
The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019 871

Tree Based Fast Similarity Query Search Indexing

on Outsourced Cloud Data Streams

Balamurugan Balasubramanian1, Kamalraj Durai1, Jegadeeswari Sathyanarayanan1, and Sugumaran

Muthukumarasamy2
1Research Scholar, Computer Science, Bharathiar University, India

2Computer Science and Engineering, Pondicherry Engineering College, India

Abstract: A Cloud may be seen as flexible computing infrastructure comprising of many nodes that support several concurrent

end users. To fully harness the power of the Cloud, efficient data query processing has to be ascertained. This work provides

extra functionalities on cloud data query processing, a method called, Hybrid Tree Fast Similarity Query (HT-FSQS) Search is

presented. The Hybrid Tree structure used in HT-FSQS consists of E-tree and R+ tree for balancing the load and performing

similarity search. In addition, we articulate performance optimization mechanisms for our method by indexing quasi data

objects to improve the quality of similarity search using R+ tree mechanism. Fast Similarity Query Search indexing build cloud

data streams for handling different types of user queries and produce the result with lesser computational time. Fast Similarity

Query Search uses inter-intra bin pruning technique, where it resolves the data more similar to user query. E- R+ tree FSQ

method branch and bound search eliminates certain bins from consideration, speeding up the indexing operation. The

experiment results demonstrate that the Hybrid Tree Fast Similarity Query (HT-FSQS) Search achieve significant performance

gains in terms of computation time, quality of similarity search and load balance factor in comparison with non-indexing

approaches.

Keywords: Cloud, hybrid tree, fast similarity query, e-tree, r+ tree.

Received June 2, 2016; accepted May 1, 2017

1. Introduction

Cloud computing is receiving more attention as the end

users store their data in the public cloud and then

access the data at any time. So, several methods to

retrieve the data from cloud server were presented by

many researchers. Li et al. [7] had multi-keyword

ranked search was applied to find the subset that was

most likely to satisfy the user requirements. Wang and

Ravishankar [16] Asymmetric Scalar product

preserving encryption was applied to ensure secure and

efficient retrieval of range queries.

Technological advancements in digital measurement

and engineering made possible the capture of

enormous data in several fields as astronomy,

medicine, and seismology. Yiu et al. [19], similarity

querying of metric data was outsourced using indexing

and NN search resulting in the improvement of

extraction of accurate processing of similarity queries.

However, lack of trust remained a major setback to be

addressed. With this objective, Carbunar and

Tripunitara [2], a unifying trust framework was

designed that not only resulted in the improvement of

trust but also improved the rate of security.

Big data in cloud environment identify the trends of

different social aspects and preferences of individual

everyday behaviours for large data. Yun et al. [20], a

fast approach to range aggregate queries aiming at

improving the query retrieval using balanced

partitioning algorithm was presented. Dastjerdi and

Buyya [3] has another ontology-based approach to

minimize effort of users in expressing their preferences

was presented using evolutionary algorithms and fuzzy

logic. Provisioning of resources in cloud environment

using reinforcement learning was presented in [11] to

reduce the time for retrieval. A novel indexing and

retrieving mechanism using M R* tree was presented in

[18]. To improve search efficiency, Fine-grained

Flexible Access Control (FFAC) [12] was presented.

In this work, we design a new method called Hybrid

Tree Fast Similarity Query (HT-FSQS) Search to

address the aforementioned issues. In HT-FSQS, we

assume that the amount of query from the cloud user

continues to increase from time to time. We propose a

new hybrid tree structure that combines the advantages

of both E-tree and R+ tree, introduce a new Load-

balanced R+ tree algorithm to reduce the computation

time and take the Fast Similarity Query Search

indexing in to consideration to improve the quality of

similarity search.

The rest of the paper is organized as follows.

Section 2 summaries the related works on similarity

search in cloud environment. Section 3 presents the

system overview and the technical details of the

proposed HT-FSQS method. Section 4 describes the

experimental configurations and performance

evaluations are presented in section 5. Finally, section

6 concludes the paper.

