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Abstract: A Cloud may be seen as flexible computing infrastructure comprising of many nodes that support several concurrent 

end users. To fully harness the power of the Cloud, efficient data query processing has to be ascertained. This work provides 

extra functionalities on cloud data query processing, a method called, Hybrid Tree Fast Similarity Query (HT-FSQS) Search is 

presented. The Hybrid Tree structure used in HT-FSQS consists of E-tree and R+ tree for balancing the load and performing 

similarity search. In addition, we articulate performance optimization mechanisms for our method by indexing quasi data 

objects to improve the quality of similarity search using R+ tree mechanism. Fast Similarity Query Search indexing build cloud 

data streams for handling different types of user queries and produce the result with lesser computational time. Fast Similarity 

Query Search uses inter-intra bin pruning technique, where it resolves the data more similar to user query. E- R+ tree FSQ 

method branch and bound search eliminates certain bins from consideration, speeding up the indexing operation. The 

experiment results demonstrate that the Hybrid Tree Fast Similarity Query (HT-FSQS) Search achieve significant performance 

gains in terms of computation time, quality of similarity search and load balance factor in comparison with non-indexing 

approaches.  
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1. Introduction 

Cloud computing is receiving more attention as the end 

users store their data in the public cloud and then 

access the data at any time. So, several methods to 

retrieve the data from cloud server were presented by 

many researchers. Li et al. [7] had multi-keyword 

ranked search was applied to find the subset that was 

most likely to satisfy the user requirements. Wang and 

Ravishankar [16] Asymmetric Scalar product 

preserving encryption was applied to ensure secure and 

efficient retrieval of range queries.  

Technological advancements in digital measurement 

and engineering made possible the capture of 

enormous data in several fields as astronomy, 

medicine, and seismology. Yiu et al. [19], similarity 

querying of metric data was outsourced using indexing 

and NN search resulting in the improvement of 

extraction of accurate processing of similarity queries. 

However, lack of trust remained a major setback to be 

addressed. With this objective, Carbunar and 

Tripunitara [2], a unifying trust framework was 

designed that not only resulted in the improvement of 

trust but also improved the rate of security. 

Big data in cloud environment identify the trends of 

different social aspects and preferences of individual 

everyday behaviours for large data. Yun et al. [20], a 

fast approach to range aggregate queries aiming at 

improving the query retrieval using balanced 

partitioning algorithm was presented. Dastjerdi and 

Buyya [3] has another ontology-based approach to 

minimize effort of users in expressing their preferences 

was presented using evolutionary algorithms and fuzzy 

logic. Provisioning of resources in cloud environment 

using reinforcement learning was presented in [11] to 

reduce the time for retrieval. A novel indexing and 

retrieving mechanism using M R* tree was presented in 

[18]. To improve search efficiency, Fine-grained 

Flexible Access Control (FFAC) [12] was presented. 

In this work, we design a new method called Hybrid 

Tree Fast Similarity Query (HT-FSQS) Search to 

address the aforementioned issues. In HT-FSQS, we 

assume that the amount of query from the cloud user 

continues to increase from time to time. We propose a 

new hybrid tree structure that combines the advantages 

of both E-tree and R+ tree, introduce a new Load-

balanced R+ tree algorithm to reduce the computation 

time and take the Fast Similarity Query Search 

indexing in to consideration to improve the quality of 

similarity search.  

The rest of the paper is organized as follows. 

Section 2 summaries the related works on similarity 

search in cloud environment. Section 3 presents the 

system overview and the technical details of the 

proposed HT-FSQS method. Section 4 describes the 

experimental configurations and performance 

evaluations are presented in section 5. Finally, section 

6 concludes the paper. 
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2. Related Works 

Since the concept of cloud computing was proposed, 

similarity search, especially dynamic and fast 

similarity query search, has been one of the most 

important research components. Related works of 

similarity query search are mainly from different 

perspectives to construct a cloud computing system 

model aiming to attain universal results.  

For both convenience and security, cloud users 

encrypt their data before outsourcing it to cloud storage 

service. However, performing similarity searching for 

the desired documents becomes complicated task due 

to the difficulty in decrypting the required document. 

