
624 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Wavelet Tree based Dual Indexing Technique for

Geographical Search

Arun Kumar Yadav1 and Divakar Yadav2

1Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, India

 2Department of Computer Science and Engineering, Madan Mohan Malaviya University of Technology,

India

Abstract: Today’s information retrieval systems are facing new challenges in indexing the massive geographical information

available on internet. Though in past, solutions for it, based on R-tree family and B-tree has been given, but due to increased

size of index, they are found to be less efficient and time consuming. This paper presents a dual indexing technique for

Geographical Information Retrieval. It uses wavelet tree data structure for both, textual and spatial indexing. It also allows

dynamic insertion of Minimum Bounding Rectangle (MBR) in the wavelet tree during index construction. The proposed

technique has been evaluated in terms of efficiency and time complexity. For pure spatial indexing, using this technique, the

search time complexity is reduced and takes even less than one third time of that of spatial indexing performed using R-tree or

R*-tree. Even in case of dual indexing (textual and spatial) using wavelet tree, the search time is reduced by half in

comparison to other techniques such as B/R, B/R* when the search query length is larger than 2 keywords. In case the query is

of 1 or 2 keywords, the search time remains approximately similar to that of other techniques.

Keywords: Information retrieval, wavelet tree, spatial search, indexing, Minimum bounding rectangles.

Received May 28, 2016; accepted May 1, 2017
__

1. Introduction

Information Retrieval (IR) is the activity of obtaining

information resources relevant to an information need

from a collection of information resources. Searches

can be based on full-text or other content-based

indexing. Now-a-days improvements in the standard of

computing resources have made the implementation of

ontology based information retrieval systems very

affordable. Such systems have plenty of data to be

processed, which requires an efficient indexing

technique. Over the past decades, several different

indexing structures have been developed. Many of

these indexing structures were designed for secondary

memory due to small size and high cost of main

memory. But, recently the drastic change in the price

of main memory has made it possible to have indexes

in main memory itself. This sets the requirement of

developing a primary memory based indexing structure.

This paper presents a compact structure known as

wavelet tree for performing indexing, that facilitates to

maintain a proper balance between search efficiency

and the storage requirement.

The term ‘spatial database system’ has become

popular during the last few decades. In 2006, Andrade

and Silva [1] had presented an indexing and ranking

architecture for a new geographical web retrieval

system based on distances between users and the

resources. Jones et al. [10] in 2004 had given a search

engine named Spatially-Aware Information Retrieval

on the Internet (SPIRIT) that was specialized for

access to geographical information. In the very next

year, 2005 Zhou et al. [18] had proposed a hybrid

index structure which integrated inverted files and R*-

trees to handle both textual and location based queries.

He concluded that the structure in which first inverted

file is used and then R* tree, is more efficient in terms

of query time. In the very next year 2006 Brisaboa et al.

[3] focused on a sub-category of spatial indexes, based

on wavelet tree. It solved the problem of indexing

points while maintaining a proper balance between the

space and search efficiency. In the same year, he

proposed a self-indexing method based on wavelet tree.

It basically joined Huffman compression technique

with wavelet trees. He presented three variants which

together aimed at reducing the size while preserving

the space requirement. In 2007, Hariharan et al. [9]

presented a framework for geographical information

retrieval system and proposed an approach that can

process spatial keyword queries efficiently. Lieberman

et al. [11] in 2007 had given a model named Spatio-

Textual Extraction on the Web Aiding Retrieval of

Documents (STEWARD) i.e., spatio-textual extraction

on the web aiding retrieval of documents. It is a system

for extraction, performing query and visualizing

textual references. Lin et al. [12] in 2007 proposed a

spreading activation network based model for

geographical information retrieval. With the evolution

in the hierarchy of memory, it has now become

possible to have compact structures for representing

the indexes. With this advancement, Brisaboa et al. [4]

in 2010 proposed a wavelet tree based structure for

Wavelet Tree based Dual Indexing Technique for Geographical Search 625

representing the geographical data. They efficiently

represented the Minimum Bounding Rectangles (MBR)

for solving the spatial queries with the help of wavelet

tree structure.

Thorough literature review of the existing

techniques reveals that none of the above discussed

schemes have used wavelet tree based dual indexing

for spatial and textual search in case of geographical

information retrieval [4]. In most of the cases

researchers have used B-tree for textual index and R-

tree family for spatial search. Common drawbacks of

the existing schemes are that more space is required to

store indexes. The time complexity is higher and

overlapping exists in case of dynamic insertion of

MBRs in R-tree family. In addition to this one more

drawbacks in the existing methods is that they are not

able to assign multiple geographical references for a

web document. Scheme proposed in this paper

overcomes most of the above said drawbacks of the

existing methods.

