks with non-negligible probability. We

construct an algorithm B that solves SIS instance

𝐴 = [𝐴1|𝐴2] ∈ 𝑍𝑞
𝑛×2𝑚with non-negligible

probability. A coin is uniformly chosen over {1,2}

and 𝑖∗
$
← [𝑁].

coin=1

 Setup:

 Assign the matrix 𝐴 = 𝐴1. Run Gen Trap (n,m,q)

and obtain (𝐴2, 𝑇𝐴2) and (B,TB). Sample the

matrices 𝑅, 𝑅′ uniformly over {−1,1}𝑚×𝑚 and

compute 𝐴1 = 𝐴𝑅 − 𝑖
∗𝐴2.

 Sample the matrices D0, D1 uniformly over

𝑍𝑞
2𝑛×2𝑚, 𝐷 = 𝐴2𝑅

′, matrix B1 over 𝑍𝑞
𝑛×2𝑚 and

matrix F∈ 𝑍𝑞
4𝑛×4𝑚.

 Vector 𝑒 is chosen according to D𝑍𝑚,𝜎 and

compute 𝑢 = 𝐴𝑒 𝑚𝑜𝑑 𝑞.

Send 𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0 , 𝐷1, 𝑢, 𝐹) to A

 Queries:

 QP-join: Increments 𝑁 and compute 𝐴𝑁 = [𝐴|𝐴1 +
𝑁𝐴2]. Using 𝑇𝐴2 obtain 𝑑𝑁 = [𝑑𝑁,1||𝑑𝑁,2]. Let sN

is chosen according to D𝑍2𝑚 ,𝜎 and 𝑧𝑁 are chosen

according to D𝑍4𝑚,𝜎. Let certN=(N,dN,sN), secN=zN

and add N to the set U(p).

 Qa-join: When A triggers join protocol by sending

vi,B chooses N such that 𝑁 ≠ 𝑖∗.When A

provides 𝑠𝑖𝑔𝑖 such that it is a valid signature on vi

under upk[i]. Using 𝑇𝐴2 obtain the vector 𝑑𝑁 =

[𝑑𝑁,1||𝑑𝑁,2] such that 𝐴𝑁𝑑𝑁 = 𝑢 +

𝐷(𝑏𝑖𝑛(𝐷0 𝑏𝑖𝑛(𝑣𝑁) + 𝐷1𝑠𝑁)) 𝑚𝑜𝑑 𝑞 where 𝑠𝑁 is

chosen according to D𝑍2𝑚 ,𝜎. Send certN=(N,dN,

sN) to A and add N to the set U(a).

 Qsiɡ: If 𝑖 ∉ 𝑈(𝑝) or 𝑖 = 𝑖∗ then abort. Otherwise,

generate the signature ∑ on message m using

seci.

 Qreveal: On input index i, if 𝑖 ∉ 𝑈(𝑝) or i=i* then

abort. Otherwise, algorithm B searches in the

database transcripts for the entry (. , . , 𝑖, 𝑑𝑖 , 𝑠𝑖, .).

Using transcriptsi obtain tracei and add i to

Revs.

 Forgery: A outputs (m∗, Σ∗)such that Verify

(gpk,m∗, Σ∗)=1. IfOpen((m∗, Σ∗, gmsk) = j ∈
U(a)orj ≠ i∗abort. Otherwise, parse Π ∗ =
(CMT, CH, RSP) and Σ∗ =
(cvj

∗, cwj
∗, Π∗, VK∗, G3

∗, b1
∗, sig∗). A must have

queried the random oracle H on input

(CMT,m∗, VK∗, {ci
∗}i=1
4 , G3

∗ , b1
∗) with high

probability. Otherwise,

Pr [{𝑐ℎ}i=1
𝑡 = H(CMT,𝑚∗, 𝑉𝐾∗, {𝑐𝑖

∗}i=1
4 , 𝐺3

∗, 𝑏1
∗)] ≤

1

3t

Therefore with 𝜀 − 3−𝑡probability, there exists an

index 𝜅∗ ≤ QH. At this stage, algorithm B runs A with

same input and random tape as in original execution.

