
The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022 249

CTL Model Checking Based on Binary

Classification of Machine Learning

Weijun Zhu

School of Computer and Artificial Intelligence

Zhengzhou University, China

zhuweijun@zzu.edu.cn

Huanmei Wu

College of Public Health,

Temple University, USA

huanmei.wu@temple.edu

Abstract: In this study, we establish and pioneer an approximate Computational Tree Logic (CTL) Model Checking (MC)

technique, in order to avoid the famous State Explosion (SE) problem in the Computational Tree Logic Model Checking

(CTLMC). To this end, some Machine Learning (ML) algorithms are introduced and employed. On this basis, CTL model

checking is induced to binary classification of machine learning, by mapping all the two different results of CTL model checking

into all the two different results of binary classification of machine learning, respectively. The experimental results indicate that

the newly proposed approach has a maximal accuracy of 100% on our randomly generated data set, compared with the latest

algorithm in the classical CTL model checking. Furthermore, the average speed of the new approach is at most 120 thousand

times higher than that of the latest algorithm, which appears in the current version of a popular model checker called NuXMV, in

the classical CTL model checking. These observations prompt that the new method can get CTL model checking results quickly

and accurately, since the SE problem is avoided completely.

Keywords: Model checking, computational tree logic, machine learning, binary classification.

Received October 10, 2020; accepted October 14, 2021

https://doi.org/10.34028/iajit/19/2/12

1. Introduction

Temporal logic model checking (model checking for

short) was developed Clarke and Emerson [16] in the

1980s, who were recognized by the 2007 Turing

Award from the Association for Computing Machinery

(ACM). This formal technique has been used widely

for more than three decades.

There are some notable real-world examples about

Model Checking (MC) applications, such as Stanford

University’s MC verification of a network protocol [31],

Microsoft’s MC-based software verifier for analyzing

the source code of Windows device drivers [5, 27], the

Turing laureate Prof. Clarke’s assertion about model

checking for detecting the Pentium floating-point

dividing bug, i.e., the most famous of the Intel

microprocessor bugs [14, 17, 35], National Aeronautics

and Space Administration (NASA)’s applications about

model checking for analyzing avionics software [20].

Even outside of computer science, model checking also

play a vital role in analyzing an active structural control

system to make buildings more resistant to earthquakes

[15].

In general, the procedure of model checking (refers to

qualitative model checking in this paper) is as follows.

A temporal logic formula specifies a property which

should be satisfied by a computational system, as well as

an automaton or Kripke structure models this system.

The MC result will be “yes”, if a model checking

algorithm automatically finds that the Kripke structure

satisfies the formula. Otherwise, the MC result will be

“no”.

There are many temporal logics. The two most

frequently used in the MC practices of the information

technology industry are Linear Temporal Logic (LTL)

[33] and Computational Tree Logic (CTL) [8, 22]. LTL

was introduced to computer science by Pnueli [33] who

is also a Turing Award winner. CTL was presented by

Prof. Clarke, another Turing Award winner [16]. The

different temporal logics express the different properties

and, thus, have varied definitions, MC algorithms, MC

tools, and applications. For example, SPIN is an LTL

model checker, while its-ctl is a CTL model checker.

Furthermore, NuSMX and NuXMV are model checkers

for both LTL formulas and CTL formulas.

The SE problem has become a major bottleneck, both

in LTL model checking and CTL model checking, so

that Clarke listed the State Explosion (SE) problem as

the first main disadvantage of the concurrent model

checking [15]. Much progress has been made on this

problem [15]. The many existing approaches

(the state reduction technique, see [2, 4, 18, 19, 21, 25,

28, 34, 38] for details on many works combating the

famous SE problem) can reduce the huge state space

effectively. However, the SE problem remains.

“unavoidable in worst case, but steady progress over the

past 28 years using clever algorithms, data structures,

and engineering”, Clarke wrote, in one of his

PowerPoint documents entitled “Model Checking: My

30 Year Quest to Conquer the State Explosion Problem”

[14].

Since the SE problem cannot be avoided in the

https://doi.org/10.34028/iajit/19/2/12

250 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

framework of accurate computing, how about

approximate computing?

Aiming to combat SE in CTL model checking, we try

to propose an approximate CTL model checking

approach in this study. To this end, we employ the more

machine learning algorithms (the sixteen Machine

Learning (ML) algorithms) to predict CTL model

checking results, respectively. Our experimental results

show that each of these machine learning algorithms can

conduct predictions with a high optimal accuracy (from

90% to 100%), supposing an accurate/classical CTL

model checking approach has an accuracy of 1. With the

newly proposed method, the efficiency is improved by

thousands of times, even hundreds of thousands of times,

compared with state of the art of the algorithm in the

classical CTL model checking, which is employed by

the nuXmv model checker [9]. As shown in section 4,

our experiments will demonstrate this point.

These observations indicate that it is possible to avoid

the SE in CTL model checking using approximate

computing, although the cost is also possible. As a result,

the approximate CTL model checking technique is

formed. This is the contribution of this paper.

It should be noted that, we do not regard the machine

learning as a panacea in advance. And we just wonder

whether this popular technique can address our problem

or not, when this problem has not been solved by the

existing approaches. Thus, we explore it with an

objective experimental way. In order to improve the

readability, we use some intuition meaning and figures

instead of formal definitions to express model checking,

machine learning and our idea in this paper.

The remainder of this paper is organized as follows.