872 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

2. Related Works

Since the concept of cloud computing was proposed,

similarity search, especially dynamic and fast

similarity query search, has been one of the most

important research components. Related works of

similarity query search are mainly from different

perspectives to construct a cloud computing system

model aiming to attain universal results.

For both convenience and security, cloud users

encrypt their data before outsourcing it to cloud storage

service. However, performing similarity searching for

the desired documents becomes complicated task due

to the difficulty in decrypting the required document.

A single server two round solution was investigated by

Peng et al. [10] to reduce the storage and

communication complexity. Searchable Encryption for

multi-keyword ranked search was applied by Li et al.

in [5] that resulted in the improvement of search

functionality and search time. Another similarity

search scheme over encrypted data was presented by

Xia et al. [17] using secure index construction. On the

other hand to perform fast exact similarity search,

smith waterman algorithm was applied [4]. Secure

storage and retrieval over internet services using key

organised method was presented in [1, 9].

Similarity search, used in many data mining and

information retrieval applications in cloud

infrastructure, is a time consuming process. A two-

stage heuristic algorithm was investigated in [14] to

balance the load arising in cloud infrastructure and

detect both similar and dissimilar queries. Secure and

efficient ranked keyword search was performed in [15]

to ensure file retrieval accuracy using one-to-many

order preserving matching technique. Another research

work using semantic keyword-based search [13] was

presented using stemming algorithm to reduce the

computation time in improving the search efficiency.

A transformation-based optimization framework

was presented by Zhou and He [21] using a cost model

resulting in optimizing the performance and cost for

workflows in the cloud. Another method by Ma et al.

in [8] was presented that performed scalable and

reliable matching service minimizing the traffic

overhead during subscription searching. Li et al. in [6]

optimal routing for retrieving user query was presented

using Exchanged Cross Cube (ECC). Distinguished

from prior works, we establish a method of cloud

computing system to strengthen the similarity query

search based on the hybrid tree structure.

3. Construction of Hybrid Tree

The HT-FSQS constructs a hybrid tree structure which

consists of both an Ensemble tree (E-tree) and a R+ tree

as shown in Figure 1. As shown in the Figure, the

hybrid tree structure using E-tree and a R+ tree is

applied to the incoming file data streams ‘
1 2

 , , ,
n

F f f f  ’.

Figure 1. A Hybrid tree structure.

The Ensemble tree performs classification based on

Spatio-temporal data stream that includes multiple

attributes. The E-tree helps to split the data stream on

cloud infrastructure in an equivalent fashion, reducing

the overload factor. The tree indexes multidimensional

objects which are dispersed over wider regions,

providing higher similarity search results. E-tree gives

good query performance by efficiently balancing the

load but compromises index update performance. On

the other hand, R+ tree does pretty well when indexing

with multidimensional objects, but its load balancing

performance is comparatively lower than that of the E-

tree. By combining together, E-R+tree achieves a better

performance for both load balancing and providing

similarity search.

3.1. Ensemble tree (E-tree)

Ensemble tree classification (E-tree) performs

classification on cloud data stream. The classification

of data stream on tree structure clearly defines the file

characteristics. The Ensemble tree (E-tree) performs

classification process based on the data stream file

given as input. For each file ‘fi’ on the cloud

infrastructure, the E-tree classifies the process in an

efficient manner for ‘i’ users.

3.2. Construction of E- 
R tree

The E- R+ tree comprises of a hybrid tree structure

constructed for load balancing and performing

similarity search. The idea behind the construction of

E- R+ tree data structure is to group nearby data objects

(i.e., quasi data objects) and characterize them with

their Minimum Bounding Rectangle (MBR). Since all

data objects resides within this bounding rectangle, a

user queried data that does not intersect the bounding

rectangle also cannot intersect any of the contained

data objects. However, the HT-FSQS takes a different

alternative, instead of simply building the index using

the quasi data objects, Load-balanced R+ tree or E-R+

tree with quasi data objects is constructed. The

motivation for integrity R+ tree over the load balanced

regions is that these regions (i.e., minimum bounding

rectangle) represent reasonable bounds that bounds are

load balanced, searching the exact user queried data at

E- R +tree

Similarity search

f1 f2

 fn

 f3

….

