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Abstract: Until recently, many studies have been achieved for the sake of automatically segmentation of the 

Electrohysterogram (EHG) in order to identify the efficient uterine contractions but the most of them encountered the presence 

of other events such as motion artifacts and other kind of contractions despite of the use of efficient filtering methods. In this 

study, we apply an online method which is developed previously and known by Dynamic Cumulative Sum (DCS) on monopolar 

EHG signals acquired through a 4x4 electrodes matrix with and without Canonical Correlation Analysis and Empirical Mode 

Decomposition (CCA-EMD) denoising method, then on monopolar EHG after wavelet decomposition. The detected segments 

are driven through an automatic concatenation technique of detected event time from all channels in order to reduce the 

unwanted segments, the obtained segments then undergo to implemented Margin validation test in order to classify among 

them. Sensitivity of detected contractions and other detected events rate referring to identified contractions by expert have 

been calculated in order to track the efficiency of the fully automated multichannel segmentation method. Additional EHG 

filtering techniques like CCA-EMD method seems to be better but effective time cost. Further studies should be achieved in 

order to decreasing the other events rate for the sake of fully identifying the uterine contractions. 

Keywords: EHG signal, dynamic cumulative sum, CCA-EMD denoising method, automatic segmentation, wavelet 

decomposition, margin validation test. 

Received October 14 2018; accepted January 23 2019 
 

1. Introduction 

Humanity encounters a continuous rising in preterm 

birth (before 37 completed weeks of gestation) 

beyond World Health Organization (WHO). Indeed, 

an estimated of 15 million babies are born preterm 

each year, which indicates that there is more than 1 in 

10 new born babies. Preterm birth is responsible for 

approximately 1 million deaths in 2015 [12] where its 

complications are the leading cause of death among 

children under 5 years of age. 

The uterine electrical activity recorded from the 

abdominal surface is called Electrohysterogram 

(EHG) and presents rapid non-stationarity or 

transitions which leads to primary problem of EHG 

segmentation. 

Multichannel EHG signals recording is usually 

obtained by using multiple electrodes placed on the 

pregnant woman’s abdomen and is considered as a 

proper mean to study the propagation of the electrical 

activity in the uterine muscle of a pregnant woman 

[9]. 

Since a high spatial resolution is needed in order 

to obtain a precise mapping and features of uterine 

EHG contractions of this complex organ the uterus, 

multichannel signals processing becomes highly 

recommended in most of EHGs applications [1, 7]. 

The total number of electrodes is however limited by  

the abdominal surface, especially when the electrodes 

should be positioned along or as near as possible to 

the median vertical axis, in order to get the better 

Signal-Noise Ratio (SNR) [7]. 

For the recent past, pregnancy and labor uterine 

contractions are usually monitored by using a system 

called to codynamometer. However, this system is 

not a reliable technique since the obtained 

measurements are not fully precise and depend to a 

large extent on the subjective criteria of the operator 

[13]. 

In order to segment events, many algorithms and 

methods were addressed to track the transitions in 

non-stationary signals such as Algorithm of 

Neyman–Pearson [8], Brandt algorithm [5], 

Innovation Whiteness [2], Hinkley Divergence Test 

[3],Cumulative Sum method (CuSum) [4], Dynamic 

Cumulative Sum method (DCS) [11,15], nonlinear 

correlation coefficient (H2) [14]. 

The Canonical Correlation Analysis and Empirical 

Mode Decomposition (CCA-EMD) denoising 

method consists of the use of a combination of Blind 

Source Separation method using Canonical 

Correlation Analysis (BSS-CCA) and Empirical 

Mode Decomposition (EMD) methods to denoise 

multi-channel monopolar EHG recordings. It has 

been proven by simulation that CCA-EMD method 

successfully removed noise with muscle activity 
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conservation even in presence of a low Signal to 

Noise ratio (SNR) (2 dB) [9]. 

