
290 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

Implementing New Approach for Enhancing

Performance and Throughput in

a Distributed Database

Khaled Maabreh
1
 and Alaa Al-Hamami

2

1
Faculty of Information Technology and Computer Science, Zarqa University, Jordan

2
Graduate College of Computer Studies, Amman Arab University for Graduate Studies, Jordan

Abstract: A distributed database system consists of a number of sites over a network and has a huge amount of data. Besides a

high number of users use these data. The lock manager coordinates the use of database resources among distributed

transactions. Because a distributed transaction consists of several participants to execute over sites; all participants must

guarantee that any change to data will be permanent in order to commit the transaction. Because the number of users is

increasingly growing and the data must be available all of the time, this research applied a new method for reducing the size

of lockable entities to allow several transactions to access the same database row simultaneously, the other attributes remain

available to other users if needed. It is possible to do that by increasing the granularity hierarchy tree one more level down at

the attributes. The experimental results proved that using attribute level locking will increase the throughput and enhance the

system performance.

Keywords: Granularity hierarchy tree, locks, attribute level, concurrency control, data availability.

Received March 16, 2011; accepted July 28, 2011; published online March 1, 2012

1. Introduction

A distributed database system consists of a number of

sites connected via a computer network [10] and a

large amount of data items. These items maybe

requested by a large number of users and must be

available to satisfy the user requirements. Solutions to

such problems have been discussed in [2, 4, 15]. All

are concentrated on a strategy of dividing the database

into units or entities. These database units have

variable sizes, it maybe the whole database, entire table

or the database row, this maybe done dynamically by

the lock manager according to the competition of users

to the data items, this competition increased in a

distributed database because the number of users is

extremely bigger than the centralized one. A

distributed transaction is a set of operations, in which

two or more network hosts are involved [10]. Each

host or computer has a local transaction manager

responsible for interacting with other transaction

managers in case of a transaction does work at multiple

computers [1, 2, 13]. When a transaction needs to lock

a data item, it sends a request to the central site, which

determines if the lock can be granted. If so, it sends a

message to the originated site. Otherwise, it will wait.

In case of reading operations, the transaction

perform its action from any site which has a copy of

the required data item, whereas in a writing case, all

sites owning a copy must participate in this action [5,

11]. The concerning of measuring the attribute level

locking approach against system performance and

throughput and the simplicity in implementation are

two factors considered in choosing the central locking

approach.

As the study aims, the locking can be done on the

part of the row including the key or the index abreast

with the attributes needed by the transaction. This can

be done by ensuring that no qualification conflicts will

occur among the competing transactions. This

procedure is expected to satisfy the following:

1. Increase the concurrency, because the same row

may be manipulated by more than one transaction at

the same time.

2. Reduce the deadlock problem occurrences, because

the competing parts are reduced into some attributes

instead of the whole row.

3. Increase performance and system throughput, by

increasing the number of transactions executed in

the system.

The remainder of this paper is organized as follows:

section 2 presents the proposed approach and states the

problem with using row level locking as a minimum

lockable unit. Section 3 presents the enhanced

algorithm for field level locking approach; experiments

and discussion are drawn in section 4. Section 5

contains the analysis and conclusion.

2. The Proposed Approach

2.1. Approach Description

Because the number of users is increasingly growing

Implementing New Approach for Enhancing Performance and Throughput in a Distributed Database 291

and the data must be always available to fit their

requirements, this research aims to increase the

granularity hierarchy tree [5, 7, 8, 11] one more level

down, to include the attribute level, i.e., locking will be

done at the attribute level to allow several transactions

to access the same row simultaneously. The suggested

level is expected to decrease the user competition for

acquiring data items which may increase the

throughput and the performance of the database.

However, this will increase the overhead on the

database.

The proof of the enhanced procedure will be given

by building a discrete events simulation program to

generate transactions randomly after building the

hierarchy tree representing the database with new level

added (attributes), and by building a database lock

manager [1, 14] responsible for coordination

transactions execution, the program was built by using

Java technology. Data will be gathered to measure

system performance, system throughput, and locking

overhead [15]. The distributed database in this

research, is composed of three sites, logically

correlated as shown in Figure 1, each site consists of

one database.

Figure 1. Distributed database architecture for three sites.

Table 1. Simulation parameters.

Parameter Description Values

Num-Site Number of sites 3

DB-Num Number of databases in each site 1

DB-Obj Number of database objects 5000

Rep_Deg Degree of replication 0.2*

Num-Table Number of tables in a database 15

Num-Trans Number of transactions in the system Up to 500

Min-Trans-Size Minimum number of operation 1

Max-Trans-Size Maximum number of operation 20

Op-Mod Operation mode R,RW,W**

Queue-Length Maximum queue length 20

Time_Check Mean time to check a lock 1 ms

Time_Set Mean time to set a lock 1 ms

Time_Rel Mean time to release a lock 1 ms

Time_Acc Mean time to access a data object 20-100ms

*The degree of replication (0.2) is expressed for replication 20% of

logical data items over sites [9].
** R, RW and W are shorts for, all the operations of a transaction are

Read, mixed of Read and Write or Write, respectively.

According to the system parameters listed in Table

1, there are 15 tables partially replicated over these

sites (even in structure), because it is our concern to

measure the performance of the system by

implementing global transactions (i.e., to make the

most of transactions generated by the simulator

global). In the sample run for distributed database, the

tables distributed over three sites as one dimensional

partial replication (some objects to all sites) [9]. The

simulation program fills randomly the 15 tables with

5000 database objects (rows), and then it also

randomly distributes the tables across the three sites.