Load balancing

E-tree R + tree

Performs indexing

https://en.wikipedia.org/wiki/Minimum_bounding_rectangle

Tree Based Fast Similarity Query Search Indexing on Outsourced Cloud Data Streams 873

much lesser time interval. Once this index is created,

different types of user queries are handled ascertaining

the result at much lesser time. Figure 2 shows the

construction of Load-balanced R+ tree for quasi data

objects.

Figure 2. Load-balanced R+ tree for quasi data objects.

The level above the leaves store root or the load

balanced regions (i.e., the used queried data or file).

So, no overlap is said to occur at this level between the

nodes. The leaves of the hybrid tree (i.e., E- R+ tree)

store quasi data objects. All quasi data objects that

belong to a given load balanced regions are inserted

below that region. This also makes searching an easier

procedure since there is only one place to insert a quasi

data object, while in conventional R-tree a data object

is inserted into any node, resulting in large amounts of

computation. The E- R+tree carries out

multidimensional indexing with the quasi data objects.

Since the E-tree and R+ tree overlap in space, at the

leaves of the E-tree, a link list is built for each query

with pointers to each of the R+tree nodes contained by

intersecting the query and the MBRs. Each query

corresponds to the file obtained through different user

queries. Figure 3 shows an example of the hybrid

structure for E- R+ tree.

Figure 3. Example hybrid structure of E- R+ tree.

As shown in the Figure, the structure of E- R+ tree

includes the ensembles corresponding to the data

objects (files) to support cloud data processing. The

search begins with the E-tree. For Example, as show in

Figure, when a query ‘Q1’ arrives, search starts from

the E-tree and identifies that ‘Q12’ intersects with the

query. In this manner, all the quasi data objects under

ensemble ‘Q12’ is ascertained.

Algorithm 1: Algorithm for Load-balanced R+tree.

Input: Query ‘
1 2

 , , ,
n

Q Q Q Q  ’, File ‘
1 2

 , , ,
n

F f f f  ’,

Minimum Bounding Rectangle ‘

1 2
 , , ,

n
MBR MBR MBR MBR  ’

Output: Optimized computation time

1: Begin

2: For each Query ‘ Q ’ and File ‘ F ’

3: Make search for quasi data objects

4: Build a Load-balanced R+tree for quasi data objects

5: Built link list by intersecting the query and the MBRs

6: Make search for quasi data objects

7: End for

8: End

In addition, since ‘
12

Q ’ also links to ‘
21

MBR ’ in the R+

tree, the HT-FSQS also makes a search for quasi data

objects indexed under ‘MBR21’ in the R+ tree also.

Therefore, the link lists from E-tree nodes pointing to

R+ tree nodes improves the search time or the

computation time to quickly search the exact user

queried data. The linked list in the HT-FSQS used

therefore speeds up the search as the HT-FSQS do not

have to initiate the process from the root for each user

queried data. Algorithm 1 is for Load-balanced R+tree,

as in the algorithm for each cloud data query

processing that comprises of queries obtained from the

cloud user, a hybrid tree structure combined E-tree and

R +tree is presented. This algorithm aims at reducing

the computation time to quickly search user queried

data by applying linked list.

3.3. Fast Similarity Query Search

SSFast Similarity Query Search indexing is

implemented in HT-FSQS method to measure the

quality of similarity search. Fast Similarity Query

Search uses the inter-intra bin pruning technique, when

it resolves the data more similar to the user query. The

HT-FSQS method branch and bound search eliminate

some bins from consideration and reduces the

computation time.