Section 2 briefs some preliminaries. The newly

proposed approach will be illustrated in section 3. In

section 4, we will conduct the comprehensive

experiments. And the newly proposed approach and

some related ones will be compared in section 5. In the

last section, we will draw our conclusion.

2. Background

2.1. NuXMV

As a symbolic CTL model checker, NuXMV was

designed by Carnegie Mellon University [9]. And it

employs a state of the art of CTLMC algorithms [9], as

claimed by [9].

NuXMV can be employed to model checking

finite-state systematic models and infinite-state

systematic models. And both CTL and LTL are

supported by this tool.

In order to perform CTL model checking, a user’s

standard process can be depicted as follows:

1. The user should write a document to describe his/her

systematic model, i.e., an automaton or a Kripke

structure, in NuXMV language. Yes, NuXMV is not

only a model checking tool, but also a program

language.

2. The user’s CTL formulas should be written in the

same document in the same language. And the

location is behind the description of systematic

model.

3. The above document should be closed, and a given

NuXMV command will be manually executed in

command-line environment by the user, to get the

returned model checking results.

See [9] for more details on NuXMV.

2.2. ML Algorithms and the Tools

Machine learning has been applied to many fields, such

as natural language process [1], image process. Data

classification is one of the major missions of machine

learning. And a lot of ML algorithms can do it. In this

paper, we employ the following algorithms: Boosted

Tree (BT), Random Forest (RF), Decision tree (DT),

Logistic Regression (LR), Extra Trees (ET), K-Nearest

Neighbors (KNN), Nearest Centroid (NC), Ridge

(RIDGE), Passive Aggressive (PA), Stochastic Gradient

Descent (SGD), Linear Support Vector Classification

(L_SVC), Nu Support Vector Classification (N_SVC),

C-Support Vector Classification (C_SVC), Gaussian

Process (GPC), Naive Bayes classifier for multivariate

Bernoulli models (NB_BER) and Gaussian Naive Bayes

(NB_GAU). Furthermore, Turi Create [3] and

Scikit-learn [24] integrate some popular ML algorithms

mentioned above, as well as implement them. See [3, 24]

for more details on these algorithms and tools.

3. The Key Principle of the Newly Proposed

Approach

The approximate Computational Tree Logic Model

Checking (CTLMC) can be defined as follows: giving a

pair of systematic model K and a CTL formula f, how to

decide whether K satisfies f, with a machine learning

algorithm.

The key principle of the newly proposed approach is

illustrated in Figure 1. And this figure shows some

information about the core steps of the new method, as

follows. At first, similar to the approximate Linear

Temporal Logic Model Checking (LTLMC) [41], some

records about Kripke structures, temporal logic formulas

and their model checking results will be inputted to take

part in the process of training. And then, the obtained

ML model can predict the CTLMC result for another

pair of formula and Kripke structure. Differing from the

approximate LTLMC [41], this time, CTL formula f and

Kripke structures K make up the two ML features and

the only one label is CTL model checking result r, as

well as CTL model checking results instead of LTL ones

can be predicted.

CTL Model Checking Based on Binary Classification of Machine Learning 251

a) For a given pair of Kripke structure K and a CTL formula f, one can determine

whether K satisfies f or not, using the classical CTL model checking.

b) A ML model M which can predict the model checking result for another pair of

Km1+1 and fm1+1, since M is obtained by training m1 groups of K, f and their model

checking results.

Figure 1. Given one pair of systematic model and formula, the

new method predicts whether this model satisfies this formula or

not.

How to vectorize the ML features consisting of

automata and CTL formulas before a ML training is

started? An automaton can be transformed into a digital

string, and this string can be input into the training set

and the testing set, as shown in example 1 in section 4.3.

As for a CTL formula, its original form can be input

directly into the training set and the testing set, and

many ML tools provide a function which can regularize

the values of the ML features, guaranteeing the quality

of the following ML training. As a result, a ML

algorithm can directly access this training set to start the

training process.

4. Experiments

4.1. Experimental Target

The efficiency and the power of the newly proposed

approach will be explored. And the approximate CTL

model checking (based on machine learning/learning

from data) and the classical CTL model checking (based

on accurate computing/state exploration) will be

compared in terms of the efficiency and the power, as

well as the approximate CTL model checking based on

the different machine learning algorithms will be also

compared in terms of the efficiency and the power.

4.2. Platform

1. CPU: Intel(R) Core (TM) i7-4770 @3.40GHz.

2. RAM: 16.0 G.

3. Operating System (OS): Windows 7 64 bit.

4. NuXMV: CTL model checker.

5. Graphlab: for implementing the following four

machine learning algorithms: RF, BT, DT and LR.

6. Scikit-learn: for implementing the following sixteen

ML algorithms: RF, BT, ET, DT, KNN, NC, LR,

RIDGE, PA, SGD, L_SVC, N_SVC, C_SVC, GPC,

NB_BER and NB_GAU.

4.3. Experimental Procedures

This time, we produced randomly 50 Kripke structures
K and 200 CTL formulas f, where the length of each of
formula (L) is 500 (each formula has 500 symbols).

To this end, we conducted ten thousand

(200*50=10000) groups of sub-experiments with

NuXMV, in order to find out whether these fifty Kripke

structures satisfy two hundred CTL formulas,

respectively. The obtained data set A consists of these

10000 records, and each record contains the following

three fields: K, f and r. The experimental steps in this

study is similar with the ones in [41]. No more detail is

given here due to the simplicity.