The aim of this study is to detect automatically all 

events by using the DCS method applied on 

monopolar EHG signals with and without CCA-EMD 

denoising method. We then automatically 

concatenate the detected segments from all 16 

channels in order to improve the results of a previous 

study where the concatenation of the detected 

segments has been performed manually [15]. Finally, 

we validate the obtained results, by using the Margin 

validation test, and then compute the sensitivity of 

the detection of contractions and other events by 

referring to contractions identified by expert. 

2. Materials and Methods 

2.1. Data 

In our study, EHG signals have been collected from 

36 pregnant women by placing an array 

of16electrodesarranged in a 4×4 matrix positioned on 

the woman’s abdomen and two reference electrodes 

on each hip (Figure 1) by using a standardized 

protocol [10]. The 16 monopolar EHG signals are 

digitized with a 200 Hz sampling frequency. In 

addition, a tocodynamometer is placed on the 

abdomen of the pregnant woman (Figure 1), in order 

to assist the expert to identify the contractions. 

The 16 monopolar EHG signals, acquired from the 

4x4 electrode matrix, undergo a fourth-order [0.3-5 

Hz]Butterworth filter that removes frequencies below 

0.3 Hz which can be seriously affected by movement 

artifacts related, for example, to respiration or fetal 

and maternal movements. Then, the obtained 

monopolar signals are denoised by CCA-EMD 

method [9] in order to compare the results between 

those filtered and not filtered when applying the DCS 

method. 

2.2. Method 

The DCS method is considered as a powerful method 

for detecting changes or transitions in signals when 

someone wants to follow local changes in the signals 

and the characteristics of the changes are unknown. 

Indeed, a change in a signal may affect variance, 

frequency distribution or both at the same time. 

This detection approach, called the DCS, can be 

considered as a repeated sequence around the point of 

change k. It is based on the local cumulative sum of 

the likelihood ratios between two local hypotheses 

estimated around the current instant j. These two 

dynamic hypotheses𝐻𝑎
𝑗
 and 𝐻𝑏

𝑗
 (a: after, b: before) 

are estimated using two windows of length N, before 

and after the instant j respectively as follows: 

 𝐻𝑏
𝑗
 : 𝑥𝑖 ; 𝑖 = {j-N+1,..., j} follows a density 

probability distribution𝑓𝜃𝑏
(𝑥𝑖). 

 𝐻𝑎
𝑗
 : 𝑥i ; i = {j+1,..., j+N} follows a density 

probability distribution𝑓𝜃𝑎
(𝑥𝑖). 

The parameters of the hypothesis 𝐻𝑏
𝑗

 and 𝜃𝑏
𝑗

are 

estimated from N points before the instant j and from 

N points after the instant j for the hypothesis 𝐻𝑎
𝑗
 and 

𝜃𝑎
𝑗
. 

At time j, we define DCS as the sum of the 

logarithms of the likelihood ratios from the beginning 

of the new segment of the signal to the instant j:  

DCS (𝐻𝑎
𝑗
, 𝐻𝑏

𝑗
) = ∑ 𝑙𝑛

𝑓
�̂�𝑎

𝑖
(𝑥𝑖)

𝑓
�̂�𝑏

𝑖
(𝑥𝑖)

𝑗
𝑖=1  = ∑ �̂�𝑖

𝑗
𝑖=1  

 

Figure 1. Position of 4x4 matrix electrodes with 

tochodynamometer. 

Where �̂�𝑖 is the logarithm of the likelihood ratio to 

a local character. The parameters of the two 

hypotheses are re-estimated at each step in the two 

windows of N points around the current point j. 

It has been demonstrated in [11] that the DCS 

function reaches its maximum at the time of change 

k.  

The detection function used to estimate the instant of 

change is expressed by: 

𝑔𝑗 = 𝑚𝑎𝑥
1≤𝑖≤𝑗

[ 𝐷𝐶𝑆 (𝐻𝑎
𝑗
, 𝐻𝑏

𝑗
)- DCS (𝐻𝑎

𝑗
, 𝐻𝑏

𝑗
)] 

The stop time is: 𝑡𝑠= INF {j:𝑔𝑗 ≥h}; 

Where h is being a fixed threshold. 