This work extends the work proposed in [7] for

spatial as well as textual search and proposed a dual

indexing technique for Geographical Information

Retrieval based on the same structure i.e., Wavelet

Tree. The benefit of using dual indexing is that it

supports parallel computing in case of large data

including textual and spatial format. The proposed

technique can be extended concurrently on different

machine to search textual data on one machine and

spatial data on another machine. This helps in reducing

the search time as well the space required for storage.

We have also proposed an algorithm for the dynamic

insertion of MBRs in the wavelet tree during index

construction which also reduces MBR overlapping

problem.

Our novel contributions in this paper are as follows:

 Use of same data structures (wavelet tree) instead of

different structures for spatial and textual search

which reduces the search time and storage space.

 Minimized the problem of MBR overlapping while

inserting it dynamically in the wavelet tree.

Rest of the paper is organized as follows. Next section

describes the related concepts. Section 3 presents our

proposed work. Section 4 presents experimental results.

Finally, we conclude in section 5.

2. Related Concepts

The growing use of internet has increased the research

in information retrieval by many folds. Information

retrieval can be done in two ways: textual and spatial.

These researches shows that it has been widely used in

the implementation of document databases, digital

libraries and web search engines. Many of the

documents stored in databases include geographic

references in form of text. The main goal is the

retrieval of geographically relevant documents in

 response to queries of the form <theme, location>.

Spatial indexes are key components in Geographical

Information System (GIS). Spatial indexes can be used

to solve both range queries and point queries of which

range queries have proven to be better than Point

Access Methods (PAMs) [16]. Gaede and Gjnther [8]

in 1998 classified these index structures into two

categories, one based on point query and other on

polygon query. Point query methods are used to

improve the access time in collections of spatial points.

Polygon (rectangle) query methods are more general

and are used to improve the access time in collections

of geographical objects.

Geographical Information Retrieval (GIR) system

consists of both, thematic as well as geographical

information [9]. For the better performance of the

complete system, indexing is required to be done

which facilitates better retrieval. In this paper, we

focus mainly on geographical information retrieval

which can be indexed in the following four diverse

ways:

2.1. Index Based only on Keywords

 In this, indexing is only based on the keyword [15]. It

is basically done for the textual data. It does not

differentiate the spatial keywords present in the query,

rather treats it similar to textual keywords. So for

spatial keywords, a separate index of these words is

maintained. While solving a query having both parts

i.e., textual as well as spatial, first it processes the

query on the basis of textual keywords of the query

using the inverted file index and thus obtained

documents are checked whether they meet the spatial

part of the query as well or not. In this strategy, it was

found that the major computational time is consumed

to perform textual followed by spatial searching to find

the final query results. It is also not efficient when

multiple geo footprints are available for same

documents

2.2. Keyword-Spatial Dual Index

 In this, both keyword as well as spatial indexing is

performed. For the purpose of analysis, the complete

process is divided into three parts. First is processing

of the textual part using inverted file index. Second is

query on the R-tree for finding the MBR’s, and finally

merging the two results. This indexing is somewhat

better as compared to pure keyword based index but, it

introduces large storage overhead.

2.3. Spatial-Keyword Hybrid Index

 In this, initially, the spatial indexing is done and then

we get the pointer to the inverted files, which contain

textual indexes [2]. The only difference in this method

is that in the contents of the leaf nodes. In the previous

one leaf node contained the pointers to the spatial data

626 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

which required greater storage whereas in this the leaf

node have the pointer to the smaller inverted files

containing the textual indices.

2.4. Keyword-Spatial Hybrid Index

 In this, firstly the inverted file is built using the

keywords for indexing all the keywords contained in

the query. Then the spatial index is built and placed in

between vocabulary and occurrence. This is done only

to index the occurrences of the keyword according to

their geographic approximation. At last, these

occurrence tables are divided into several smaller parts

and put in the leaf nodes, which reduces the storage

overhead.

Apart from these indexing techniques, there are

several data structures that has been used in past for

solving both range queries as well as point queries

using spatial indexes. Some of them are discussed here.