A single server two round solution was investigated by 

Peng et al. [10] to reduce the storage and 

communication complexity. Searchable Encryption for 

multi-keyword ranked search was applied by Li et al. 

in [5] that resulted in the improvement of search 

functionality and search time. Another similarity 

search scheme over encrypted data was presented by 

Xia et al. [17] using secure index construction. On the 

other hand to perform fast exact similarity search, 

smith waterman algorithm was applied [4]. Secure 

storage and retrieval over internet services using key 

organised method was presented in [1, 9]. 

Similarity search, used in many data mining and 

information retrieval applications in cloud 

infrastructure, is a time consuming process. A two-

stage heuristic algorithm was investigated in [14] to 

balance the load arising in cloud infrastructure and 

detect both similar and dissimilar queries. Secure and 

efficient ranked keyword search was performed in [15] 

to ensure file retrieval accuracy using one-to-many 

order preserving matching technique. Another research 

work using semantic keyword-based search [13] was 

presented using stemming algorithm to reduce the 

computation time in improving the search efficiency.  

A transformation-based optimization framework 

was presented by Zhou and He [21] using a cost model 

resulting in optimizing the performance and cost for 

workflows in the cloud. Another method by Ma et al. 

in [8] was presented that performed scalable and 

reliable matching service minimizing the traffic 

overhead during subscription searching. Li et al. in [6] 

optimal routing for retrieving user query was presented 

using Exchanged Cross Cube (ECC). Distinguished 

from prior works, we establish a method of cloud 

computing system to strengthen the similarity query 

search based on the hybrid tree structure.  

3. Construction of Hybrid Tree 

The HT-FSQS constructs a hybrid tree structure which 

consists of both an Ensemble tree (E-tree) and a R+ tree 

as shown in Figure 1. As shown in the Figure, the 

hybrid tree structure using E-tree and a R+ tree is 

applied to the incoming file data streams ‘
1 2

  ,  ,  ,
n

F f f f  ’. 

 

Figure 1. A Hybrid tree structure. 

The Ensemble tree performs classification based on 

Spatio-temporal data stream that includes multiple 

attributes. The E-tree helps to split the data stream on 

cloud infrastructure in an equivalent fashion, reducing 

the overload factor. The tree indexes multidimensional 

objects which are dispersed over wider regions, 

providing higher similarity search results. E-tree gives 

good query performance by efficiently balancing the 

load but compromises index update performance. On 

the other hand, R+ tree does pretty well when indexing 

with multidimensional objects, but its load balancing 

performance is comparatively lower than that of the E-

tree. By combining together, E-R+tree achieves a better 

performance for both load balancing and providing 

similarity search.  

3.1. Ensemble tree (E-tree) 

Ensemble tree classification (E-tree) performs 

classification on cloud data stream. The classification 

of data stream on tree structure clearly defines the file 

characteristics. The Ensemble tree (E-tree) performs 

classification process based on the data stream file 

given as input. For each file ‘fi’ on the cloud 

infrastructure, the E-tree classifies the process in an 

efficient manner for ‘i’ users. 

3.2. Construction of E- 
R tree 

The E- R+ tree comprises of a hybrid tree structure 

constructed for load balancing and performing 

similarity search. The idea behind the construction of 

E- R+ tree data structure is to group nearby data objects 

(i.e., quasi data objects) and characterize them with 

their Minimum Bounding Rectangle (MBR). Since all 

data objects resides within this bounding rectangle, a 

user queried data that does not intersect the bounding 

rectangle also cannot intersect any of the contained 

data objects. However, the HT-FSQS takes a different 

alternative, instead of simply building the index using 

the quasi data objects, Load-balanced R+ tree or E-R+ 

tree with quasi data objects is constructed. The 

motivation for integrity R+ tree over the load balanced 

regions is that these regions (i.e., minimum bounding 

rectangle) represent reasonable bounds that bounds are 

load balanced, searching the exact user queried data at 
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much lesser time interval. Once this index is created, 

different types of user queries are handled ascertaining 

the result at much lesser time. Figure 2 shows the 

construction of Load-balanced R+ tree for quasi data 

objects. 