The HT-FSQS introduced a novel indexing

algorithm called, Fast Similarity Query Search for

faster retrieval and also improves the quality of

similarity search. In order to form the index, inter-intra

bin pruning technique is applied where bins are created

that contains similar queries. For each bin in inter-intra

bin pruning technique, the HT-FSQS calculates the

lower limit on the distance between a given user query

and the most similar element of the bin.

Let us consider a vector ‘V’ from user queried data

‘Q’ and a bin ‘B’. The lower limit between the user

queried data ‘Q’ in vector ‘V’ and similar user queried

data in that bin ‘B’ is given as below.

     
2 2

2 1 2 1
 , DIS V B B B V V   

The Equation given above quickly calculates the best

order with minimum distance in inch to present the

bins to the user query search. With the lower limit

obtained from (1), the bound allow searching the bins

in best first order, resulting in pruning bins from the

Query

box

Input

data

f1 f2

f3

f4

f5

f6

 f7 f8 f9 f10

Root node (load

balanced region)

Quasi data

objects

 E-tree R
+
-tree

𝑄1 𝑄2 𝑄3

𝑄11 𝑄12

𝑀𝐵𝑅1 𝑀𝐵𝑅2 𝑀𝐵𝑅3

𝑀𝐵𝑅21 𝑀𝐵𝑅22

(1)

874 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

entire search space without having to analyze the

contents. Followed by this, a branch and bound search

is applied to eliminate certain bins as they do not

contain similar query search. To do this, given the best

match, identifies whether any pruned data items in a

specific bin may be more similar to the user query.

Suppose we have ‘     , ,
bestvalue

curr DIS V B DIS B C  ’ and

‘      DIS V, B - DIS B, C <DIS V, C ’. By simplifying the above

conditions, the resultant function obtained is

‘  ,
best

value

curr DIS V C ’, which presents that ‘C’ quasi data

object is not a better match for the user queried data

present in vector ‘V. ’ than the current best value

‘
valuebestcurr ’. Therefore, the pruning is continued

with the ‘ C ’ quasi data object till best and fast

similarity query search is provided. Algorithm 2

explains about the Fast Similarity Query Search

process..

Algorithm 2: Fast similarity query search algorithm.

Input: Vector ‘V ’, Query ‘
1 2

 , , ,
n

Q Q Q Q  ’, Bin ‘

1 2
 , , ,

n
B B B B  ’, Current best value ‘

valuebestcurr ’

Output: Improved quality of similarity search

1: Begin

2: For each Query ‘Q’ from set of queries ‘S’

3: Create Bin ‘B’

4: Measure distance between Vector ‘ V ’ and Bin ‘ B

’ using (1)

5: While ‘ 0S  ’

6: If ‘      | , ,
i i i j valuebest

S Q DS Q S DS S S curr   ’

7: Retrieve corresponding Bin ‘B’

8: Else

9: Remove corresponding Bin ‘B’

10: Continue with ‘Sj’ to prune with other set of quasi

data objects

11: End if

12: End while

13: End for

14: End

As shown in the Algorithm, the Fast Similarity Query

Search algorithm creates a bin for each user queried

data. The objective of Fast Similarity Query Search

algorithm is to improve the quality of similarity search

using inter-intra bin pruning technique and branch and

bound search that eliminates unnecessary bins from

consideration, reducing the computation time. For each

user queried data from a set of queries, initially bins

are created using distance measure. Then, by applying

inter-intra bin pruning technique, quasi data objects

more similar to user query are obtained and eliminate

the unnecessary bin. This in turn not only reduces the

computation time but also results in the improvement

of quality of similarity search.

4. Experimental Setup

 HT-FSQS method uses JAVA platform to perform

similarity query search on cloud data processing based

on the review comments provided by the customer

using OpinRank dataset. The review comments in

OpinRank dataset are placed in the cloud server and

whenever, a query is posed by the cloud user, more

similar comments are retrieved. Based on the similar

queries, a decision regarding to visit to a hotel or not is

made. This method is widely used to perform efficient

cloud data processing with the tests and training

samples. Hotel Customer Service Reviews (e.g.,

OpinRank Dataset-Reviews from TripAdvisor) is taken

to perform the experimental work.