By applying the DCS method, a series of detected 

instants were obtained. All detected instants from all 

16 monopolar EHG signals with and without CCA-

EMD denoising method were first projected 

temporarily then were subject to an automatic 

concatenation phase by averaging two consecutives 

instants when their difference is less than a 

predefined threshold value chosen as a third of the 

average of all 395 contractions duration identified by 

the expert from all records. The obtained 

concatenated instants reflect subsequently the start 

and the end of each segment. 

2.3. Wavelet Transform and Scaling Choice 

The wavelet transform makes it possible to 

efficiently analyze signals in which phenomena of 

very different scales are combined. The translation 

and expansion parameters are the two arguments of 

(1) 

(2) 
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the wavelet transform. The continuous wavelet 

transform of a signal x (t) takes the form: 

𝑇𝑥
𝜑

(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜑𝑎𝑏(𝑡)𝑑𝑡 

Each signal can be decomposed into details and 

approximations, and the shape of the scale function is 

defined by: 

∅𝑚𝑛(𝑡) = 2𝑚 2⁄ ∅(2𝑚𝑡 − 𝑛) 

Where m indicates the scales, n indicates the 

translation in time. 

The choice of wavelet and scaling is very 

important that is why symlet 5 is chosen and details 1 

to 5 have been selected in our study based on the 

efficiency of this choice in [6]. 

2.4. Validation Test, Sensitivity and Other 

Events Rate 

2.4.1. Margin Validation Test 

With the concatenated segments or detected events 

are ready to be assessed. We use a Margin validation 

test. to classify the detected events as either totally 

detected or partially detected contractions or other 

events. 

The Margin validation test is based on the creation 

of two symmetric margins at the beginning and the 

end of each contraction identified by the expert 

(Figure 2). This margin is computed as the maximum 

between 10 seconds and the third of the length of 

each identified contraction. Then we test if the 

beginning and end times of each detected event fit 

within the defined margins. We thus obtain t classes 

of events: totally validated, partially validated, and 

not validated contractions. 

Figure 2. Validation events using Margin validation test. 

2.4.2. Sensitivity and Other Events Rate 

For each record, the sensitivity of DCS method reflects the 

ratio of the sum of partially and totally detected contractions 

over all detected events or segments, while the other events 

 rate reflects the ratio of other detected events which is not 

considered as contractions over all detected events. 

3. Results 

After choosing the parameters of the DCS method (size of 

the sliding window ‘N’, threshold of the detection function 

‘h’), we obtain the detected instants, indicated by a black 

line in Figure 3. Thus, each pair of consecutive instants 

reflects the starting and ending point of a detected event.  

Numbers of labeled contractions identified by the 

expert on each recording are in blue color. We can 

also notice in this figure the numbers of totally 

detected contraction (black color), partially detected 

contraction (yellow color) or other detected event 

(green color) obtained after application of the Margin 

validation test. 

When counting the global (partially+totally) 

detected contractions of each record as shown in 

table 1, we get an average of DCS method sensitivity 

of 91.18% for monopolar EHG signals without CCA-

EMD denoising method with an average of other 

detected events of 50.3% (counted as: the number of 

other detected events over the sum of other detected 

events and the global number of validated 

contractions) where we got 534 other events. In 

addition, we obtain 94.01 % as the average of DCS 

method sensitivity for monopolar EHG signals with 

CCA-EMD denoised method comparing to an 

average of 55.25 % for the other detected event 

where 585 other events were detected. 

By applying the dynamic cumulative on the 

monopolar EHG signals after symlet 5 transform and 

especially on the details 1 to 5 signals for all 16 

channels, we obtain different records’ sensitivity 

ranging from 60 to 100% with an average of 83.3 % 

while other records’ other events rate is ranging from 

0 to 96 % with an average of 62.8%, where 730 other 

events were detected.  
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Figure 3. Detected instants by DCS for each monopolar EHG. 

Table 1. Evaluation of sensitivity and other events rate of 36 EHG records with, without denoising CCA-EMD and with symlet 5 transform. 