 

Figure 2. Load-balanced R+ tree for quasi data objects. 

The level above the leaves store root or the load 

balanced regions (i.e., the used queried data or file). 

So, no overlap is said to occur at this level between the 

nodes. The leaves of the hybrid tree (i.e., E- R+ tree) 

store quasi data objects. All quasi data objects that 

belong to a given load balanced regions are inserted 

below that region. This also makes searching an easier 

procedure since there is only one place to insert a quasi 

data object, while in conventional R-tree a data object 

is inserted into any node, resulting in large amounts of 

computation. The E- R+tree carries out 

multidimensional indexing with the quasi data objects.  

Since the E-tree and R+ tree overlap in space, at the 

leaves of the E-tree, a link list is built for each query 

with pointers to each of the R+tree nodes contained by 

intersecting the query and the MBRs. Each query 

corresponds to the file obtained through different user 

queries. Figure 3 shows an example of the hybrid 

structure for E- R+ tree.  

 

Figure 3. Example hybrid structure of E- R+ tree.  

As shown in the Figure, the structure of E- R+ tree 

includes the ensembles corresponding to the data 

objects (files) to support cloud data processing. The 

search begins with the E-tree. For Example, as show in 

Figure, when a query ‘Q1’ arrives, search starts from 

the E-tree and identifies that ‘Q12’ intersects with the 

query. In this manner, all the quasi data objects under 

ensemble ‘Q12’ is ascertained. 

Algorithm 1: Algorithm for Load-balanced R+tree. 

Input: Query ‘
1 2

  ,  ,  ,
n

Q Q Q Q  ’, File ‘
1 2

  ,  ,  ,
n

F f f f  ’, 

Minimum Bounding Rectangle ‘

1 2
  ,  ,  ,

n
MBR MBR MBR MBR  ’ 

Output: Optimized computation time  

1: Begin 

2: For each Query ‘ Q ’ and File ‘ F ’ 

3: Make search for quasi data objects 

4: Build a Load-balanced R+tree for quasi data objects 

5: Built link list by intersecting the query and the MBRs 

6: Make search for quasi data objects 

7: End for 

8: End  

In addition, since ‘
12

Q ’ also links to ‘
21

MBR ’ in the R+ 

tree, the HT-FSQS also makes a search for quasi data 

objects indexed under ‘MBR21’ in the R+ tree also. 

Therefore, the link lists from E-tree nodes pointing to 

R+ tree nodes improves the search time or the 

computation time to quickly search the exact user 

queried data. The linked list in the HT-FSQS used 

therefore speeds up the search as the HT-FSQS do not 

have to initiate the process from the root for each user 

queried data. Algorithm 1 is for Load-balanced R+tree, 

as in the algorithm for each cloud data query 

processing that comprises of queries obtained from the 

cloud user, a hybrid tree structure combined E-tree and 

R +tree is presented. This algorithm aims at reducing 

the computation time to quickly search user queried 

data by applying linked list.  

3.3. Fast Similarity Query Search 

SSFast Similarity Query Search indexing is 

implemented in HT-FSQS method to measure the 

quality of similarity search. Fast Similarity Query 

Search uses the inter-intra bin pruning technique, when 

it resolves the data more similar to the user query. The 

HT-FSQS method branch and bound search eliminate 

some bins from consideration and reduces the 

computation time.  

The HT-FSQS introduced a novel indexing 

algorithm called, Fast Similarity Query Search for 

faster retrieval and also improves the quality of 

similarity search. In order to form the index, inter-intra 

bin pruning technique is applied where bins are created 

that contains similar queries. For each bin in inter-intra 

bin pruning technique, the HT-FSQS calculates the 

lower limit on the distance between a given user query 

and the most similar element of the bin.  

Let us consider a vector ‘V’ from user queried data 

‘Q’ and a bin ‘B’. The lower limit between the user 

queried data ‘Q’ in vector ‘V’ and similar user queried 

data in that bin ‘B’ is given as below. 