The training model for OpinRank dataset comprises

of hotel reviews located in 5 different cities (London,

New York, San Francisco, Last Vegas d Chicago). The

performance measure is evaluated with the aid of Java

platform and CloudSim simulator. The OpinRank

dataset has been chosen in HT-FSQS method to

perform cloud data processing as it gives a clear

picture and helps in analyzing the queries made by new

set of travelers regarding facilitations provided by

hotel rooms in 5 different cities. The training set

included in OpinRank dataset is 250,000 reviews. For

experimental purpose, the HT-FSQS HT-FSQS used

350 reviews that include attributes namely, date of

review, review title and full review made by the

tourists. So to study the HT-FSQS method using the

CloudSim simulator, we proposed a simulation

environment that has the following parameters: the

number of client requests that varies between 2 and 14

with query size of range between 4 and 28. The

following parameters including load balancing factor,

computation time to quickly search the exact user

queried data and quality of similarity search in cloud

service is evaluated. Comparisons were made with the

state-of-the-art works namely, Multi Keyword Query

over Encrypted data (MKQE) [7] and Hierarchical

Encrypted Index (HEI) [16].

5. Discussion

This section presents the performance analysis of the

HT-FSQS method and compared against the existing

MKQE [7] and HEI [16]. The experimental results

using CloudSim simulator in Cloud environment are

compared and analyzed through table and graph form

given below.

5.1. Impact of Computation Time to Quickly

Search the Exact User Queried Data

Computation time is one of the most important

standard metrics to measure the performance of

similarity search in cloud environment. The

computation time to search exact user queried data

depends upon the queries issued by the cloud user and

the time taken to extract single user query.

   *
i

CT Q Time extract user query (2)

Tree Based Fast Similarity Query Search Indexing on Outsourced Cloud Data Streams 875

From Equation (2), the computation time ‘CT’ is

measured and obtained according to the queries ‘Qi’

issued by the cloud user and the time required to

extract user queried data. It is measured in terms of

milliseconds (ms). Lower the computation time, the

efficiency of the method is said to be better.

Table 1. Tabulation for computation time.

Query (Q)
Computation time (ms)

HT-FSQS MKQE HEI

4 1.92 2.28 2.65

8 2.58 3.88 4.05

12 4.14 5.44 5.74

16 5.52 6.82 7.08

20 7.05 8.35 8.65

24 8.85 9.99 10.03

28 10.32 11.62 11.92

To support transient performance, in Table 1 a

Load-balanced R+ tree algorithm is applied and

comparison made with two methods MKQE [7] and

HEI [16]. From the above tabulation, computation time

refers to the time taken to quickly search the exact user

queried data at minimum time interval. Lower the time

interval, higher is the number of queries addressed by

the cloud server and therefore lower the computation

time is said to be. Figure 4 depicts computation time

with the number of user queried data. The total number

of user queried data in our method is 28.

Figure 4. Measure of computation time.

As shown in the Figure, the HT-FSQS method

ensures lower computation time when compared to

MKQE [7] and HEI [16]. The computation time is

reduced with the application of Load-balanced R + tree

algorithm. Higher the number of user queried data,

higher the amount of computation time is. With the

application of Load-balanced R

tree algorithm, linked

list created with the hybrid E-tree R


tree ensures

search for quasi data objects in a load balanced region.

Furthermore, by identifying the quasi data objects

(nearby data objects) by constructing a link between

the query and minimum bound rectangle, the

computation time to search the user queried data is

reduced using HT-FSQS method.

The total number of user queried data in our HT-

FSQS is 28. The MKQE, HEI and proposed HT-FSQS

method consume 2.28, 2.65 and 1.92ms for minimum

user queried data. Also they consume 11.62, 11.92 and

10.32ms for maximum user queried data. The

comparison shows the proposed HT-FSQS method

offer 24.05 and 30.49% reduction for minimum and

maximum user queried data compared to existing

MKQE and HEI due to the design of hybrid tree model

that considers both the load factor and performs

similarity search accordingly.