It should be noted that there are three data sets related

with A, i.e., A1, A2 and A3. These data sets are formed

in the following way:

1. A1 is a sub set of A, and it contains seven thousand

records (L=500) which are selected randomly from

A.

2. A2 is a sub set of A, and it contains one thousand

records (L=500) which are selected randomly from

A.

3. The intersection of A1 and A2 is empty.

4. A3 is an external data set of A, i.e., the intersection of

A3 and A is empty, and it contains one thousand

records (L=500). These different data sets will play

different roles for the different objectives in the

following experiments. Please see the section 4.7 for

more details.

We provide here an example to illustrate how to obtain a

record in the data set A, according to a given CTL

formula and a given Kripke structure.

Example 1, Let us suppose the Kripke structure K is

illustrated in Figure 2, and we can encode this Kripke

structure as K=

“0000100100101110110122124303243”. See [41] for

more details on the way of encoding.

Figure 2. a Kripke structure K.

252 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

 Supposing the CTL formula ff1 is shown in Figure

3-a), we can use NuXMV to conduct CTL model

checking. The result is illustrated by Figure 4-a),

indicating K satisfies ff1. Thus, a record is added to A,

and this record contains the three fields:

“0000100100101110110122124303243”,

“A[(!(p=0&q=0|r=0))U……” and “true”, where the first

two fields are the features and the last one is the label

when ML training comes.

a) ff1.

b) ff2.

Figure 3. The two CTL formulas.

a) MC result for ff1.

b) MC result for ff2.

Figure 4. The model checking results on the K and the two CTL

formulas.

Now, the CTL formula ff2 is shown in Figure 3-b).

We also use NuXMV to conduct CTL model checking.

The result is illustrated by Figure 4-b), indicating K does

not satisfy ff2. Thus, another record is added to A, and

this record contains the three fields:

“0000100100101110110122124303243”,

“EF(!AF(E[(AF!(p=0&q=0|r=0))U……” and “false”,

where the first two fields are the features and the last

one is the label when ML training comes.

In this way, we can produce more records to build A.

Example 1 is over.

In our scikit-learn and graph lab experiments, the

above three data sets provide the raw data for machine

learning. As for the division of training sets and test sets,

we use the same way to do it with [41], due to the same

reason with [41]. In fact, the hypermeter “fraction”

means the ratio of number of records in a training set to

number of records in a data set.

4.4. Experimental Results

In this subsection, we will conduct our experiments on

A1 with graph lab.

 First, Tables 1 and 3 compares the four algorithms

on A1 in terms of the optimal accuracies and average

time for one record, and Table 2 shows the values of the

hyper-parameters while the results of Table 1 occur. In

this tables, the used metrics are AUC, TNR, TPR,

precision, accuracy and running speed. The first five

metrics are related to the power of the new method, and

the last one indicates the efficiency of the new method.

Table 1. Graph Lab experiments where length of each formula is
500 (A1 is used).

Algorithms RF BT DT LR

AUC 0.74 0.96 0.59 1

Specificity (TNR) 0.482 0.615 0.172 1

Sensitivity (TPR) 1 1 1 1

Precision 0.916 0.939 0.889 1

Predictive Accuracy 0.922 0.944 0.891 1

Running time per

record (in second)
0.000029 0.000028 0.000023 0.000022

Table 2. What are the values of the parameters and the

hyper-parameters if the illustrations of Table 1 occur.

Algorithms RF BT DT LR

Training record # 6268 6285 6291 6271

Testing record # 732 715 709 729

Seed 456 2242 2289 2233

Fraction 0.89 0.9 0.9 0.9

Table 3. Graph Lab experiments where length of each formula is 500
(A1 is used).

Length of

formulas,

i.e., L

Average running

time (t1) of

NuXMV for one

pair of Kripke

structure and

formula (s)

ML

algorithms

Average

predictive time

(t2) of the new

method based on

ML for one

record (s)

t1 / t2

L=500 0.0762

RF 0.000029 2628

BT 0.000028 2721

DT 0.000023 3313

LR 0.000022 3464

CTL Model Checking Based on Binary Classification of Machine Learning 253

Let NuXMV’s accuracy be 1, the approach based on

machine learning has a highest accuracy of 100%

(L=500), when LR is used, as listed in Table 1. In other

words, the newly proposed approach has approached the

latest algorithm in the classical MC technique, in terms

of predictive accuracy. The reason is that CTLMC is a

strongly learnable problem, causing a ML-based

approach has a good learning ability.

See Table 3, compared to state of the art of approach

in the classical CTLMC technique, the

machine-learning-based approach is several thousand

times faster, due to strongly learnable problem again.

4.5. Discussions

First, A1 has seven thousand records, including 5790

positive samples and 1210 negative ones, ensuring the

generalization ability and preventing the data from

imbalance.

Second, as depicted in Table 1, the different

algorithms have the different optimum predictive

accuracies. RF, BT and DT have the low accuracies, and

they are wholly unsuited to approximate CTLMC.

In contrast, LR is the preferred algorithm.

4.6. More Comparisons Among the Different

Machine Learning Algorithms

In addition to accuracy, Area Under Curve (AUC),
Receiver Operating Characteristic (ROC) curve,

specificity, i.e., True Negative Rate (TNR), sensitivity,

i.e., True Positive Rate (TPR) and precision are often

used as the metrics for evaluating binary classifiers.

Table 1 depicts TPR, TNR and precision for the four

optimum classifiers originated from the four machine

learning algorithms (L=500). And Figure 5 shows their

ROC curves, and their AUC values are given in Table 1.