Pick 𝜅∗ as the target point and replay A many times

with the same random tape and input. Each time, first

𝜅∗ − 1 queries are answered as 𝑟1, … . , 𝑟𝜅∗−1 and

from𝜅∗𝑡ℎ query the answers are uniformly chosen

from {1, 2, 3}t. The Improved Forking Lemma [4]

implies that, with probability greater than
1

2
, B can

obtain a 3-fork involving tuple

(CMT,𝑚∗, 𝑉𝐾∗, {𝑐𝑖
∗}i=1
4 , 𝐺3

∗, 𝑏1
∗) and open to the

𝑏𝑖𝑛(𝑣𝑖
∗) which is uniquely determined by (𝑐1

∗, 𝑐2
∗). Let

the answers of B with respect to the 3-fork branches be

𝑟𝜅∗
(1)
= (𝑐ℎ1

(1)
, … . , 𝑐ℎ𝑡

(1)
) 𝑟𝜅∗

(2)
= (𝑐ℎ1

(2)
, … . , 𝑐ℎ𝑡

(2)
)

𝑟𝜅∗
(3)
= (𝑐ℎ1

(3)
, … . , 𝑐ℎ𝑡

(3)
)

Pr [∃𝑗 ∈ [𝑡]: {𝑐ℎ𝑗
(1)
, 𝑐ℎ𝑗

(2)
, 𝑐ℎ𝑗

(3)
} = {1,2,3}] = (1 − (

7

9
)t)

If such j exists, parse the 3-forgeries corresponding to

3-fork branches to obtain (RSP𝑗
(1)
, RSP𝑗

(2)
, RSP𝑗

(3)
).

Given three different challenges and three valid

responses for same commitment CMTj, using witness

extractionprocedure, the witness (𝑗, 𝑑𝑗 =

(19)

(20)

972 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

[𝑑1𝑗||𝑑2𝑗], 𝑧𝑗 , 𝑠𝑗) can be extracted. Algorithm B aborts

if j≠i*. We know𝐴𝑗𝑑𝑗 = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑗) 𝑚𝑜𝑑 𝑞 where

wj=D0bin(vj)+D1sjmod q. Therefore,

[𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1𝑗||𝑑2𝑗] = 𝑢 + 𝐷𝑏𝑖𝑛(𝑤𝑗) 𝑚𝑜𝑑 𝑞

𝐴1̅̅ ̅ (𝑑1𝑗 + 𝑅𝑑2𝑗 − 𝑒) − 𝐴2𝑅
′𝑏𝑖𝑛(𝑤𝑗))= 0 mod q

Let 𝑥 = [𝑑1𝑗 + 𝑅𝑑2𝑗 − 𝑒|| − 𝑅
′𝑏𝑖𝑛(𝑤𝑗)]. Since the

vector 𝑢statistically hides 𝑒 inΛ𝑢
⊥(𝐴1),𝑥 ≠

0.Therefore, 𝑥 is a solution to SIS instance i.e., 𝐴𝑥 =

0 𝑚𝑜𝑑 𝑞 and ||𝑥|| ≤ √𝑚(𝛽(𝑚 + 2) +𝑚).

Coin=2

 Setup:

 Assign the matrix 𝐴 = 𝐴1 and 𝐷 = 𝐴2. Run

GenTrap (n,m,q) obtain (𝐴2, 𝑇𝐴2) and (B,TB).

Compute 𝐴1 = 𝐴𝑅 − 𝑖
∗𝐴2 whereR uniformly

over {−1,1}𝑚×𝑚

 Sample the matrix 𝐷0 uniformly over 𝑍𝑞
2𝑛×2𝑚

and matrices F, B1 are uniformly chosen over

𝑍𝑞
4𝑛×4𝑚 × 𝑍𝑞

𝑛×2𝑚 respectively. Let (D1,𝑇𝐷1) is

obtained using GenTrap (2n,2m,q). Let 𝐴𝑖∗ =
[𝐴|𝐴1 + 𝑖

∗𝐴2].
 Let 𝑑1𝑖∗ and 𝑑2𝑖∗ are chosen according to D𝑍𝑚,𝜎.

Compute 𝑢 = 𝐴𝑖∗𝑑𝑖∗- 𝐷𝑏𝑖𝑛(𝑐
′) where 𝑐′ is

uniformly chosen over 𝑍𝑞
𝑛.