2.5. R-Tree

 It is a depth-balanced tree in which each node

corresponds to a disk page [14] (i.e., the number of

entries in each node is limited). Two types of queries

can be solved using R-tree: point query: “what object

contains the query point” and window query: “what

objects intersect the query window”. R-Trees can

organize any-dimensional data by representing the data

with a minimum bounding box. Each node bounds its

children. A node can have many objects in it. The

leaves point to the actual objects (stored on disk). The

major disadvantages associated with R-trees are:

1. The execution of a point location query on R-tree

may require the traversal of several paths from the

root to the leaf. This contributes to poor

performance [6].

2. Presence of large rectangles increases the degree of

overlapping which contributes to performance

degradation.

2.6. R+ Tree

 It avoids multiple paths during searching; instead

objects may be stored in multiple nodes. So, redundant

information appears in two or more nodes in case of

overlaps but MBR overlapping of internal nodes can be

avoided. On performing insertion/deletion operation,

the tree may change downward or upward in order to

maintain the structure. The fact that multiple copies of

an object’s MBR may be stored in several leaf nodes

has a direct impact on the deletion algorithm. All

copies of an object’s MBR must be removed from the

corresponding leaf nodes.

2.7. R* Tree

 The original R-tree only minimizes the area of MBRs

but R* tree is a significant structure to minimizes area,

overlap and maximizes space utilization. A reinsertion

algorithm is used for tree rebalancing and significantly

improving performance during query processing. Re-

inserting data improves performance by 20-50% as has

been proved experimentally. However, reinsertion is a

costly operation. Therefore, only one application of

reinsertion is permitted for each level of the tree. When

overflow cannot be handled by reinsertion, node

splitting is performed. The major drawback with R*

tree is that it has no control over space utilization and

achieves approximately 70% maximum utilization.

2.8. Hilbert R Tree

Several space filling curves can be used to impose a

linear ordering on the rectangle- z-order curves, Hilbert

curves, and gray code curves. Hilbert R tree is a

combination of R-tree and B+tree. It is a structure

based on Hilbert space filling curves and aims to

reduce the area and perimeter of resulting MBRs for

spatial searches. The Hilbert value of a rectangle is

actually the Hilbert value of its centre. In this tree,

similar nodes are grouped together to achieve as high

as 100% space utilization depending on how “good”

the grouping is. It behaves like an R tree on spatial

search operation whereas for insertion it uses deferred

splitting technique which uses the Hilbert value of the

inserted data as the primary key.

Generally, one use R- tree and its variants for spatial

indexing which are based on MBRs but there are some

major issues which may arise. They are:

 Use of different data structures is required for

different types of indexing as there is no single data

structure to identify both point and spatial accesses

to memory. One keep using inverted file structure

for textual indexing and R-tree family for spatial

indexing and thus it makes implementation difficult.

 Another problem which can be attributed to the use

of traditional R-trees is the space requirement. As

the size of indexes grow, more and more secondary

storage is required and the actual memory required

becomes vast.

 As the number of geographic references in the

users’ query increases, the number of objects, to be

accessed increases and so does the searching time.

 It is difficult to define spatial ordering for spatial

objects.

2.9. Wavelet Tree

 It is a compressed structure which facilitates the

storage of indexed data in a compact way [5, 6, 13, 17].

A wavelet tree-based structure allows us to represent

minimum bounding rectangles, solving geographic

range queries in logarithmic time. It has efficient rank

and select operations which can be used for document

retrieval and traversal of the tree in constant time. For

a given bitmap B of size n, rank (B, i) returns the

Wavelet Tree based Dual Indexing Technique for Geographical Search 627

frequency of 0/1 till position i and select (B, j) returns

the position of jth bit set to 0/1 in B.

3. Proposed Work

This section describes the usage of wavelet trees to

solve range queries using dual indexing which define a

rectangular query window [li
q, ui

q] in response to a

query given in the form <theme, location>. The

location can be recognized practically with the help of

gazetteer and rectangular query window is created to

identify the overlapped documents. The goal is to

retrieve all geographic objects that have at least one

point in common with the query rectangle. This section

is divided into three parts, creation of query rectangle

Minimum Bounding Rectangle (MBR), insertion of the

newly created MBR into the wavelet tree structure, and

searching of the MBR. These three parts are discussed

in detail along with example in the following sections.

3.1. Creation of Query Rectangle (MBR)

Through the literature, it is found that rectangular

polygon is optimal in all the aspects of parameters

including minimum data loss and implementation.

Creation of rectangle is important part for spatial index

generation and to define spatial query window of user.