It is widely known that, AUC is the entire area beneath a

ROC curve and AUC measures how well a model is

able to distinguish between classes. Generally speaking,

the classifier which has a bigger AUC value is the better

one. As illustrated in Figure 5 and Table 1, LR shows a

better performance.

In the above discussion, our Graph-lab program

automatically tunes the two hyper-parameters’ values

and searches the optimum accuracy for every algorithm.

And the different algorithm has its different optimal

accuracy although the hyper-parameters are set to the

different values.

Now, the obvious question becomes: what happen if

all the algorithms have the same values of the

hyper-parameters? Figure 6 shows the distribution of

accuracies varying in space of a great number of values

of the several hyperparameters, for each algorithm. For

example, RF get its optimal accuracy when

fraction=0.89, and Figure 6-a) shows all the three

thousand values of accuracy when fraction=0.89.

Obviously, the optimal value of accuracy occurs, when

fraction=0.89 and seed=456. And the location pointed

by a red arrow indicates this situation. Similarly, Figure

6-b) shows us what will happen if other three ML

algorithms are used, respectively. And the third

sub-figure makes a summary. In this case, Figure 6

indicates that LR is better than RF, BT and DT in terms

of the overall accuracy (L=500).

a) RF. b) BT. c) DT. d) LR.

Figure 5. Roc curve of the optimal classifiers, (L=500 and A1 is used).

 a) Obtained various classifiers when fraction=0.89. b) Obtained various classifiers when fraction=0.9. c) Obtained various classifiers (a combination of the

 above two sub-figures).

Figure 6. Comparison of performance of ML algorithms with the same values of hyper-parameters (seed and fraction) (L=500 and A1 is used).

254 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

4.7. More Comparisons on the Different Data

Until now, data set is fixed and test set varies with the

change of the hyper-parameters’ values, in order to

explore the new method based on the different ML

algorithms in terms of ability and the efficiency on a

given data set. Next, we will use a given data set A2 to

test the above four optimum classifiers, in order to

explore the above optimal ML models originating from

the different ML algorithms in terms of generalization

ability and the efficiency on a given testing set.

As shown in Tables 4 and 5, LR provides the fast and

accurate classifier, where the LR optimal model is best

again, although the other three classifiers are also fast, as

shown in Table 5. It should be noted that the first

column in Table 5 shows the average running time for

one record using NuXMV, and the third column shows

the average running time for one record using different

ML algorithm. How many times has the efficiency been

improved? One can get the answers by dividing the

value of the first column by a value of the third column.

Table 4. Graph Lab experiments where length of each formula is 500
(A2 is used).

Algorithms RF BT DT LR

Prediction Accuracy 0.852 0.904 0.852 1

Running time per record (in second) 0.000031 0.000032 0.00003 0.00003

AUC 0.721 0.976 0.61 1

Specificity (TNR) 0.221 0.495 0.221 1

Sensitivity (TPR) 1 1 1 1

Precision 0.846 0.894 0.846 1

Table 5. Compared with NuXMV, the new method enhances the
efficiency of CTL model Checking (L=500 and A2 is used).

Average running time

(t1) of NuXMV for one

pair of Kripke structure

and formula (s)

ML

algorithms

Average predictive time

(t2) of the new method

based on ML for one

record (s)

t1/t2

0.073

RF 0.000031 2355

BT 0.000032 2281

DT 0.00003 2433

LR 0.00003 2433

Furthermore, Figure 7 provides their ROC curves. As

shown in this figure, LR does the best again.

Now, all the four classifiers run on A3. Table 6

shows the results, and the performance is unacceptable

at all!

 a) RF. b) BT. c) DT. d) LR.

Figure 7. Roc curve of the optimal classifiers, (L=500 and A2 is used).

Similar to the approximate LTLMC [41], the

combination of Tables 4 and 6 demonstrates the one

thing again: the new method would not perform well, if

an appropriate data set could not be constructed

beforehand. See [41] for more details.

Table 6. Graph Lab experiments where length of each formula is 500
(A3 is used).

Algorithms RF BT DT LR

Prediction Accuracy 0.41 0.41 0.41 0.41

It should be noted that, no benchmark set is used in

this work, because up to now there is no such thing as a

benchmark platform or original data available for the

approximate CTL model checking based on machine

learning. Why not use an existing benchmark set in term

of the classical CTL model checking? The reason is that

the different formulas have different lengths in the

existing related benchmark sets, so that they cannot be

employed directly to perform training, testing and

predictions. After all, not enough formulas are available

in them, if only the formulas which have the same

length are selected for ML training and testing.

Furthermore, an ML experiment on a very small data set

will be unconvincing and infeasible.

4.8. More Comparisons on the Different

Platforms

In the prior context, the NuXMV model checker

employs the later CTLMC algorithm [9], whereas graph

lab does not employ latest machine learning algorithm.

The thing is the new method employing a common

machine learning algorithm performs better than the

latest CTLMC algorithm, demonstrated by the above

experiments. Thus, the conclusion about the advantage

of the new method is convincing.

Now, Let us relax our constraints, and see what

happens if some latest ML algorithms are used. In this

subsection, our machine learning experiments will be

conducted on scikit-learn. And the sixteen ML

algorithms are employed, respectively.

CTL Model Checking Based on Binary Classification of Machine Learning 255

Table 7. The optimal accuracies and the evaluation indexes on Scikit-learn.