 Send 𝑔𝑝𝑘 = (𝐴, 𝐴1, 𝐴2, 𝐵, 𝐵1, 𝐷, 𝐷0 , 𝐷1, 𝑢, 𝐹) to

A.

 Queries: QP-join, Qsig and Qreveal: Answer similarly as

in coin=1. For Qa-join query proceed as follows If

𝑖 ≠ 𝑖∗then, proceed as in case of coin=1. If i=i∗:

Recall 𝑑𝑖∗and cˊ. If A provides valid signature on 𝑣𝑖∗
then using 𝑇𝐷1obtain 𝑠𝑖∗such that 𝐷1𝑠𝑖∗= 𝑐′-

𝐷0 𝑏𝑖𝑛(𝑣𝑖∗). Send 𝑐𝑒𝑟𝑡𝑖∗ = (𝑖
∗, 𝑑𝑖∗ , 𝑠𝑖∗)to A.

 Forgery: A outputs(𝑚∗,Σ∗) and abort

if Open((𝑚∗,Σ∗, 𝑔𝑚𝑠𝑘) = j ∉ 𝑈(𝑎) or 𝑗 ≠
𝑖∗.Proceed if Verify (𝑔𝑝𝑘,𝑚∗,Σ∗)=1,

Open((𝑚∗,Σ∗, 𝑔𝑚𝑠𝑘) = j ∈ 𝑈(𝑎) and ⋀𝑖 ∈𝑈(𝑎)

Trace (Σ∗, Reveal(𝑖))=0. Using forking lemma and

knowledge extractor we obtain (𝑑∗, 𝑧∗, 𝑠𝑖∗). Since

Trace (Σ∗, Reveal(𝑖∗))=0, 𝑤∗ = 𝐷0𝑏𝑖𝑛(𝑣
∗) +

𝐷1𝑠
∗ ≠ 𝐷0𝑏𝑖𝑛(𝑣𝑖∗) + 𝐷1𝑠𝑖∗ = 𝑤𝑖∗and we

know [𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1
∗||𝑑2

∗] − 𝐷𝑏𝑖𝑛(𝑤∗) =
 [𝐴1̅̅ ̅|𝐴1̅̅ ̅𝑅][𝑑1𝑖∗||𝑑2𝑖∗] − 𝐷𝑏𝑖𝑛(𝑤𝑖∗) = 𝑢. Therefore,

�̅� = [𝑑1
∗ − 𝑑1𝑖∗||𝑅(𝑑2

∗ − 𝑑2𝑖∗)||𝑤
∗ −𝑤𝑖∗]is a

solution to SIS instance i.e., 𝐴 ̅�̅� = 0 𝑚𝑜𝑑 𝑞, 𝑥 ≠

0,and ||�̅�|| ≤ √𝑚(2𝛽 + 2𝑚𝛽 + 1).

5.2. Anonymity Attacks

 Theorem3: Our scheme is secure against anonymity

attacks based on the zero-knowledge property of

NIZK protocol Πand hardness of LWE.

 Proof: To prove our scheme is secure against

anonymity attacks, we define two games 𝐺0
(𝑏)

and

G7. Game 𝐺0
(𝑏)

 is the original anonymity game

where challenge signature is generated by one of the

users and game G7 is the anonymity game where

challenge signature is generated independent of both

the users. We show that challenge signatures

generated in both these games are computationally

indistinguishable. This is because, if signatures

generated in both these games are indistinguishable,

then the advantage of adversary guessing the signer

is negligible. To prove the signatures generated in

these two games are indistinguishable, we define

intermediate games

𝐺1
(𝑏)
, 𝐺2
(𝑏)
, 𝐺3
(𝑏)
, 𝐺4
(𝑏)
, 𝐺5
(𝑏)
and𝐺6

(𝑏)
.