For a given spatial search like hotels in Ghaziabad,

a specific set of latitude and longitude related to

location Ghaziabad is required. Query window is a

collection of all these points on the 2D map as shown

in Figure 1. The query window has its own MBR

which is defined by the end points of the query

window. There are two endpoints for any MBR, (l1, u1)

and (l2, u2). These endpoints determine the range over

which a region would be bounded. In similar way the

query window end points are represented by (l1
q

, u1
q)

and (l2
q

, u2
q). The values (l1

q
, u1

q) and (l2
q

, u2
q) are

generated using following Algorithm:

Algorithm 1: MBR creation for GIR Document

 Step 1: The left uppermost and right bottom most points for

a MBR is found which is calculated on the basis of latitudes

and longitudes (from gazetteer database) of locations

described.

 Step 2: For the query window, the values are marked as

follows:

l1
q = minimum value of latitude of the region surrounding.

u1
q = minimum value of longitude of the region surrounding.

l2
q = maximum value of latitude of the region surrounding.

u2
q = maximum value of longitude of the region surrounding.

 Step 3: A rectangle is made using the endpoints of the query

window by intersecting the lines l1
q with u1

q and l2
q with u2

q.

Figure 1. The MBR of different regions.

The rectangle so formed is the MBR for our query

window and the same is used to determine query result

as shown in Figure 2. Query window is formed based

on collection of all the MBR’s which satisfies the

query. Here, we have query window defined in the

region X [5, 6] and Y [7, 10].

The query window is scaled for convenience in

calculation of overlapping regions.

For example, for the query “hotels in Ghaziabad”, it

is found in database that there are 3 locations related to

Ghaziabad. All the locations have their specific

location ids, latitude and longitude.

In Figure 3, Ghaziabad’s location endpoint is based

on these 3 locations and this defines the boundary of

the query window as can be seen in Figure 3. The

query window is shown in green colour and can be

seen that it consists of a region formed by 3 locations

falling in it. Now, this query window [l1
q

, u1
q] x [l2

q
, u2

q]

is used for finding the results of the query. The MBR

of a geographical object ‘o is also defined in the

similar manner.

MBR (o) = I1(o)×I2(o), where, Ii(o) = [li, ui]

The final result is the overlapping areas (u1
q>= l1 ^

l1
q<= u1 and u2

q>= l2 ^ l2
q<= u2) which have at least

one overlapping point with the query window.

3.2. Insertion of Newly Created MBR in the

Wavelet Tree

Wavelet tree is used for both textual searching and

spatial searching techniques. The insertion of a MBR

in the already defined wavelet tree involves its addition

in appropriate position and then redesigning the whole

tree again. The complete process is described through

the following algorithms:

The variables used in the algorithms are: u1 (latitude

coordinate of top left endpoint of new node); i (used to

store position of leaf node); si (used to store symbol at

position i); count (used to count number of occurrence

of symbols in root node); temp (stores the number of

occurrence of a symbol in the node above it); fpos

(final position of symbol in the root node); n (number

of symbols in root node); newNode (new node); X

(root node); and Flag (variable used to store

overlapping flag condition).

(1)

628 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Figure 2. Example of plotting query window.

Figure 3. Map showing query window.

Algorithm 2: Create Wavelet Tree for MBR and Remove

Overlapped MBR

 Insert (new, pos)

1. u = u1 for new node // stores value in a temporary variable

2. i = 0

3. si := Access(i)

4. while si.u1 <= u // find the position of leaf node at which

new node to be inserted by searching for the largest value of

u1 less than u for new node

5. do i := i + 1

6. si := Access(i)

7. s = si // access the symbol at last value of i

8. count = Ranks(X, n) // count the no. of occurrence of symbol

s

9. d = count

10. d = Selects(X, d) // find the position of last occurrence of

the symbol in the root node by repeating step 7 till we

reach the root node

11. fpos = temp //store the position in a variable

12. for i = 0 to n

13. if (Remove_complete_overlap(new, access(i))) // overlap

from left to right

14. then flag = 1 // new node completely overlaps an old node

15. else if (Remove_complete_overlap(access(i), new))

// overlap from right to left

16. then flag = 2 // old node completely overlaps new

defined node
17. else new = Remove_partial_overlap(new, access(i))

//remove the overlapping boundaries of new node by

comparing it with each node in the root

18. if flag == 1

19. then Remove old node from the root list

20. Insert(newNode, fpos)

21. else if flag == 2

22. then do nothing

23. else Insert(newNode, fpos) //insert the new node at the

position.