5.2. Impact on Quality of Similarity Search

In order to measure the quality of similarity search ‘SS,

the queries handled ‘Qh’ and queries issued ‘Qi’ are

considered. The mathematical formulates for

measuring the quality of similarity search is as given

below.

() *100 /h
i

SS Q Q

From Equation (3), the quality of similarity search is

measured in terms of percentage (%). Higher the

quality of similarity search, the efficiency of the

method is said to be high.

Table 2. Tabulation for quality of similarity search.

Query (Q)
Quality of similarity search (%)

HT-FSQS MKQE HEI

4 90.14 78.25 65.89

8 88.35 77.19 63.14

12 85.21 74.11 63.13

16 81.32 70.32 60.28

20 78.19 67.29 56.14

24 75.22 64.17 55.99

28 73.14 62.39 53.23

The targeting results of quality of similarity search

rate using HT-FSQS method with two state-of-the-art

methods [7, 16] in Table 2 presented for comparison

based on the number of queries for fast similarity

query search in cloud environment.

.
Figure 5. Measure of quality of similarity search.

Figure 5 depicts the measure of quality of similarity

search made with respect to the user queried data in the

range of 4 to 28 at different time in cloud environment.

The increase in number of user queried data gradually

decreases the quality of similarity search. The Fast

Similarity Query Search using inter-intra bin pruning

technique with branch and bound search results in the

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28

Q
u

al
it

y
 o

f
si

m
il

ar
it

y
 s

ea
rc

h
 (

%
)

Query (Q)

HT-FSQS MKQE HEI

(3)

876 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

improvement of quality of similarity search by 13.67%

and 26.88 using HT-FSQS method when compared to

MKQE and HEI. With the inter-intra bin the data

objects more similar to the user queried data is

obtained in best first order that in turn retrieve the

similar search. With this, the time to perform similarity

search is reduced. Followed by this the branch and

bound search eliminates the unnecessary bins,

therefore providing more accuracy search results.

5.3. Impact on Load Balancing Factor

The load balance factor in HT-FSQS measures the

number of client requests handled successfully by the

cloud server at a particular time interval. The load

balance factor measure is obtained as follows. It is

measured in terms of percentage (%).

  (*) /
H R

LBF Client t Client

From Equation (4), the load balance factor ‘LBF’ is

measured on the basis of the client requests made

(through user queried data) ‘ClientR’ and the client

requests handled ‘ClientH’ by the cloud server at a

specific time interval ‘t’ respectively.

Table 3.Tabulation for load balance factor.

Client Requests (R)
Load Balance Factor (%)

HT-FSQS MKQE HEI

2 0.175 0.143 0.048

4 0.180 0.163 0.063

6 0.195 0.178 0.071

8 0.214 0.190 0.085

10 0.228 0.205 0.092

12 0.239 0.218 0.125

14 0.247 0.222 0.1322

As listed in Table 3, HT-FSQS method measures the

load balance factor in cloud environment while

performing similarity search with respect to client

requests. It is measured in terms of milliseconds (ms).

The load balance factor for performing similarity

search in cloud environment using HT-FSQS method

offers comparable values than the state-of-the-art

methods.

Figure 6. Measure of load balance factor.

Figure 6 presents the variation of load balance

factor with respect to client requests while measuring

the similarity search. All the results provided in figure

8 confirm that the proposed HT-FSQS method

significantly outperforms the other two methods,

MKQE [7] and HEI [16]. The load balance factor is

improved in the HT-FSQS method using the hybrid E-

R


tree structure. By applying the hybrid E- R


tree, the

quasi data objects are characterized by minimum

bounding rectangle where the bounds are load

balanced. Therefore by integrating both E-tree and R

tree, the data objects resides within the bounding

rectangle and hence resulting in the improvement of

load balance factor by 10.95% and 59.32% compared

to MKQE and HEI respectively.