 𝐺𝑎𝑚𝑒 𝐺0
(𝑏)
: This is the original anonymity game. In

precise, challenger runs setup algorithm to generate

(ɡpk,ɡmsk) and gives ɡpk to adversary A. Challenger

answers all the queries of the adversary. At some

point, A sends the challenge message 𝑚∗and two

identities 𝑖0 and 𝑖1. Challenger uniformly chooses

one of the identity 𝑏 ∈ {0,1}and generates the

challenge signatureΣ∗ =
(𝑐𝑣𝑖𝑏
∗ , 𝑐𝑤𝑖𝑏

∗ , 𝑏1
∗,Π∗, 𝑠𝑖𝑔∗, 𝑉𝐾∗, 𝐺3

∗). Finally, A outputs

the bit 𝑏′ ∈ {0,1}.

 𝐺𝑎𝑚𝑒 𝐺1
(𝑏)
: In this experiment, we slightly change

𝐺𝑎𝑚𝑒 𝐺0
(𝑏)

 as follows: At the beginning of the

game, the challenger generates the one-time

signature key pair (𝑉𝐾∗, 𝑆𝐾∗) which will be used in

the challenge phase. If A requests the opening of a

valid signature Σ∗ = (𝑐𝑣𝑗 , 𝑐𝑤𝑗 , Π, 𝑉𝐾, 𝐺3, 𝑏1, 𝑠𝑖𝑔)

where 𝑉𝐾 = 𝑉𝐾∗the challenger returns a random bit

and aborts.

 𝐺𝑎𝑚𝑒 𝐺2
(𝑏)
: In this game, we program the random

oracle H2in the following way: at the beginning of

the game, choose a uniformly random matrix 𝐺0 ∈
 𝑍𝑞
𝑛×2𝑚 and set H2(VK∗)=G0. From the adversary’s

view, the distribution of G0 is statistically close to

the one in the real attack game, as in [7]. As for

other queries, for each fresh H2 queries on VK, the

challenger samples small-norm matrices 𝐸0 ∈

 D𝑍𝑚,𝜎
2𝑚 and programs the oracle such that

H2(VK)=BE0 mod q. The chosen matrices 𝐸0are

retained for later use.

 𝐺𝑎𝑚𝑒 𝐺3
(𝑏)
: In this game, we program the random

oracle H1 in the following way: At the beginning of

the game, a uniform matrix 𝐺1
∗ ∈ 𝑍𝑞

𝑛×𝑚 is

uniformly chosen and in the challenge phase, set

H1(𝑐𝑒𝑟𝑡𝑖𝑏) = 𝐺1
∗. For other H1 queries, fresh query

on input𝑐𝑒𝑟𝑡𝑖, challenger samples Ei according to

D𝑍𝑚,𝜎
𝑚 and set H1(certi)=BEi mod q. Retain Ei for

later use. From the adversary view, the distribution

of 𝐺1
∗. is same as in 𝐺𝑎𝑚𝑒 𝐺0

(𝑏)
.

(21)

Traceable Signatures using Lattices 973

 𝐺𝑎𝑚𝑒 𝐺4
(𝑏)
: In this game, we modify the way of

handling the open and reveal queries. Challenger

uniformly chooses a matrix 𝐵∗ uniformly over

𝑍𝑞
𝑛×𝑚 and to answer any reveal query of user 𝑖, it

recalls Ei, computes wi using certi and returns as

tracei. To answer any open query recall E0

generated in 𝐺𝑎𝑚𝑒 𝐺2
(𝑏)
.

 𝐺𝑎𝑚𝑒 𝐺5
(𝑏)
: In this game, we change the generation

of challenge signature. Instead of generating NIZK

protocol Π∗ using the witness, simulate the protocol

and obtain Π′. The challenge signature is Σ∗ =
(𝑐𝑣𝑖𝑏
∗ , 𝑐𝑤𝑖𝑏

∗ , 𝑏1
∗, Π′, 𝑠𝑖𝑔∗, 𝑉𝐾∗, 𝐺3

∗). By zero-

knowledge protocol of Π∗, the challenge signature

generated in this game is computationally

indistinguishable from signature generated in

𝐺𝑎𝑚𝑒 𝐺2
(𝑏)