Algorithms
optimal

accuracies

running

time
AUC sensitivity specificity precision Algorithms

optimal

accuracies

running

time
AUC sensitivity specificity precision

RF 1 1.14E-5 1 1 1 1 PA 1 1.26E-6 1 1 1 1

BT 1 4.06E-6 1 1 1 1 SGD 1 1.07E-6 1 1 1 1

ET 1 1.28E-5 1 1 1 1 L-SVC 1 7.96E-7 1 1 1 1

DT 1 1.49E-6 1 1 1 1 N-SVC 1 1.82E-5 1 1 1 1

KNN 1 5.79E-5 1 1 1 1 C-SVC 0.977 1.96E-5 0.875 1 0.75 0.976

NC 1 2.01E-6 1 1 1 1 GPC 1 1.78E-5 1 1 1 1

LR 1 8.68E-7 1 1 1 1 NB_BER 1 1.57E-6 1 1 1 1

RIDGE 1 6.25E-7 1 1 1 1 NB_GAU 0.925 2.82E-6 0.94 0.88 1 1

Table 8. The values of the hyper-parameters when the results in table

7 occurs.

Algorithms fraction seed seed_clf

RF 0.82 3 29

BT 0.88 69 0

ET 0.83 69 10

DT 0.88 69 0

KNN 0.9 2218 ——

NC 0.81 2112 ——

LR 0.86 743 ——

RIDGE 0.81 431 ——

PA 0.88 4 77

SGD 0.89 12 34

L-SVC 0.82 431 ——

N-SVC 0.83 431 ——

C-SVC 0.89 2519 ——

GPC 0.87 270 ——

NB_BER 0.81 431 ——

NB_GAU 0.9 1062 ——

Table 9. Compared with NuXMV, the new method based on
scikit-learn enhances the efficiency of CTL model Checking.

algorithms

For a pair of Kripke

structures and CTL

formulas, the average

running time t1 with

NuXMV (seconds)

Average prediction time t2

(seconds) for one record

with ML algorithm on

scikit-learn

t1/t2

RF 0.0762 1.14025E-05 6927

BT 0.0762 4.05844E-06 19050

ET 0.0762 1.27909E-05 5862

DT 0.0762 1.49E-06 50800

KNN 0.0762 5.78504E-05 1314

NC 0.0762 2.01208E-06 38100

LR 0.0762 8.68075E-07 87586

RIDGE 0.0762 6.25226E-07 120952

PA 0.0762 1.25949E-06 58615

SGD 0.0762 1.07059E-06 69273

L-SVC 0.0762 7.96381E-07 95250

N-SVC 0.0762 1.81793E-05 4233

C-SVC 0.0762 1.95727E-05 3810

GPC 0.0762 1.77928E-05 4281

NB_BER 0.0762 1.57289E-06 47625

NB_GAU 0.0762 2.8167E-06 27214

Table 7 depicts the experimental results, and Table 8

describes the corresponding values of the

hyper-parameters. Furthermore, Figure 8 illustrates the

sixteen ROC curves. In addition, Table 9 compares the

new method based on scikit-learn and state of the art of

the CTLMC in terms of the efficiency. As shown in

Tables 7 and 9, some algorithms naming “regression”

perform well, such as LR and RIDGE. Especially for

RIDGE, it has an optimal accuracy of 1, as well as

RIDGE is over 100000 times faster than the latest CTL

model checking algorithm. The reason is that RIDGE

regression inherits the advantage of linear regression, i.e.,

high speed, and it reduces over-fitting by adding

regularization term L2. Obviously, our experiments

demonstrate these two “regression”-based optimal

classifiers are very suitable for the approximate CTL

model checking.

5. Comparisons between the New Method

and the Relevant Approaches

5.1. The Studies Related with both Machine

Learning and Model Checking

In an existing study [41], the authors investigate some

researches related with both MC and ML [6, 7, 10, 11,

12, 13, 26, 29, 30, 32, 36, 37].

 However, there exist fundamental differences

between the new approach and these related ones [41].

These studies do not directly use machine learning to

perform model checking. However, the new method

can do this, as shown in Figure 1.

256 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

a) RF. b) BT. c) ET. d) DT.

e) KNN. f) NC. g) LR. h) RIDGE.

i) PA. j) SGD. k) L-SVC. l) N-SVC.

m) C-SVC. n) GPC. o) NB_BER. p) NB_GAU.

Figure 8. Roc curve of the sixteen optimal classifiers on scikit-learn.

5.2. Comparison to the Existing CTLMC

In fact, the newly proposed approximate CTLMC

technique has some disadvantages.

Similar to the approximate LTLMC [41], the newly

proposed approximate CTL one is not recommended for

users of safety-critical systems, at present. Furthermore,

no counterexample is generated, as well as a massive

data set which has been conducted beforehand, is

needed.

However, the most important advantage of the new

method is that the SE dissolves into nothingness.

All existing CTL model checking approaches needs

to explore exhaustively state space, whereas the newly

proposed approximate CTLMC technique based on

machine learning never explores any state space, as well

as it only perform predictions based on data. It is this

reason that causes the well performance in our

experiments.

It should be noted that, generally speaking, the more

serious the state space explosion problem is, the more

memory the computation consumes. This phenomenon

indirectly leads to a sharp decline in efficiency. In our

experiments, the length of each CTL formula is 500.

Even so, the new method has shown tens of thousands

of improvements over the traditional methods, in terms

of efficiency. Image what the advantage of the new

method should be, if the CTL formulas would be longer

and longer.