 Remove_partial_overlap (newNoder, oldNode)

1. if new.l1 < old.l2 and new.l1 > old.l1 and new.l2 > old.l2

2. then new.l1 = old.l2 //remove the left intersecting part and

change the left coordinate

3. if new.l2 < old.l2 and new.l2 > old.l1 and new.l1 < old.l1

4. then new.l2 = old.l1 //remove the right intersecting part and

change the right coordinate

5. if new.u1 < old.u2 and new.u1 > old.u1 and new.u2 >

old.u2

6. then new.u1 = old.u2 //remove the top intersecting part and

change the upper coordinate

7. if new.u2 < old.u2 and new.u2 > old.u1 and new.u1 <

old.u1

8. then new.u2 = old.u1 //remove the bottom intersecting part

and change the lower coordinate

9. return new

 Remove_complete_overlap (A, B) //check if A completely

covers boundary of B

1. if A.l1 <=B.l1 and A.l2 >=B.l2 and A.u1 >=B.u1 and A.u2

<=B.u2)

2. then return true

3. else return false

3.2.1. Time Complexity Analysis of Proposed

Algorithm

Time Complexity for the insertion of a new MBR in

the wavelet tree can be calculated by adding the

following individual complexities:

1. Complexity for search operation of node using

while loop = O(n).

2. Complexity for access operation = O(1).

3. Complexity for rank operation = O(log n).

4. Complexity for select operation = O(log n).

5. Complexity for remove-partial-overlap = O(1).

6. Complexity for remove-complete-overlap = O(1).

7. Complexity for removal operation = O(n).

Adding all these we get the time complexity for

insertion of a node in wavelet tree and is given as

follows:

T(n) = O(logn)

This is better than the existing complexities of R-tree

family algorithms. It also removes the problem of

MBR overlapping.

3.3. Searching of Query Rectangle in the

Wavelet Tree

This section presents a hybrid spatial index to solve

geographical queries. MBRs of different geographical

points are considered and the data structure used is

Wavelet tree. This is same as R-tree except that it

increases the response time and reduces the space

complexity during execution. The same data structure

i.e. wavelet tree is used for both geographical as well

as textual searching. Other existing technique uses R-

tree family for geographical index and B-tree for

(2)

Wavelet Tree based Dual Indexing Technique for Geographical Search 629

inverted index. Through theoretical as well as

experimental evaluation it has been proved that

proposed hybrid index technique outperforms the

existing techniques. This paper does not discuss about

the way to find geographic locations from user query

because our main focus is to optimize spatial indexes.

The pseudo code for index construction and searching

geographical document using dual index technique is

discussed as given below.

Algorithm 3: Searching Dual Indexes

 Suppose user query q has two parts: q1 and q2. i.e. q = q1+q2

where, q1 belongs to textual part of query and q2 belongs to

spatial part of query and C[k] is bit map array of wavelet tree

index.

Search_dual_index (q1, q2)

1. kextract_overlap_id() //this function will return the id

of overlapped MBR.

2. While(tree!=NULL)

 do

3. if(C[k]==0)

4. tree=treeleft

5. k =Rank(C, tree)

6. else

7. tree=treeright

8. k=rank(C, tree)

9. L1=search_mbr_inverted_file(k) //returns document

related to MBR location

10. L2=search_invertedfile(q2) //return documents related

to textual query

11. L = L1 ∩ L2

The entire process in flowchart form is shown in Figure 4.

3.3.1. Time Complexity of Algorithm

Let, n = Total number of MBRs; and m=number of

MBRs intersecting query window; then Time to search

the node in the root using binary search = O (log n);

and Time to reach leaf of ‘m’ number of MBRs =

m*O(log n). Similarity let q = number of unique

keywords; and p = number of documents; then Time to

search a keyword = O(log p); and Time for searching

the documents for all keywords = q*O(log p).

Therefore:

a) Spatial Complexity = (1 + m) O(log n).

b) Textual Complexity = q O(log p).

Total Complexity = (1 + m) O(log n) + q O(log p)

Complexity given above is retrieval of spatial followed

by textual data using dual indexing and wavelet tree

data structure. We have compared the complexity of

this dual index with the complexity of existing

indexing structures and it is found that our dual index

structure out performs in case of larger database and

long queries.