Monopolar EHG without CCA_EMD with CCA_EMD with symlet 5 transform 

Record Sensitivity % Other Events % Sensitivity % Other Events % Sensitivity % Other events % 

Record 1 100.0 42.1 87.5 33.3 87.5 58.8 

Record 2 100.0 75.8 100.0 57.1 60.0 70.0 

Record 3 100.0 60.0 93.3 61.5 93.3 62.2 

Record 4 100.0 50.0 100.0 68.3 87.5 74.1 

Record 5 100.0 38.5 100.0 52.3 68.8 35.3 

Record 6 87.5 46.7 100.0 66.7 87.5 12.5 

Record 7 100.0 68.4 100.0 58.8 83.3 79.2 

Record 8 100.0 59.4 100.0 64.0 71.4 16.7 

Record 9 100.0 50.0 100.0 57.1 100.0 54.5 

Record 10 100.0 71.9 100.0 68.2 100.0 83.5 

Record 11 100.0 74.3 100.0 69.2 100.0 87.2 

Record 12 100.0 52.6 100.0 53.8 100.0 80.8 

Record 13 100.0 50.0 100.0 20.0 100.0 76.5 

Record 14 100.0 40.9 87.5 38.5 100.0 65.2 

Record 15 100.0 40.6 94.4 48.6 66.7 50.0 

Record 16 95.7 8.7 91.5 12.0 70.2 29.8 

Record 17 100.0 64.3 100.0 70.8 100.0 78.9 

Record 18 100.0 45.2 100.0 51.4 100.0 75.0 

Record 19 100.0 75.0 100.0 74.4 100.0 86.4 

Record 20 100.0 70.6 100.0 62.1 77.8 74.1 

Record 21 100.0 65.0 100.0 78.3 100.0 96.0 

Record 22 72.7 53.8 72.7 75.0 63.6 75.9 

Record 23 92.3 67.4 76.9 69.7 76.9 76.2 

Record 24 95.7 36.1 95.7 47.6 87.0 41.2 

Record 25 76.0 16.7 92.0 32.4 68.0 34.6 

Record 26 100.0 72.7 100.0 87.0 50.0 91.7 

Record 27 100.0 42.9 100.0 20.0 75.0 57.1 

Record 28 75.0 87.2 75.0 86.0 100.0 52.9 

Record 29 50.0 65.0 80.0 50.0 60.0 66.7 

Record 30 83.3 0.0 94.4 34.4 77.8 0.0 

Record 31 91.7 20.0 100.0 43.3 100.0 76.0 

Record 32 68.8 0.0 93.8 36.7 62.5 33.3 

Record 33 88.9 0.0 94.4 11.5 88.9 65.2 

Record 34 100.0 85.0 100.0 82.4 100.0 94.3 

Record 35 25.0 66.7 75.0 71.4 75.0 72.7 

Record 36 80.0 50.0 80.0 75.0 60.0 72.7 

Average 91.18 50.31 94.01 55.25 83.3 62.8 

4. Discussion  

In this paper, we have presented a comparison between the 

results obtained by applying the dynamic cumulative sum 

on monopolar EHGs signals with and without denoising by  

 

 

CCA-EMD method and on details signals of monopolar 

EHG signals in a monodimensional study.  

Monopolar EHG signals denoised by CCA-EMD 

method’s results present not only an increase in sensitivity 

of DCS method, which reached 94.01% of sensitivity, but 

also an increase in the totally detected contractions number 
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that reached 97 contractions from all recordings with 

denoising compared to 52 contractions on not denoised 

monopolar EHG signals and 36 contractions totally detected 

when applying wavelet decomposition. Despite advantages 

by using CCA-EMD denoising method when applying the 

DCS method, there is real time inconvenient due to the 

increase of other detected events from 50.3% for not 

denoised EHG toget 55.25% for denoised ones and 62.8% 

by applying DCS on details signals. Furthermore, denoising  

induces an average 3.4-fold increase in the execution time 

when applying CCA-EMD which is an effective time cost.  