     
2 2

2 1 2 1
  ,         DIS V B B B V V       

The Equation given above quickly calculates the best 

order with minimum distance in inch to present the 

bins to the user query search. With the lower limit 

obtained from (1), the bound allow searching the bins 

in best first order, resulting in pruning bins from the 
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entire search space without having to analyze the 

contents. Followed by this, a branch and bound search 

is applied to eliminate certain bins as they do not 

contain similar query search. To do this, given the best 

match, identifies whether any pruned data items in a 

specific bin may be more similar to the user query.  

Suppose we have ‘      ,  , 
bestvalue

curr DIS V B DIS B C  ’ and 

‘      DIS  V, B - DIS  B, C <DIS V, C ’. By simplifying the above 

conditions, the resultant function obtained is  

‘  , 
best

value

curr DIS V C ’, which presents that ‘C’ quasi data 

object is not a better match for the user queried data 

present in vector ‘V. ’ than the current best value  

‘
valuebestcurr ’. Therefore, the pruning is continued 

with the ‘ C ’ quasi data object till best and fast 

similarity query search is provided. Algorithm 2 

explains about the Fast Similarity Query Search 

process..  

Algorithm 2: Fast similarity query search algorithm. 

Input: Vector ‘V ’, Query ‘
1 2

  ,  ,  ,
n

Q Q Q Q  ’, Bin ‘

1 2
  ,  ,  ,

n
B B B B  ’, Current best value ‘

valuebestcurr ’ 

Output: Improved quality of similarity search  

1: Begin  

2:  For each Query ‘Q’ from set of queries ‘S’ 

3:  Create Bin ‘B’ 

4:      Measure distance between Vector ‘ V ’ and Bin ‘ B

’ using (1)  

5:     While ‘   0S  ’ 

6:      If ‘      |  ,    ,   
i i i j valuebest

S Q DS Q S DS S S curr   ’ 

7:      Retrieve corresponding Bin ‘B’ 

8:      Else  

9:      Remove corresponding Bin ‘B’ 

10:    Continue with ‘Sj’ to prune with other set of quasi 

data  objects 

11:    End if 

12:    End while 

13:    End for  

14: End 
 

As shown in the Algorithm, the Fast Similarity Query 

Search algorithm creates a bin for each user queried 

data. The objective of Fast Similarity Query Search 

algorithm is to improve the quality of similarity search 

using inter-intra bin pruning technique and branch and 

bound search that eliminates unnecessary bins from 

consideration, reducing the computation time. For each 

user queried data from a set of queries, initially bins 

are created using distance measure. Then, by applying 

inter-intra bin pruning technique, quasi data objects 

more similar to user query are obtained and eliminate 

the unnecessary bin. This in turn not only reduces the 

computation time but also results in the improvement 

of quality of similarity search.  

4. Experimental Setup 

 HT-FSQS method uses JAVA platform to perform 

similarity query search on cloud data processing based 

on the review comments provided by the customer 

using OpinRank dataset. The review comments in 

OpinRank dataset are placed in the cloud server and 

whenever, a query is posed by the cloud user, more 

similar comments are retrieved. Based on the similar 

queries, a decision regarding to visit to a hotel or not is 

made. This method is widely used to perform efficient 

cloud data processing with the tests and training 

samples. Hotel Customer Service Reviews (e.g., 

OpinRank Dataset-Reviews from TripAdvisor) is taken 

to perform the experimental work.  

The training model for OpinRank dataset comprises 

of hotel reviews located in 5 different cities (London, 

New York, San Francisco, Last Vegas d Chicago). The 

performance measure is evaluated with the aid of Java 

platform and CloudSim simulator. The OpinRank 

dataset has been chosen in HT-FSQS method to 

perform cloud data processing as it gives a clear 

picture and helps in analyzing the queries made by new 

set of travelers regarding facilitations provided by 

hotel rooms in 5 different cities. The training set 

included in OpinRank dataset is 250,000 reviews. For 

experimental purpose, the HT-FSQS HT-FSQS used 

350 reviews that include attributes namely, date of 

review, review title and full review made by the 

tourists. So to study the HT-FSQS method using the 

CloudSim simulator, we proposed a simulation 

environment that has the following parameters: the 

number of client requests that varies between 2 and 14 

with query size of range between 4 and 28. The 

following parameters including load balancing factor, 

computation time to quickly search the exact user 

queried data and quality of similarity search in cloud 

service is evaluated. Comparisons were made with the 

state-of-the-art works namely, Multi Keyword Query 

over Encrypted data (MKQE) [7] and Hierarchical 

Encrypted Index (HEI) [16].  