 𝐺𝑎𝑚𝑒 𝐺6
(𝑏)
: We change the way of generating the

challenge signature. We modify the generation of

challenge cipher texts (𝑐1
∗, 𝑐2

∗, 𝑐3
∗, 𝑐4

∗). Instead of

using encryption scheme [7], return random

ciphertexts

(𝑐1
∗, 𝑐2

∗) = (𝑟1, 𝑟2 + 𝑏𝑖𝑛(𝑣𝑖𝑏)
𝑞

2
)

(𝑐3
∗, 𝑐4

∗) = (𝑟3, 𝑟4 + 𝑏𝑖𝑛(𝑤𝑖𝑏)
𝑞

2
)

Where the vectors (r1, r2, r3, r4), are uniformly chosen

over (𝑍𝑞
𝑚 × 𝑍𝑞

2𝑚 × 𝑍𝑞
𝑛 × 𝑍𝑞

𝑚). The challenge signature

generated in this game is computationally

indistinguishable from ∑∗ in 𝐺𝑎𝑚𝑒 𝐺5
(𝑏)

 based on the

hardness of decision version of LWE assumption.

 Game G7: Finally, we make a slight modification in

generation of Σ∗compared to the previous game.

Ciphertexts (𝑐1
∗, 𝑐2

∗, 𝑐3
∗, 𝑐4

∗) is uniformly sampled

over (𝑍𝑞
𝑚 × 𝑍𝑞

2𝑚 × 𝑍𝑞
𝑛 × 𝑍𝑞

𝑚). Signature generated

in this game is indistinguishable from the signature

in previous game.

Challenge signature Σ∗ in the last game is independent

of bit 𝑏 ∈ {0,1}. Therefore, advantage of adversary in

this game is 0. We proved that the challenge signature

generated in game G7 is computationally

indistinguishable from the original anonymity game.

Therefore, advantage of adversary in original

anonymity game is negligible.

5.3. Framing Attacks

 Theorem 3: Our scheme is secure against framing

attacks based on the hardness of SIS assumption

 Proof: Let A be an adversary that generates a

forgery (m*,∑*) which opens to the honest user

𝑖∗who did not sign the message m*. We construct an

algorithm B that solves an instance of SIS

assumption i.e., given a matrix 𝐴 ̅ ∈ 𝑍𝑞
4𝑛×4𝑚 as

input, algorithm B finds the vector 𝑥 such that

𝐴 ̅𝑥 = 0 𝑚𝑜𝑑 𝑞and‖𝑥‖ ≤ 2𝛽√𝑚.

Algorithm B

 Setup: Obtain (ɡpk,ɡmsk) using Setup(1n) with one

modification. Instead of uniformly choosing 𝐹 ∈
𝑍𝑞
4𝑛×4𝑚, we assign 𝐹 = 𝐴 ̅.

Queries:

 QY: returns the public-key 𝑔𝑝𝑘.
 QS: returns 𝑔𝑚𝑠𝑘 to A

 Qb-join: A can corrupt the group manager and

introduces new user through Qb-join protocol. At

each query, B runs join protocol on behalf on the

honest user Ui.

 QSig : If A requests for the signature on message m

of user I and 𝑖 ∈ 𝑈(𝑏)then, recall (certi,seci) and

generate signature using Sign(ɡpk,seci,certi,m)

algorithm.

 Forgery: Let A outputs (𝑚∗,Σ∗, 𝜏∗) such that

Verify (ɡpk,m*,∑*)=1 with non-negligible

probability 𝜀. Let Σ∗ =
(𝑐𝑣∗ , 𝑐𝑤∗ ,Π

∗, 𝑉𝐾∗, 𝐺3
∗, 𝑏1

∗, 𝑠𝑖𝑔∗).Obtain witness

(𝑗, 𝑑𝑗 = [𝑑1𝑗||𝑑2𝑗], 𝑧
∗, 𝑠∗) using witness extraction

procedure similar to the steps in misidentification

attack (coin=1). We consider three cases where A

returns 1 in Exp𝑓𝑟𝑎
A (𝑛) and show that B solves SIS

instance in all these cases.