The query window extends from [3, 8] to [8, 10] as

shown in Figure 5. We can find MBRs ‘f’ and ‘g’ to

overlap with ‘q’ using the relation mentioned in the

algorithm. latitude wise where row L1 representing

lower and row U1 represents upper latitudes of each

MBRs. Similarly, in array Y, all the MBRs are

arranged longitude wise.

Figure 4. Process of searching in a wavelet tree.

Figure 5. Representation of MBR’s.

Array X:
 a c d b e f g

L1 1 5 9 2 9 1 6

U1 1 1 2 3 6 8 9

Similarly, Array Y:
 a c d b e f g

L2 4 8 11 5 11 4 9

U2 3 3 3 4 8 9 10

Now, we use array X to create wavelet tree for

Figure 5. In similar way wavelet tree can also be

created on the basis of array Y but while performing

the search operation any one of these two-wavelet tree

is sufficient enough to provide the complete

information.

In the tree (Figure 6), bitmap 0/1 is assigned to each

of the entries. To retrieve MBR ‘f’ we search the root

R of the wavelet tree. Since bitmap associated with ‘f’

is 1, the search space is subdivided and now searching

is done in the right child of the tree. In the right sub-

tree, since bitmap associated with ‘f’ is 0, we search in

the left sub-tree. We keep on searching in the left and

right sub-tree depending on the bitmap associated with

MBR until we finally reach the leaf node where we can

(3)

630 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

access all documents in the MBR. Each node has an

inverted file attached to it which has all the documents

contained in that node.

Figure 6. Initial wavelet tree.

 Example 1-a: Suppose we want to resolve the query

hotels in Ghaziabad. Algorithm form query window

for spatial location Ghaziabad and then search for

all MBRs overlapping this query window to retrieve

documents related to Ghaziabad as shown in Table

2.

Table 1. Vocabulary.

Vocabulary Inverted File 2 Inverted File 3

Ghaziabad <doc1,doc2,doc5,doc7> <doc2,doc5,doc7>

Delhi <doc6,doc8> <doc2,doc3,doc5>

Noida <doc2,doc8,doc9> <doc1,doc2,doc7>

Gurgaon <doc5> <doc6,doc8,doc9>

Let, while searching the location Ghaziabad the

MBRs ‘f’ and ‘g’ are overlapped with the query

window formed for it. As explained above, these

MBRs produces two inverted indexes, Inverted File 1

and Inverted file 2 respectively. As shown in Table 1

these inverted files contain the documents <doc1, doc2,

doc5, doc7> and <doc2, doc5, doc7> respectively. So

merging is performed to find the common documents

as shown below:

<doc1, doc2, doc5, doc7> && <doc2, doc5, doc7>

= {doc2, doc5, doc7}(Result-1)

 Example 1-b: Now suppose we have an inversion

list (as shown in Table 2) which contains a list of

keywords along with their ids and the documents

which contain these keywords.

Table 2. Inverted list.

Keyword No. Keyword Document

1 We 1

2 Flower 1, 3

3 Hotels 1, 2

4 Restaurants 2

5 Our 2

6 Home 2, 4

7 I 3, 4, 5

8 My 3

9 You 4

10 Dog 4

11 Book 4, 5

12 Coffee 5

13 Tea 5

The wavelet tree for all documents shown in Table 2

is created as shown in Figure 7. Thereafter it is needed

to retrieve the documents that contain the keyword

hotels and finally intersection on documents, retrieved

by result-1 and result-2 (explained below) is performed

to get the final result for the query.

Figure 7. Complete wavelet tree.

We store a unique ID with each entry in the root R

to solve the rank operation efficiently. In the above

constructed wavelet tree, it is clearly visible that

keyword hotels with keyword number 3 occurs in

document 1 and 2. For keyword number 3, we access

the bitmap for 3. Since it is 0, we move to the left child

of the tree and pos=rank0(B, ID)=rank0(B, 5)=4. So,

we again access position 4 in the left child. Here B=0,

so we move to the left child and find pos=rank0(B, 4)=

3. This goes on recursively until we reach the leaf node

where we get our required document. In the above

example, documents containing keyword hotels are,

Doc1 and Doc2 (result-II). After performing merge

operation on result-I and result-II i.e. {doc2, doc5,

doc7} && {doc1, doc2} = {doc2}. Therefore, doc2

resolves the query hotels in Ghaziabad.

 Time Complexity

For spatial indexing, suppose we have n MBRs in the

root R of the wavelet tree and out of these ‘n’ MBRs,

‘m’ MBRs intersect our query window ‘q’. For rank

operation the time required is constant and equal to

O(1).