5. Discussion 

This section presents the performance analysis of the 

HT-FSQS method and compared against the existing 

MKQE [7] and HEI [16]. The experimental results 

using CloudSim simulator in Cloud environment are 

compared and analyzed through table and graph form 

given below.  

5.1. Impact of Computation Time to Quickly 

Search the Exact User Queried Data 

Computation time is one of the most important 

standard metrics to measure the performance of 

similarity search in cloud environment. The 

computation time to search exact user queried data 

depends upon the queries issued by the cloud user and 

the time taken to extract single user query.  

     *      
i

CT Q Time extract user query    (2) 
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From Equation (2), the computation time ‘CT’ is 

measured and obtained according to the queries ‘Qi’ 

issued by the cloud user and the time required to 

extract user queried data. It is measured in terms of 

milliseconds (ms). Lower the computation time, the 

efficiency of the method is said to be better. 

Table 1. Tabulation for computation time. 

Query (Q) 
Computation time (ms) 

HT-FSQS MKQE HEI 

4 1.92 2.28 2.65 

8 2.58 3.88 4.05 

12 4.14 5.44 5.74 

16 5.52 6.82 7.08 

20 7.05 8.35 8.65 

24 8.85 9.99 10.03 

28 10.32 11.62 11.92 

To support transient performance, in Table 1 a 

Load-balanced R+ tree algorithm is applied and 

comparison made with two methods MKQE [7] and 

HEI [16]. From the above tabulation, computation time 

refers to the time taken to quickly search the exact user 

queried data at minimum time interval. Lower the time 

interval, higher is the number of queries addressed by 

the cloud server and therefore lower the computation 

time is said to be. Figure 4 depicts computation time 

with the number of user queried data. The total number 

of user queried data in our method is 28. 

 

Figure 4. Measure of computation time. 

As shown in the Figure, the HT-FSQS method 

ensures lower computation time when compared to 

MKQE [7] and HEI [16]. The computation time is 

reduced with the application of Load-balanced R + tree 

algorithm. Higher the number of user queried data, 

higher the amount of computation time is. With the 

application of Load-balanced R

tree algorithm, linked 

list created with the hybrid E-tree R


tree ensures 

search for quasi data objects in a load balanced region. 

Furthermore, by identifying the quasi data objects 

(nearby data objects) by constructing a link between 

the query and minimum bound rectangle, the 

computation time to search the user queried data is 

reduced using HT-FSQS method.  

The total number of user queried data in our HT-

FSQS is 28. The MKQE, HEI and proposed HT-FSQS 

method consume 2.28, 2.65 and 1.92ms for minimum 

user queried data. Also they consume 11.62, 11.92 and 

10.32ms for maximum user queried data. The 

comparison shows the proposed HT-FSQS method 

offer 24.05 and 30.49% reduction for minimum and 

maximum user queried data compared to existing 

MKQE and HEI due to the design of hybrid tree model 

that considers both the load factor and performs 

similarity search accordingly.  

5.2. Impact on Quality of Similarity Search 

In order to measure the quality of similarity search ‘SS, 

the queries handled ‘Qh’ and queries issued ‘Qi’ are 

considered. The mathematical formulates for 

measuring the quality of similarity search is as given 

below.  

( ) *100  /h
i

SS Q Q  

From Equation (3), the quality of similarity search is 

measured in terms of percentage (%). Higher the 

quality of similarity search, the efficiency of the 

method is said to be high.  

Table 2. Tabulation for quality of similarity search. 

Query (Q) 
Quality of similarity search (%) 

HT-FSQS MKQE HEI 

4 90.14 78.25 65.89 

8 88.35 77.19 63.14 

12 85.21 74.11 63.13 

16 81.32 70.32 60.28 

20 78.19 67.29 56.14 

24 75.22 64.17 55.99 

28 73.14 62.39 53.23 

The targeting results of quality of similarity search 

rate using HT-FSQS method with two state-of-the-art 

methods [7, 16] in Table 2 presented for comparison 

based on the number of queries for fast similarity 

query search in cloud environment. 