 𝑂𝑝𝑒𝑛(Σ∗, 𝑔𝑝𝑘, 𝑔𝑚𝑠𝑘) = 𝑖∗ ∈ 𝑈(𝑏)
 ∀𝑖∈𝑈(𝑏)𝑇𝑟𝑎𝑐𝑒(Σ

∗, Reveal(𝑖)) = 1

 ∀𝑖∈𝑈(𝑏)(𝑖, Σ
∗) ∈ 𝑆𝑖𝑔𝑠 𝑎𝑛𝑑 𝐶𝑙𝑎𝑖𝑚 − 𝑉𝑒𝑟𝑖𝑓𝑦(Σ∗, 𝜏∗) = 1

 Case1: Open algorithm decrypts and obtain the

vector vi*. Recall zi* when answering Qb-join query

such that Fzi* = vi*. We know vi*= Fz*. In adversary

view, 𝑧𝑖∗ is chosen according to DΛ⊥𝑣𝑖∗(𝐹),𝜎
, it has

atleast 𝑛 bits of min-entropy. Therefore, x= z* _ zi*
 is

a solution to SIS instance i.e., 𝐹𝑥 = 0 𝑚𝑜𝑑 𝑞and

𝑥 ≤ 2𝛽 √𝑚.

 Case2: 𝑇𝑟𝑎𝑐𝑒(Σ∗, Reveal(𝑗∗)) = 1 where 𝑗∗ ∈ 𝑈(𝑏)

then, 𝐷0𝑏𝑖𝑛(𝑣𝑖∗) + 𝐷1𝑠𝑖∗ = 𝐷0𝑏𝑖𝑛 (𝑣𝑗∗) + 𝐷1𝑠𝑗∗ This

is possible only if 𝑣𝑖∗ = 𝑣𝑗∗ and 𝑠𝑖∗ = 𝑠𝑗∗. If 𝑣𝑖∗ =

 𝑣𝑗∗ then 𝐹𝑧𝑖∗ = 𝐹𝑧𝑗∗. Therefore, 𝑥 = 𝑧𝑖∗ − 𝑧𝑗∗is a

solution to SIS instance.

 Case3: If ∀𝑖∈𝑈(𝑏)(𝑖, Σ
∗) ∈ 𝑆𝑖𝑔𝑠 𝑎𝑛𝑑 𝐶𝑙𝑎𝑖𝑚 −

𝑉𝑒𝑟𝑖𝑓𝑦(Σ∗, 𝜏∗) = 1 Let (𝑗∗, Σ∗) ∈ 𝑆𝑖𝑔𝑠 recall zj*

from Qb-join protocol such that vj*= Fzj*. Using

improved forking lemma and witness extractor

procedure, obtain z* from 𝜏∗ such that vj*= Fz*. Let

x= zj* ˗ z* which is a solution to our SIS instance.

6. Conclusions

This work presents the first traceable signature scheme

based on lattices. Compared to the existing lattice-

(23)

(22)

974 The International Arab Journal of Information Technology, Vol. 17, No. 6, November 2020

based schemes our scheme has additional features like

signature claiming and user opening. As agents can run

in parallel, user tracing is scalable. Our scheme is

based on the work of [12]. Compared to the scheme in

[12], our scheme supports signature claiming, user

opening and size of ɡpk is efficient by logN factor,

where N is the number of members in the group. Our

scheme is proved to be secure based on LWE and SIS

assumptions in random oracle model. Construction of

lattice-based traceable signature without random-oracle

is the future work.

References

[1] Agrawal S., Boneh D., and Boyen X., “Efficient

Lattice (H) IBE in the Standard Model,” in

Proceedings of Annual International Conference

on the Theory and Applications of Cryptographic

Techniques, Monaco and Nice, pp. 553-572,

2010.

[2] Alwen J. and Peikert C., “Generating Shorter

Bases for Hard Random Lattices” Theory of

Computing Systems, vol. 48, no. 3, pp. 535-553,

2011.

[3] Boyen X., “Lattice Mixing and Vanishing

Trapdoors: A Framework for Fully Secure Short

Signatures and More,” in Proceedings of in

International Workshop on Public Key

Cryptography, Paris, pp. 499-517, 2010.

[4] Brickell E., Pointcheval D., Vaudenay S., and

Yung M., “Design Validations for Discrete

Logarithm Based Signature Schemes,” in

Proceedings of the International Workshop on

Practice and Theory in Public Key

Cryptography, Melbourne, pp. 276-292, 2000.