The repartition of the detected events obtained 

after applying the DCS method on monopolar EHG 

signals denoised with CCA-EMD is presented in 

Figure 4. As shown, the totally detected contractions 

number is very low comparing to partially detected 

contractions  

number; and this issue could be turned to the event’s  

tracking technique that considers the first instant of 

change as the beginning of new event while the 

consecutive one is considered as the end of this event.  

In addition, the number of other detected events 

reaches the maximum level when applying the DCS 

on details signals after symlet 5 transform of 

monopolar EHG, and this could be explained by 

higher events with different frequency information’s’ 

distribution when applying wavelet decomposition.  

By comparing results with a recent work in [14] 

based on nonlinear correlation coefficient (H2) 

method, they obtain an excellent detection rate (96%) 

and other events rate (92%). To be noted, that EHGs 

signals database don’t follow the same conditions 

(where 51 records were used in [14]) with different 

computation method of other events rate (where in 

[14], the other events rate was computed by dividing 

the other detected events over the contractions 

identified by expert). 

5. Conclusions 

To conclude, by using an automatic concatenation of the 

results from different channels obtained by applying the 

dynamic cumulative sum, we obtain an automatic 

segmentation of contractions on the EHG signals. But the 

high number of other detected events remain an issue that 

should be solved for clinical use. 
 

 

Figure 4. DCS method Assessment for all 36 recordings proceeded by CCA-EMD denoising method.

6. Perspectives 

We are looking forward to enhance the events’ 

tracking method and to apply the dynamic 

cumulative sum on bipolar EHG signals in 

monodimensional and multidimensional study in 

order to try to increase the sensitivity of the DCS 

method and reduce the other detected events rate in 

the same time. 

8 5
15 8 16 8 6 7 5 13 6 5 4 8

18

47

12 13 8 9 2
11 13

23 25

2 4 8 10 18 12 16 18
3 4 5

9 14

39
41

44

30
17

25
14

66

26
13

5
13

37

50

48
37 43

29
23

32 33

42 34

23
5

43

10

32
30 30 26

34

7
160 0

5
2

8

2

2
2

2

4

2

1
3

1

6

7

4

3 1

0

0

3 3

9
8

0

3

0

0

6
2

7
1

0

0
07 5

9
6

8

6

4
5

3

9

4

4
1

6

11

36

8
10 7

9

2

5 7

13
15

2

1

6

8

11

10
8 16

3

3

4
7 5

14

8

16

8

6

7

5

13

6

5

4

7

17

43

12
13

8

9

2

8
10

22
23

2

4

6

8

17

12
15 17

3

3

4
3 8

24

28

23

20

10

16

8

45

18

7

1

5

18

6

34

19 32

18

18

24
23

20
11

20

1

37

5

11

13
11 3

28

5

12

0

20

40

60

80

100

120

140

160

180

200

R
ec

 1

R
ec

  2

R
ec

  3

R
ec

  4

R
ec

  5

R
ec

  6

R
ec

  7

R
ec

  8

R
ec

  9

R
ec

  1
0

R
ec

  1
1

R
ec

  1
2

R
ec

  1
3

R
ec

  1
4

R
ec

  1
5

R
ec

  1
6

R
ec

  1
7

R
ec

  1
8

R
ec

  1
9

R
ec

 2
0

R
ec

  2
1

R
ec

  2
2

R
ec

  2
3

R
ec

  2
4

R
ec

  2
5

R
ec

  2
6

R
ec

  2
7

R
ec

 2
8

R
ec

  2
9

R
ec

  3
0

R
ec

  3
1

R
ec

 3
2

R
ec

  3
3

R
ec

  3
4

R
ec

  3
5

R
ec

  3
6

Labeled Contractions Detected Events

Totally detected Partially detected

 (Partially & Totally) detected contractions Other ruptures detection



614                                            The International Arab Journal of Information Technology, Vol. 16, No. 3A, Special Issue 2019 

Acknowledgement 

This research has been supported by University of 

Technology of Compiegne, CEDRE and Al Koura 

Hospital. 