6. Conclusions

 HT-FSQS method is provided based on the inter-intra

pruning, branch and bound method for efficient

similarity query search in cloud environment. This

method improves the quality of similarity search and

reduces the computation time required for quickly

searching the exact user queried data. As the method

uses Load-balanced R+tree algorithm, HT-FSQS

method not only improves the load balance factor but

also minimizes the computation time through efficient

retrieval of similar query using for quasi data objects.

By applying the Fast Similarity Query Search

algorithm in HT-FSQS method, the quality of

similarity search is improved where quasi data objects

for similar query is retrieved through pruning

technique. Finally, with the branch and bound method,

unnecessary bins are removed improving the grade of

performance on the cloud environment. A series of

simulation results are performed to test the

computation time, quality of similarity search and load

balance factor to measure the effectiveness of HT-

FSQS method. Experiments conducted on varied

simulation runs shows improvement over the state-of-

the-art methods. The results show that HT-FSQS

method offers better performance with an improvement

of load balance factor by 10.95% and reduces the

computation time by 27.24% compared to MKQE and

HEI respectively.

References

[1] Brindha T. and Shaji R., “An Instance

Communication Channel Key Organizer Model

for Enhancing Security in Cloud Computing,”

The International Arab Journal of Information

Technology, vol. 13, no. 5, pp. 509-516, 2016.

[2] Carbunar B. and Tripunitara M., “Payments for

Outsourced Computations,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no.

2, pp. 313-320, 2012.

[3] Dastjerdi A. and Buyya R., “Compatibility-

Aware Cloud Service Composition under Fuzzy

Preferences of Users,” IEEE Transactions on

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14

L
o
ad

 B
al

an
ce

 F
ac

to
r

(%
)

Client Requests (R)

HT-FSQS MKQE HEI

(4)

Tree Based Fast Similarity Query Search Indexing on Outsourced Cloud Data Streams 877

Cloud Computing, vol. 2, no. 1, pp. 1-13, 2014.

[4] Korpar M., Šošić M., Blažeka D., and Šikić M.,

“SW# Db: GPU-Accelerated Exact Sequence

Similarity Database Search,” PloS one, vol. 10,

no. 12, pp. 1-14, 2015.

[5] Li H., Liu D., Dai Y., Luan T., and Shen X.,

“Enabling Efficient Multi-Keyword Ranked

Search Over Encrypted Mobile Cloud Data

Through Blind Storage,” IEEE Transactions on

Emerging Topics in Computing, vol. 3, no. 1, pp.

127-138, 2015.

[6] Li K., Mu Y., Li K., and Min G., “Exchanged

Crossed Cube: A Novel Interconnection Network

for Parallel Computation,” IEEE Transactions on

Parallel and Distributed Systems, vol. 24, no. 11,

pp. 2211-2219, 2013.

[7] Li R., Xu Z., Kang W., Yow K., and Xu C.,

“Efficient Multi-Keyword Ranked Query Over

Encrypted Data in Cloud Computing,” Future

Generation Computer Systems, vol. 30, pp. 179-

190, 2014.

[8] Ma X., Wang Y., and Pei X., “A Scalable and

Reliable Matching Service for Content-Based

Publish/Subscribe Systems,” IEEE Transactions

on Cloud Computing, vol. 3, no. 1, pp. 1-13,

2015.

[9] Munadi K., Arnia F., Syaryadhi M., Fujiyoshi

M., and Kiya H., “A Secure Online Image

Trading System for Untrusted Cloud

Environments,” SpringerPlus, vol. 4, no. 1, pp.

270-277, 2015.

[10] Peng N., Luo G., Qin K., and Chen A., “Query-

Biased Preview over Outsourced and Encrypted

Data,” The Scientific World Journal, vol. 2013,

pp. 1-13, 2013.

[11] Peng Z., Cui D., Zuo J., and Lin W., “Research

on Cloud Computing Resources Provisioning

Based on Reinforcement Learning,”

Mathematical Problems in Engineering, vol.