CTL Model Checking Based on Binary Classification of Machine Learning 257

In summarize, it is safe to say that the newly

proposed approximate CTL model checking technique

and the classical CTL model checking technique

complement each other. They have a complementary

relationship rather than the alternative one.

5.3. Comparison to the Approximate LTLMC

In an existing study [41], the four ML algorithms were

employed and an approximate LTL model checking

method was presented. Lucky, the SE in LTL model

checking is totally avoided with this method in our

experimental conditions, although it seems that the cost

is inevitable, and the usage is limited from the point of

view of the current technical level. However, it is the

first time that hopefully model checking will not be

bothered by the SE problem, although it is just an

approximate solution rather than the accurate one.

Just as LTL model checking and CTL model

checking take part in making up of temporal logic model

checking, one sub-problem named SE in LTL model

checking and another sub-problem named SE in CTL

model checking forms the major aspects of SE problem

in temporal logic model checking. Obviously, it seems

that something is missing for us, in terms of the

approximate LTL model checking for dealing with the

SE problem. Yes, it is another sub-problem:

approximate model checking for CTL.

Compared with the ML-based approach for predict

LTL model checking results [41], the newly proposed

method can predict CTL model checking results, using

machine learning algorithms. In this way, these two

approaches make up a complete approximate model

checking technique.

Table 10 summarizes the comparisons between these

two methods. Obviously, these two works aim to

combat the different sub-problem of the SE problem in

model checking, as well as employ the different

machine learning algorithms as the core engines. And

the different experimental results are obtained.

Table 10. Comparison among the approximate LTL Model
checking method and the new one.

The approximate LTL model

checking algorithm in [41]
The new method

State explosion

problem
Has been avoided Has been avoided

Time complexity polynomial polynomial

For LTL model

checking or CTL

one?

LTL model checking CTL model checking

How many ML
algorithms are

compared?

Four machine learning

algorithms

Sixteen machine

learning algorithms

Which ML
algorithm is the

most suitable?

LR RIDGE

The max predictive
accuracy

1 1

How many times

faster than classical
MC?

At most 6.3 million times, due to

SE and time complexity.

At most 120 thousand

times, due to SE

In fact, CTL model checking needs an approximate

solution more than LTL model checking does, while a

temporal logic formula is very long. The reason is as

follows.

As shown in this table, the combination of the two

factors, i.e., avoiding SE and the reduction of time

complexity, causes the efficiency is improved by million

times at most in terms of LTL. In comparison, only the

one factor, i.e., avoiding SE, causes the efficiency is

improved by hundreds of thousand times at most in

terms of CTL. Note that SE problem usually has a

greater effect on memory than on time, generally

speaking. Obviously, the SE problem is so serious that a

serious lack of memory occurs, and it is the serious

shortage of memory rather than time complexity itself

leads to the decrease of time efficiency, while a CTL

formula has a length of 500. Thus, a long CTL formula

needs a way to avoid SE more than a long LTL formula

does, while model checking is performed.

In a word, the topics, the used algorithms and the

results are all different between the approximate LTL

model checking and the approximate CTL one. And it is

necessary to study the two temporal logics separately.

It should be noted that there exists some works also

naming “approximate model checking”. However, they

are the different things at all, and they just have the same

title with our works, as analyzed in [41].

In summary, this paper proposes an approximate

CTL model checking technique while [41] put

forwarded an approximate LTL model checking one. As

a result, the approximate model checking technique is

formed.

5.4. Comparison with Some Works Based on

DNA Computing

As far as model checking is concerned, the SE restricts

the scale of MC applications, which can be alleviated

rather than avoided in classical computing. To this end,

some studies explore a different way.

Deoxyribo Nucleic Acid (DNA) molecules can be

employed to perform model checking. This idea was

first proposed by Prof. Emerson, the Turing Award

winner [23]. In one existing research, the authors

proposed several DNA-computing-based approaches to

conduct model checking, in which DNA molecules

exhibite tremendous power in terms of parallel

computing [39, 40, 42]. As a result, DNA model

checking is forming.

In terms of computing environments of model

checking, the platforms used in the above methods are

DNA computing devices rather than electronic

computers. This is the essential difference between the

approximate model checking and DNA model checking.

However, how to avoid the SE problem? It is a common

goal and mission for both the approximate model

checking and DNA model checking. Considering the

former method run on electronic computers rather than

258 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

DNA computing devices, it is safe to say that the former

method has a wider prospect, compared to the latter one.

6. Conclusions

This study pioneers an approximate CTL model

checking technique, avoiding SE in CTLMC completely.

Up to now, state of the art of CTL model checking is

inadequate to verify very large-scale OSs against the

complex branch temporal properties in practice, due to

the SE problem. This background will help us

understand the benefit of using the new method.

Acknowledgment

This study has been supported by National Natural

Science Foundation of China under grant U1204608.

References

[1] Abdelrazaq D., Abu-Soud S., and Awajan A., “A

Machine Learning System for Distinguishing

Nominal and Verbal Arabic Sentences,” The

International Arab Journal of Information

Technology, vol. 15, no. 3A, pp. 576-584, 2018.

[2] Abe T., Ugawa T., and Maeda T., “Reordering

Control Approaches to State Explosion in Model

Checking with Memory Consistency Models,” in

Proceedings of Working Conference on Verified

Software: Theories, Tools, and Experiments,

Heidelberg, pp. 170-190, 2017.