References 

[1] Alamedine D., Diab A., Muszynski C., 

Karlsson B., Khalil M., and Marque C., 

“Selection Algorithm for Parameters to 

Characterize Uterine EHG Signals for the 

Detection of Preterm Labor,” Signal Image 

Video Process, vol. 8, no. 6, pp. 1169-1178, 

2014. 

[2] Basseville M. and Benveniste M., “Sequential 

Segmentation of Non-Stationary Digital Signals 

using Spectral Analysis,” Information Sciences, 

vol. 29, no. 1, pp. 57-73, 1983. 

[3] Basseville M. and Benveniste M., “Sequential 

Detection of Abrupt Changes in Spectral 

Characteristics of Digital Signals,” IEEE 

Transaction Information Theory, vol. 29, no. 5, 

pp. 709-724, 1983. 

[4] Basseville M. and Nikiforov I., Detection of 

Abrupt Changes: Theory and Application, 

Prentice-Hall, 1993. 

[5] Brandt A., “Detecting and Estimating 

Parameters Jumps using Ladder Algorithms and 

Likelihood Ratio Test,” in Proceedings of the 

IEEE International Conference on Acoustics, 

Speech, and Signal Processing, Boston, pp. 

1017-1020, 1983. 

[6] Diab M., Marque C., and Khalil M., “Une 

approche de classification des contractions 

utérines basée sur la théorie des ondelettes et la 

statistique,” Lebanese Science Journal, vol. 7, 

no. 1, pp. 91-101, 2006. 

[7] Diab A., “Study of The Nonlinear Properties 

And Propagation Characteristics of The Uterine 

Electrical Activity During Pregnancy And 

Labor,” Phd Thesis, University of technology 

of Compiegne and Reykjavik University, 2014. 

[8] Eadie W., Statistical Methods in Experimental 

Physics, North-Holland, 1971. 

[9] Hassan M., Boudaoud S., Terrien J., Karlsson 

B., and Marque C., “Combination of Canonical 

Correlation Analysis and Empirical Mode 

Decomposition Applied to Denoising the Labor 

Electrohysterogram,” IEEE Transactions on 

Biomedical Engineering, vol. 58, no. 9, pp. 

2441-2247, 2011.  

[10] Karlsson B., Terrien J., Gudmundsson V., 

Steingrimsdottir T., and Marque C., 

“Abdominal EHG on a 4 By 4 Grid: Mapping 

and Presenting the Propagation of Uterine 

Contractions,” in Proceedings of the 11th 

Mediterranean Conference on Medical and 

Biological Engineering and Computing, 

Ljubljana, pp.139-143, 2007. 

[11] Khalil M. and Duchêne J., “Uterine EMG 

Analyzing: A Dynamic Approach for Change 

Detection and Classification,” IEEE 

Transactions on Biomedical Engineering, vol. 

46, no. 6, pp. 748-756, 2000. 

[12] Liu L., Oza D., Hogan Y., Chu J., Perin, J., and 

Zhu J., “Global, Regional, and National Causes 

of under Mortality in 2000-15: an Updated 

Systematic Analysis with Implications for the 

Sustainable Development Goals,” The Lancet, 

vol. 388, no. 10063, pp. 3027-3035, 2016. 

[13] Miles A., Monga M., and Richeson K., 

“Correlation of External and Internal 

Monitoring of Uterine Activity in a Cohort of 

Term Patients,” American Journal of 

Perinatology, vol. 18, no. 3, pp. 137-140, 2001. 

[14] Muszynski C., Happillon T., Azudin K., Tylcz 

J., Istrate D., and Marque C., “Automated 

Electrohysterographic Detection of Uterine 

Contractions for Monitoring of Pregnancy: 

Feasibility and Prospects,” BMC Pregnancy 

and Childbirth, vol. 18, no. 1, pp. 136, 2018. 

[15] Zaylaa A., Diab A., Khalil M., and Marque C., 

“Multichannel EHG Segmentation for 

automatically identifying contractions and 

motion artifacts,” in Proceedings of 4th 

International Conference on Advances in 

Biomedical Engineering, Lebanon, Beirut, pp. 