2015, pp. 1-12, 2015.

[12] Ren W., Zeng L., Liu R., and Cheng C., “F2AC:

a Lightweight, Fine-Grained, and Flexible

Access Control Scheme for File Storage in

Mobile Cloud Computing,” Mobile Information

Systems, vol. 2016, pp. 1-9, 2016.

[13] Shu J., Sun X., Zhou L., and Wang J., “Efficient

Keyword Search Scheme in Encrypted Cloud

Computing Environment,” International Journal

of Grid and Distributed Computing, vol. 7, no. 5,

pp. 65-76, 2014.

[14] Tang X., Alabduljalil M., Jin X., and Yang T.,

“Load Balancing for Partition-Based Similarity

Search,” in Proceedings of the 37th international

ACM SIGIR Conference on Research and

Development in Information Retrieval, Gold

Coast, pp. 193-202, 2014.

[15] Wang C., Cao N., Ren K., and Lou W.,

“Enabling Secure and Efficient Ranked Keyword

Search over Outsourced Cloud Data,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 23, no. 8, pp. 1467-1479, 2012.

[16] Wang P. and Ravishankar C., “Secure and

Efficient Range Queries on Outsourced

Databases using Rp-trees,” in Proceedings of the

29th International Conference on Data

Engineering, Brisbane, pp. 314-325, 2013.

[17] Xia Z., Zhu Y., Xingming S., and Wang J., “A

Similarity Search Scheme over Encrypted Cloud

Images Based on Secure

Transformation,” International Journal of Future

Generation Communication and Networking, vol.

6, no. 6, pp. 71-80, 2013.

[18] Xiang J., Zhou Z., Shu L., Liu C., and Wang Q.,

“MR*-Tree: Novel Indexing and Retrieving

Mechanism for Spatial Objects in Mobile

PowerPoint Pages,” International Journal of

Distributed Sensor Networks, vol. 11, no. 10, pp.

1-11, 2015.

[19] Yiu M., Assent I., Jensen C., and Kalnis P.,

“Outsourced Similarity Search on Metric Data

Assets,” IEEE Transactions on Knowledge and

Data Engineering, vol. 24, no. 2, pp. 338-352,

2012.

[20] Yun X., Wu G., Zhang G., Li K., and Wang S.,

“Fastraq: A Fast Approach to Range-Aggregate

Queries in Big Data Environments,” IEEE

Transactions on Cloud Computing, vol. 3, no. 2,

pp. 206-218, 2015.

[21] Zhou A. and He B., “Transformation-based

Monetary Cost Optimizations for Workflows in

The Cloud,” IEEE Transactions on Cloud

Computing, vol. 2, no. 1, pp. 85-98, 2014.

878 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Balamurugan Balasubramanian
received his MCA degree from St.

Joseph’s College, Trichy during

2007 and currently a research

scholar in Bharathiar University,

Coimbatore, India. His research

interest includes parallel and

distributed computing, and network.

Kamalraj Durai received his MCA

degree from St. Joseph’s College,

Trichy during 2007 and currently a

research scholar in Bharathiar

University, Coimbatore, India. His

research interest includes parallel

and distributed computing, and

database.

Jegadeeswari Sathyanarayanan

received her M.Sc Computer Science

degree from Kanchi Mamunivar

Centre for Post Graduate Studies,

Puducherry during 2005 and

currently a research scholar in

Bharathiar University, Coimbatore,

India. Her research interest includes parallel and

distributed computing, and network.

Sugumaran Muthukumarasamy

received his M.Sc degree in

mathematics from University of

Madras during 1986 and M.Tech

degree in computer science and data

processing from Indian Institute of

Technology, Kharagpur, India in

1991, and obtained his Ph.D from Anna University,

Chennai in 2008. He is currently working as Professor

of Computer Science and Engineering at Pondicherry

Engineering College, India. His areas of interests are

theoretical computer science, analysis of algorithms,

parallel and distributed computing, and Spatial-

Temporal data.