In the above Example 1-a: we get ‘f’, and ‘g’ as a

result of overlapping MBRs. Hence, the total time

complexity is O(log n) + mO(log n) = (1+m)O(log n).

In example 1(b), binary search in the root requires

q*O(log p) time for ‘p’ keywords which are contained

in ‘q’ documents and traversal of tree using rank

operation only takes O(1). Therefore, the total

complexity of dual indexing is (1+m)*O(log

n)+q*O(log p).

4. Experimental Results

We have implemented our proposed algorithm in PHP

with database MYSQL 5.6.12 and server Apache 2.4.4,

executed on windows 8-64bit, AMD A8 Quad core

1333 MHz processor with 4GB RAM. The results

Wavelet Tree based Dual Indexing Technique for Geographical Search 631

obtained are compared to the existing structures for

spatial indexes. In this paper, we have compared the

wavelet tree based technique with R-tree and R*-tree

based techniques. The result is shown in Table 3 and

Figure 8.

We have also proposed dual indexing technique

using common structure for both textual and spatial i.e.,

wavelet tree. This dual indexing technique is also

compared to other existing dual pairs. The result is

shown in Table 4 and Figure 9.

Table 3. Searching time (ms) of different algorithms.

Query Length R-tree R*-Tree Wavelet tree

2 122 98 24

3 139 120 38

4 149 189 50

5 195 208 56

6 254 265 78

7 320 310 112

8 446 412 137

9 522 473 146

10 698 545 155

11 770 603 166

12 872 691 187

13 950 762 195

14 1098 835 211

15 1190 895 241

Table 4. Searching time of dual indexing techniques.

Query length B/R B/R* Dual Wav/Wav

2 155 139 161

3 229 184 182

4 311 278 193

5 399 362 221

6 526 443 234

7 645 548 279

8 877 712 318

9 945 832 402

10 1022 906 469

11 1290 1011 534

12 1401 1265 599

13 1506 1381 690

14 1720 1500 783

15 1795 1605 916

0

150

300

450

600

750

900

1050

1200

1350

2 3 4 5 6 7 8 9 10 11 12 13 14 15

R-tree R*-Tree Wavelet tree

Figure 8. Graph showing the variation in searching time.

Figure 9. Graph showing the variation in searching time of dual

indexing techniques.

5. Conclusions and Future Work

In this paper, we have proposed and implemented an

spatial indexing technique based on wavelet tree and

have also given a dual indexing technique using

common indexing structure i.e. wavelet tree both for

textual as well as spatial indexing. We have also

designed an algorithm for the dynamic insertion of

MBR in the wavelet tree. The experiments result

presented shows that algorithms outperform the

existing algorithms both in terms of simplicity in

implementation and searching time. For example, for

pure spatial indexing, using wavelet tree, the search

time complexity is reduced and it takes even less than

one third time of that of spatial indexing performed

using R-tree or R*-tree (Table 4). Even in case of dual

indexing (textual and spatial) using wavelet tree, the

search time is reduced by half in comparison to other

existing techniques used for the dual indexing such as

B/R, B/R* when the search query length is more than 2

keywords. In case the query is of 1 or 2 keywords, the

search time remains approximately similar to that of

other techniques.

Our future work is to develop hybrid technique

based on common structure for both textual and spatial

data and assign multiple geographical references.

References

[1] Andrade L. and Silva M., “Indexing Structures

for Geographic Web Retrieval,” in Proceedings

of the Conference on Mobile and Ubiquitous

Systems, Guimarães, pp. 33-39, 2006.

[2] Bliujute R., Jensen C., Saltenis S., and Slivinskas

G., “R-Tree Based Indexing of Now-Relative

Bitemporal Data,” in Proceedings of the 24rd

International Conference on Very Large Data

Bases, San Francisco, pp. 345-356, 1998.

[3] Brisaboa N., Luaces M., Navarro G., and Seco

D., “A New Point Access Method Based on

Wavelet Trees,” Advances in Conceptual

T
im

e(
m

s)

T
im

e(
m

s)

Query Length

Query Length

632 The International Arab Journal of Information Technology, Vol. 16, No. 4, July 2019

Modeling-Challenging Perspectives, Berlin, pp.

297-308, 2009.

[4] Brisaboa N., Luaces M., Navarro G., and Seco

D., “A Fun Application of Compact Data

Structures to Indexing Geographic Data,” in

Proceedings of the 5th International Conference

on Fun with Algorithms, Iscia, pp. 77-88, 2010.