[3] Apple Incorporation, “apple/turicreate: Turi

Create simplifies the development of custom

machine learning models,” Retrieved from:

https://github.com/apple/turicreate/, Last Visited,

2020.

[4] Attie A., “Synthesis of Large Dynamic

Concurrent Programs from Dynamic

Specifications,” Formal Methods in System

Design, vol. 48, no. 1-2, pp. 94-147, 2016.

[5] Ball T., Cook B., Levin V., and Rajamani S.,

“SLAM and Static Driver Verifier: Technology

Transfer of Formal Methods inside Microsof,” in

Proceedings of International Conference on

Integrated Formal Methods, Canterbury, pp 1-20,

2004.

[6] Behjati R., Sirjani M., and Ahmadabadi M.,

“Bounded Rational Search for on-the-Fly Model

Checking of LTL Properties,” in Proceedings of

International Conference on Fundamentals of

Software Engineering, Kish Island, pp. 292-307,

2009.

[7] Belzner L. and Gabor T., “Bayesian Verification

under Model Uncertainty,” in Proceedings of

EEE/ACM 3rd International Workshop on

Software Engineering for Smart Cyber-Physical

Systems, Buenos Aires, pp. 10-13, 2017.

[8] Benari-Ari M., Pnueli A., and Manna Z., “The

Temporal Logic of Branching Time,” Acta

Informatica, vol. 20, no. 3, pp. 207-226, 1983.

[9] Benjamin B., Marco B., Roberto C., Alessandro

C., Michele D., Marco G., Alberto G., Ahmed I.,

Cristian M., Andrea M., Sergio M., Marco R.,

Mirko S., Stefano T., Gianni Z.,“The Nuxmv

Model Checker,” FBK,

https://es-static.fbk.eu/tools/nuxmv/, Last Visited,

2020.

[10] Bortolussi L., Milios D., and Sanguinetti G.,

“Machine Learning Methods in Statistical Model

Checking and System Design-Tutorial,” in

Proceedings of 6th International Conference

Runtime Verification, Vienna, pp. 323-341, 2015.

[11] Bortolussi L. and Sanguinetti G., “Learning And

Designing Stochastic Processes from Logical

Constraints,” in Proceedings of International

Conference on Quantitative Evaluation of

Systems, Buenos Aires, pp. 89-105, 2013.

[12] Bortolussi L. and Silvetti S., “Bayesian Statistical

Parameter Synthesis for Linear Temporal

Properties of Stochastic Models,” in Proceedings

of International Conference on Tools and

Algorithms for the Construction and Analysis of

Systems, Thessaloniki, pp. 396-413, 2018.

[13] Brázdil T., Chatterjee K., Chmelík M., Forejt V.,

Křetínský J., Kwiatkowska M., Parker D.,

and Ujma M., “Verification of Markov Decision

Processes using Learning Algorithms,” in

Proceedings of International Symposium on

Automated Technology for Verification and

Analysis, Sydney, pp. 98-114, 2014.

[14] Clarke E., “Model Checking: My 30 Year Quest

to Conquer the State Explosion Problem,”

Retrieved from:

http://www.cs.cmu.edu/~emc/15414-f11/lecture/l

ec27_MC.pdf, Last Visited, 2020.

[15] Clarke E., “Model Checking Overview,”

Retrieved from:

http://www.cs.cmu.edu/~emc/15-398/lectures/ove

rview.pdf, Last Visited, 2020.

[16] Clarke E. and Emerson E., “Design and Synthesis

of Synchronization Skeletons Using Branching

Time Temporal Logic,” in Proceedings of

Workshop on Logic of Programs, Yorktown

Heights, pp. 52-71, 1981.

[17] Clarke E., Khaira M., and Zhao X., “Word Level

Model Checking-Avoiding the Pentium FDIV

Error,” in Proceedings of 33rd Design Automation

Conference Proceedings, Las Vegas, pp. 645-648,

1996.

[18] Clarke E., Klieber W., Nováček M., and Zuliani

P., Tools for Practical Software Verification,

Springer Link, 2012.

[19] Dobrikov I. and Leuschel M., “Optimising The

Prob Model Checker for B Using Partial Order

Reduction,” Formal Aspects of Computing, vol.

28, no. 2, pp. 295-323, 2016.

[20] Dutra A., “Software Model Checking:

CTL Model Checking Based on Binary Classification of Machine Learning 259

High-Assurance Software Design,” NASA,

Retrieved from:

https://ti.arc.nasa.gov/tech/rse/vandv/software-m

odel-checking/, Last Visited, 2020.

[21] Elkader K., Grumberg O., Pas˘areanu˘ C., and

Shoham S., “Automated Circular

Assume-Guarantee Reasoning,” Formal Aspects

of Computing, no. 30, pp. 571-595, 2018.

[22] Emerson E. and Clarke E., “Using Branching

Time Temporal Logic to Synthesize

Synchronization Skeletons,” Science of Computer

Programming, vol. 2, no. 3, pp. 241-266, 1982.

[23] Emerson E., Hager K., and Konieczka J.,

“Molecular Model Checking,” International

Journal of Foundations of Computer Science, vol.

17, no. 04, pp. 733-742, 2006.

[24] Fabian P., Gaël V., Alexandre G., Vincent M.,

Bertrand T., Olivier G., Mathieu B., Peter P., Ron

W., Vincent D., Jake V., Alexandre P., David C.,

Matthieu B., Matthieu P., Édouard D.,

“Scikit-Learn: Machine Learning in Python,”

retrieved from: https://scikit-learn.org/stable/,

Last Visited, 2021.