[5] Chaum D. and Heyst E, “Group Signatures,” in

Proceedings of Workshop on the Theory and

Application of Cryptographic Techniques,

Brighton, pp. 257-265, 1991.

[6] Fiat A. and Shamir A., “How to Prove Yourself:

Practical Solutions to Identification and

Signature Problems,” in Proceedings of

Conference on the Theory and Application of

Cryptographic Techniques, Santa Barbara, pp.

186-194, 1986.

[7] Gentry C., Peikert C., and Vaikuntanathan V.,

“Trapdoors for Hard Lattices and New

Cryptographic Constructions,” in Proceedings of

the fortieth annual ACM Symposium on Theory

of Computing, New York, pp. 197-206, 2008.

[8] Gordon S., Katz J., and Vaikuntanathan V., “A

Group Signature Scheme from Lattice

Assumptions,” in Proceedings of International

Conference on the Theory and Application of

Cryptology and Information Security, Singapore,

pp. 395-412, 2010.

[9] Kiayias A., Tsiounis Y., and Yung M.,

“Traceables Signatures,” in Proceedings of

International Conference on the Theory and

Applications of Cryptographic Techniques,
Interlaken, pp. 571-589, 2004.

[10] Laguillaumie F., Langlois A., Libert B., and

Stehlé D., “Lattice Based Group Signatures with

Logarithmic Signature Size,” in Proceedings of

International Conference on the Theory and

Application of Cryptology and Information

Security, Bengaluru, pp. 41-61, 2013.

[11] Langlois A., Ling S., Nguyen K., and Wang H.,

“Lattice-based Group Signature Scheme with

Verifier-Local Revocation,” in Proceedings of

International Workshop on Public Key

Cryptography, Buenos Aires, pp. 345-361, 2014.

[12] Libert B., Ling S., Mouhartem F., Nguyen K.,

and Wang H., “Signature Schemes with Efficient

Protocols and Dynamic Group Signatures from

Lattice Assumptions,” in Proceedings of

International Conference on the Theory and

Application of Cryptology and Information

Security, Hanoi, pp. 373-403, 2016.

[13] Libert B., Mouhartem F., and Nguyen K., “A

Lattice-Based Group Signature Scheme With

Message-Dependent Opening,” in Proceedings of

International Conference on Applied

Cryptography and Network Security, London, pp.

137-155, 2016.

[14] Ling S., Nguyen K., Wang H., and Xu Y.,

“Lattice-Based Group Signatures: Achieving Full

Dynamicity with Ease,” in Proceedings of

International Conference on Applied

Cryptography and Network Security, Kanazawa,

pp. 293-312, 2017.

[15] Regev O., “On Lattices, Learning with Errors,

Random Linear Codes, and Cryptography,”

Journal of the ACM, vol. 56, no. 6, pp. 1-37,

2009.

[16] Sakthivel A., “Enhancing Cloud Security based

on Group Signature,” The International Arab

Journal on Information Technology,” vol. 14, no.

6, pp. 923-929, 2017.

[17] Shor P., “Polynomial-Time Algorithms for Prime

Factorization and Discrete Logarithms on a

Quantum Computer,” Society for Industrial and

Applied Mathematics Journal, vol. 41, no. 2 pp.

1484-1509, 1997.

Traceable Signatures using Lattices 975

Thakkalapally Preethi
Thakkalapally Preethi is pursuing

her PhD in Computer Science and

Engineering at National Institute of

Technology Warangal, India. She

received her M Tech in Computer

Science (CS) from University of

Hyderabad, India in 2014. Her areas of interest are

lattice-based cryptography, digital signatures, provable

security and algorithms.

Bharat Amberker received his PhD

in 1996 from Indian Institute of

Science (IISc), Bangalore, India

from the Department of Computer

Science and Automation. He is

presently working as a Professor in

Computer Science and Engineering,

National Institute of Technology (NIT) Warangal. He

is a senior member IEEE, senior member ACM and

member of Cryptology Research Society of India. He

has guided PhDs in the area of cryptography and

security. His research interest includes cryptography,

provable security of cryptographic

protocols/primitives, algorithms, information security,

network security and digital image watermarking.