1-4, 2017. 

 

Catherine Marque is presently 

Professor at Compiègne 

University, Compiègne, France, in 

the UMR 7338 Biomechanics and 

Bioengineering (BMBI) lab. After 

a graduation in mechanical 

engineering from ENSAM (Paris, 

France), and a Master degree in Biomedical 

Engineering from the EcolePolytechnique de 

Montréal (Canada), she received the Ph.D. degree 

and the “Habilitation à diriger des recherches” 

(HDR) from Compiègne University. Her research 

focuses on biomedical signal processing and 

modeling. She is interested in the study of uterine 

contractility, by processing the uterine electrical 

activity recorded on the mother’s abdomen 

(electrohysterogram, EHG) in order to detect preterm 

labor. Since she integrated the BMBI research lab, 

she has been developing an international team that 

works on processing and modeling the EHG. Her aim 

is to understand the links existing between EHG 

characteristics and the physiological phenomena 

controlling uterine contraction efficiency (cell 

excitability, uterine synchronization) for clinical 

diagnosis purpose. She has recently developed a 

multi-scale electrical (cell, tissue, organ, abdomen) 



Automatic Monodimensional EHG Contractions’ Segmentation                                                                                                615 

and multi-physics (electrical, mechanical) model that 

permits to link EHG characteristics to the uterine 

muscle behavior (channel dynamics, electrical 

diffusion, sensitivity to stretching, mechano-

transduction), as well as specific processing tools to 

investigate the EHG connectivity. These recent 

results permit to evidence that the uterine 

synchronization is the consequence not only from a 

simple electrical diffusion process, but also from an 

electromechanical coupling related to tissue 

stretching, a new hypothesis recently presented by 

physiologists. She has been coordinator of many 

national and international research projects that 

permitted her to develop various collaborations and 

to supervise 22 PhD and about 30 Masters thesis. She 

has taken the responsibility for administrative tasks, 

related either to teaching (engineer, Master, Doctoral 

education) or to research management (research unit, 

Regional research group…). 

 

Mohamad Khalil is currently 

professor, teacher and researcher at 

Lebanese University, faculty of 

engineering. He received the DEA 

in biomedical engineering from the 

University of Technology of 

Compiegne (UTC) in France in 1996. He received his 

Ph.D from the University of Technology of Troyes in 

France in 1999. He received his HDR (Habilitation 

adiriger des recherches) from UTC in 2006... He is 

the chair of the EMBS chapter in Lebanon, chair of 

ICABME international Conference. His current 

interests are the signal and image processing 

problems: detection, classification, analysis, 

representation and modeling of non stationary 

signals, with application to biomedical signals and 

images.  

 

 Ahmad Diab received the degree 

in Biomedical Engineering from 

the Islamic University of Lebanon, 

Khaldeh, Lebanon, in 2010. 

And the M.Sc. degree in Medical 

and Industrial Processing and 

System from the Lebanese 

University, Tripoli, Lebanon, in 2011.  

Also he received his Ph.D. degree from the 

University of Technology of Compiègne, 

Compiègne, France and Reykjavik University, 

Reykjavik, Iceland in 2014.  

He was a Research Engineer at Azm center for 

research in biotechnology and its application, 

Lebanese University between 2014 and 2017. 

He is currently an Assistant Professor at the Lebanese 

University and many private universities. 

His current research interests include signal 

processing problems: characterization, classification, 

nonlinear analysis, source localization, with 

application to biomedical signals. 

 

Amer Zaylaa received the degree 

in Biomedical Engineering from 

the Islamic University of Lebanon, 

Khaldeh, Lebanon, in 2008, the 

Master of research degree in 

Medical and Industrial Processing 

and System from the Lebanese 

University, Tripoli, Lebanon, in 2015.  

He is currently a PhD candidate in final year at 

University of Technology of Compiègne, section: 

Biomechanics and Bioengineering. 

He is currently the chair of biomedical engineering 

department at koura hospital since January 2009. 

 

 

 