[25] Groefsema H., Van-Beest N., and Aiello M., “A

Formal Model for Compliance Verification of

Service Compositions,” IEEE Transactions on

Services Computing, vol. 11, no. 3, pp. 466-479,

2016.

[26] Haim S. and Walsh T., “Restart Strategy

Selection Using Machine Learning Techniques,”

in Proceedings of the International Conference

on Theory and Applications of Satisfiability

Testing, Swansea, pp. 312-325, 2009.

[27] Halleux P., Rajamani S., Ball T., and Hoare T.,

Microsoft Research, “SLAM,” Retrieved from:

https://www.microsoft.com/en-us/research/projec

t/slam/, Last Visited, 2020.

[28] Kojima H., Nagashima Y., and Tsuchiya T.,

“Model Checking Techniques for State Space

Reduction in Manet Protocol Verification,” in

Proceedings of IEEE International Parallel and

Distributed Processing Symposium Workshops,

Chicago, pp. 509-516, 2016.

[29] Liang J., Ganesh V., Poupart P., and Czarnecki

K., “Learning Rate Based Branching Heuristic

for SAT Solvers,” in Proceedings of

International Conference on Theory and

Applications of Satisfiability Testing, Bordeaux,

pp. 123-140, 2016.

[30] Liang J., Oh C., Mathew M., Thomas C., Li C.,

and Ganesh V., “Machine Learning-Based Restart

Policy for CDCL SAT Solvers,” in Proceedings

of International Conference on Theory and

Applications of Satisfiability Testing, Oxford, pp.

94-110, 2018.

[31] Musuvathi M., Park D., Chou A., Engler D., and

Dill D., “CMC: A Pragmatic Approach to Model

Checking Real Code,” ACM SIGOPS Operating

Systems Review, vol. 36, pp. 75-88, 2002.

[32] Pedro A., Crocker P., and Simão M., “Learning

Stochastic Timed Automata from Sample

Executions,” in Proceedings of International

Conference on Leveraging Applications of

Formal Methods, Heraklion, pp. 508-523, 2012.

[33] Pnueli A., “The Temporal Logic of Programs,” in

Proceedings of the 18th Annual Symposium on

Foundations of Computer Science, Providence,

pp. 46-57, 1977.

[34] Ročkai P., Barnat J., and Brim L., “Improved

State Space Reductions for LTL Model Checking

of C and C++ Programs,” in Proceedings of

NASA Formal Methods Symposium, Moffett Field,

pp. 1-15, 2013.

[35] Sack H., SciHi BlogSciHi Blog, “The Pentium

FDIV Bug,” Retrieved from:

http://scihi.org/the-pentium-fdiv-bug/, Last

Visited, 2015.

[36] Sanguinetti G ., “Machine Learning Methods for

Model Checking in Continuous Time Markov

Chains,”

https://www.cs.ox.ac.uk/seminars/1195.html,

Last Visited, 2020.

[37] Tulsian V., Kanade A., Kumar R., Lal A., and

Nori A., “MUX: Algorithm Selection for

Software Model Checkers,” in Proceedings of the

11th Working Conference on Mining Software

Repositories, New York, pp. 132-141, 2014.

[38] Zheng H., Zhang Z., Myers C., Rodriguez E., and

Zhang Y., “Compositional Model Checking of

Concurrent Systems,” IEEE Transactions on

Computers, vol. 64, no. 6, pp. 1607-1621, 2015.

[39] Zhu W., Feng C., and Wu H., “Model Checking

Temporal Logic Formulas Using Sticker

Automata,” BioMed Research International,

2017.

[40] Zhu W., Han Y., and Zhou Q., “Performing Ctl

Model Checking Via Dna Computing,” Soft

Computing, vol. 23, no.12, pp. 3945-3963, 2019.

[41] Zhu W., Wu H., and Deng M., “LTL Model

Checking Based on Binary Classification of

Machine Learning,” IEEE Access, vol. 7, pp.

135703-135719, 2019.

[42] Zhu W., Zhou Q., and Zhang Q., “A LTL Model

Checking Approach Based on DNA Computing,”

Chinese Journal of Computers, vol. 39, no. 12,

pp. 2578-2597, 2016.

https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bSanguinetti%2C+Guido%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
https://www.cs.ox.ac.uk/seminars/1195.html

260 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

Weijun Zhu received a Ph.D.

degree in Computer Science from

Xi-Dian University in 2011.

Afterwards, he finished postdoctoral

researches twice. Subsequently, Dr.

Zhu conducted a two-year study at

Peking University and Tsinghua

University, as a visiting scholar. Currently, he is

working as an associate professor at Zhengzhou

University. Until now, Dr. Zhu has authored and

co-authored more than eighty papers in some journals

and conferences. His research interests include

machine learning applications, formal methods,

bioinformatics and DNA computing, and information

security.

Huanmei Wu received a Ph.D. in

Computer Science from Northeastern

University (Boston, MA) in 2005.

Currently, she is the professor and

Department Chair of Health Services

Administration and Policy, as well as

the Assistant Dean for Global

Engagement at Temple University College of Public

Health. Dr. Wuis an interdisciplinary researcher and

educator in computer science, informatics, biomedical

science, and public health, partnering with academia,

industries, and local communities. She has served in

multiple academic leadership positions and directed

various educational programs and research projects.