[5] Claude F., Navarro G., and Ordónez A., “The

Wavelet Matrix: An Efficient Wavelet Tree for

Large Alphabets,” Information Systems, vol. 47,

pp. 15-32, 2015.

[6] Elabd E., Alshari E., and Abdulkader H.,

“Semantic Boolean Arabic Information

Retrieval,” The International Arab Journal of

Information Technology, vol. 12, no. 3, pp. 311-

316, 2015.

[7] Gagie T., Navarro G., and Puglisi S., “New

Algorithms on Wavelet Trees and Applications to

Information Retrieval,” Theoretical Computer

Science, vol. 426-427, pp. 25-41, 2012.

[8] Gaede V. and Gjnther O., “Multidimensional

Access Methods,” ACM Computing Surveys, vol.

30, no. 2, pp. 170-231, 1998.

[9] Hariharan R., Hore B., Li C., and Mehrotra S.,

“Processing Spatial-Keyword (SK) Queries in

Geographic Information Retrieval (GIR)

Systems,” in Proceedings of 19th International

Conference on Scientific and Statistical Database

Management, Alta, pp. 16, 2007.

[10] Jones C., Abdelmoty A., Finch D., Fu G., and

Vaid S., “The SPIRIT Spatial Search Engine:

Architecture, Ontologies and Spatial Indexing,”

in Proceedings of Geographic Information

Science, Berlin, pp. 125-139, 2004.

[11] Lieberman M., Samet H., Sankaranarayanan J.,

and Sperling J., “STEWARD: Architecture of A

Spatio-Textual Search Engine,” in Proceedings

of the 15th Annual ACM International Symposium

on Advances in Geographic Information Systems,

Seattle, pp. 186-193, 2007.

[12] Lin X., Yu B., and Ban Y., “On Indexing

Mechanism in Geographical Information

Retrieval System,” in Proceedings of 10th AGILE

International Conference on Geographic

Information Science, Denmark, pp. 1-3, 2007.

[13] Navarro G., “Wavelet Trees for All,” Journal of

Discrete Algorithms, vol. 25, pp. 2-20, 2014.

[14] Papadias D., Sellis T., Theodoridis Y., and

Egenhofer M., “Topological Relations in The

World of Minimum Bounding Rectangles: A

Study With R-Trees,” in Proceedings of the ACM

SIGMOD International Conference on

Management of Data, San Jose, pp. 92-103,

1995.

[15] Su Q. and Widom J., “Indexing Relational

Database Content Offline for Efficient Keyword-

Based Search,” in Proceedings of 9th

International Database Engineering and

Application Symposium, Montreal, pp. 297-305,

2005.

[16] Yadav A. and Yadav D., “Wavelet Tree based

Hybrid Geo-Textual Indexing Technique for

Geographical Search,” Indian Journal of Science

and Technology, vol. 8, no. 33, pp. 1-7, 2015.

[17] Yadav A., Yadav D., and Prasad R., “Efficient

Textual Web Retrieval using Wavelet Tree,”

International Journal of Information Retrieval

Research, vol. 6, no. 4, pp. 16-29, 2016.

[18] Zhou Y., Xie X., Wang C., Gong Y., and Ma W.,

“Hybrid Index Structures for Location-Based

Web Search,” in Proceedings of the 14th ACM

International Conference on Information and

Knowledge Management ACM, Bremen, pp. 155-

166, 2005.

Arun Kumar Yadav is Associate

Professor in the department of

Computer Science and Engineering at

Ajay Kumar Garg Engineering

College, Ghaziabad (UP) India. He

received PhD. degree in Computer

Science and Engineering 2016. He

guided 1 M. Tech. dissertation and published more

than 10 research papers in reputed

international/national journals and presented at

conferences. His areas of interest are Information

retrieval and Database Management System.

Divakar Yadav is Associate

Professor in the department of

Computer Science and Engineering

at Madan Mohan Malaviya

University of Technology,

Gorakhpur (UP) India. He received

PhD. degree in Computer Science

and Engineering 2010. He spent one year, from Oct

2011 to Oct 2012, in Carlos III University, Leganes,

Madrid, Spain as a postdoctoral fellow. He guided four

PhD students, 14 M.Tech. dissertation and published

more than 65 research papers in reputed

international/national journals and presented at

conferences. His areas of interest are Information

retrieval and soft computing.