. 
Figure 5. Measure of quality of similarity search. 

Figure 5 depicts the measure of quality of similarity 

search made with respect to the user queried data in the 

range of 4 to 28 at different time in cloud environment. 

The increase in number of user queried data gradually 

decreases the quality of similarity search. The Fast 

Similarity Query Search using inter-intra bin pruning 

technique with branch and bound search results in the 
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improvement of quality of similarity search by 13.67% 

and 26.88 using HT-FSQS method when compared to 

MKQE and HEI. With the inter-intra bin the data 

objects more similar to the user queried data is 

obtained in best first order that in turn retrieve the 

similar search. With this, the time to perform similarity 

search is reduced. Followed by this the branch and 

bound search eliminates the unnecessary bins, 

therefore providing more accuracy search results. 

5.3. Impact on Load Balancing Factor 

The load balance factor in HT-FSQS measures the 

number of client requests handled successfully by the 

cloud server at a particular time interval. The load 

balance factor measure is obtained as follows. It is 

measured in terms of percentage (%). 

  ( * ) /
H R

LBF Client t Client  

From Equation (4), the load balance factor ‘LBF’ is 

measured on the basis of the client requests made 

(through user queried data) ‘ClientR’ and the client 

requests handled ‘ClientH’ by the cloud server at a 

specific time interval ‘t’ respectively. 

Table 3.Tabulation for load balance factor. 

Client Requests (R) 
Load Balance Factor (%) 

HT-FSQS MKQE HEI 

2 0.175 0.143 0.048 

4 0.180 0.163 0.063 

6 0.195 0.178 0.071 

8 0.214 0.190 0.085 

10 0.228 0.205 0.092 

12 0.239 0.218 0.125 

14 0.247 0.222 0.1322 

As listed in Table 3, HT-FSQS method measures the 

load balance factor in cloud environment while 

performing similarity search with respect to client 

requests. It is measured in terms of milliseconds (ms). 

The load balance factor for performing similarity 

search in cloud environment using HT-FSQS method 

offers comparable values than the state-of-the-art 

methods.  

 
Figure 6. Measure of load balance factor. 

Figure 6 presents the variation of load balance 

factor with respect to client requests while measuring 

the similarity search. All the results provided in figure 

8 confirm that the proposed HT-FSQS method 

significantly outperforms the other two methods, 

MKQE [7] and HEI [16]. The load balance factor is 

improved in the HT-FSQS method using the hybrid E-

R


tree structure. By applying the hybrid E- R


tree, the 

quasi data objects are characterized by minimum 

bounding rectangle where the bounds are load 

balanced. Therefore by integrating both E-tree and R

tree, the data objects resides within the bounding 

rectangle and hence resulting in the improvement of 

load balance factor by 10.95% and 59.32% compared 

to MKQE and HEI respectively. 

6. Conclusions 

 HT-FSQS method is provided based on the inter-intra 

pruning, branch and bound method for efficient 

similarity query search in cloud environment. This 

method improves the quality of similarity search and 

reduces the computation time required for quickly 

searching the exact user queried data. As the method 

uses Load-balanced R+tree algorithm, HT-FSQS 

method not only improves the load balance factor but 

also minimizes the computation time through efficient 

retrieval of similar query using for quasi data objects. 

By applying the Fast Similarity Query Search 

algorithm in HT-FSQS method, the quality of 

similarity search is improved where quasi data objects 

for similar query is retrieved through pruning 

technique. Finally, with the branch and bound method, 

unnecessary bins are removed improving the grade of 

performance on the cloud environment. A series of 

simulation results are performed to test the 

computation time, quality of similarity search and load 

balance factor to measure the effectiveness of HT-

FSQS method. Experiments conducted on varied 

simulation runs shows improvement over the state-of-

the-art methods. The results show that HT-FSQS 

method offers better performance with an improvement 

of load balance factor by 10.95% and reduces the 

computation time by 27.24% compared to MKQE and 

HEI respectively.  
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