The parameter named, the degree of replication is

considered to replicate the database objects over sites;

in this sample, there are 3 out of 15 (0.2*15) tables are

replicated as shown in Tables 2 and 3.

Table 2. Distributing database objects into 15 tables.

Number of Database Objects Table ID

500 1

300 2

350 3

420 4

280 5

690 6

280 7

340 8

420 9

220 10

235 11

130 12

275 13

305 14

255 15

Table 3. Distributing of 15 tables across three sites.

Site 3 Site 2 Site 1

Table 1 Table 1 Table 1

Table 4 Table 2 Table 4

Table 5 Table 3 Table 6

Table 7 Table 4 Table 8

Table 12 Table 10 Table 9

Table 13 Table 11 Table 13

Table 15 Table 13 Table 14

The proposed procedure will execute against the

database row as the minimum lockable database unit,

and then it will execute to reflect the new added level,

comparing between two results will be drawn. The

proposed procedure is expected to increase the

concurrency, to reduce the deadlock problem

occurrences [3], and increase performance and system

throughput.

The simulation parameters shown in Table 1 will be

used to generate multiple snapshots during progresses

of a database, these parameters will vary for each run

in order to show the system behaviour. The following

assumptions are also considered:

• The time needed for setting and releasing locks is

assumed to be 1ms.

• Input output time needed for each operation is

assumed to be 1 ms.

• Time needed to complete data processing is

randomly selected between 20 to 100 ms.

User 3

Distributed Database

DB1 DB2

DB3

User 1

User 2

User 3

User N

User 1

User 2

User K User 1 User 2

User M

292 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

• Communication delay is assumed to be negligible

because the communication performance is not

considered to be measured here.

Read and writes sets in a transaction, are assumed to be

equals, because of simplifying the analysis and we did

not have an actual data that could serve as an

indication of what would be a realistic distribution of

the size of the read or write sets.

2.2. Deadlock Detection by Timeout

A transaction sets a time out for every lock required, if

the lock is not granted within this time, it assumes that

the deadlock has occurred. The simplicity and ease of

implementation are two reasons for using this method,

in addition it does not cause network traffic when

detecting deadlock in distributed database, while the

timeout must be tuned carefully in order to not detect

false deadlocks or to not allow the deadlock to persist

in the system for a long time [6].

In this study, the check for an available resource is

assumed to take one millisecond, if the lock is not

granted immediately, one millisecond is needed before

the next trial, when the lock is granted, a random

number between 20 and 100milliseconds is chosen as a

processing time, (because we don't have real data), so

51 trials for acquiring a lock is sufficient in this study

to determine if the resource is blocked or deadlocked.

Because if a transaction is granted a lock to a resource

and needs 100milliseconds to complete its operation at

the resource, then after completion, one millisecond is

needed to release a lock, another transaction may try

51 times to get a lock at the same resource with one

millisecond between each two successive trials, so it

needs 102millisecond which exceeds the total time for

the first transaction by one, so in the case of not

granted a lock, deadlock has occurred.

3. The Enhanced Algorithm Description for

Locking Attributes

The locking could be obtained on the entire database,

entire table, page, row or attribute according to

compatibility matrix for granularity hierarchy Table 4.

The transaction can lock a node in top-down order and

unlock in bottom-up order by using the rules

mentioned in [11] in addition to:

1. The database row is considered as a node, and can

be locked in an intention modes (IS or IX).

2. The key of the row must be locked in a Shared (S)

mode, when the transaction does not need the whole

row.

3. The locking of attributes as database nodes must be

done according to database constraints.

4. Other attributes can be locked in S or X mode.

When a conflict occurs, or when the transaction needs

to read or update the whole row, it's locked as in row

level locking.

Table 4. Compatibility matrix.

 IS IX S SIX X

IS T T T T F

IX T T F F F

S T F T F F

SIX T F F F F

X F F F F F

The abbreviations S, X, IS, IX and SIX are stated

for: shared locks (Read), exclusive locks (Write),

intention-shared (i.e., explicit locking is being done at

lower level of the tree with shared mode locks),

intention-exclusive (i.e., the explicit locking will be

used at a lower level of the tree with exclusive mode or

shared-mode locks) and shared with intention-

exclusive (i.e., the sub tree rooted by that node is

locked explicitly in shared mode and explicit locking is

being done at lower level with exclusive-mode)

respectively [5, 11].

Databases are assumed to be well normalized and

have a set of assertions to satisfy its correct state [12],

for example, if a database has associates with such

assertion (Z=X+Y). So, these items must be locked

together when using attribute level locking, this is the

responsibility of a database lock manager to

accomplish this task, in this example case, the

transaction must lock both X and Y when it needs to

lock Z .

4. Experimental Work

4.1. Performance Evaluation of Row Level

 Locking

The results shown in Table 5 are presented to appear

the behavior of the system during 25 runs, (times are

measured in seconds), we can see that, the system

begin thrashes when the number of transactions

entering the system becomes 150 or higher as shown in

Figure 2.

Figure 2. System throughput at row level locking.

Which means that, the system does not complete all

transactions entering the system, (i.e., the competition

among transactions as well as the probability of

conflict becomes high), and this means that the

throughput is affected?

Implementing New Approach for Enhancing Performance and Throughput in a Distributed Database 293

Table 5. Results of 25 runs of simulation at row level locking.

Number of

Transactions

Completed

Transactions

Simulation

Time

Mean Service

Time

Mean Waiting

Time

Mean Number of

Operations

Mean Number

of Locks

Arrival

Rate
Throughput

10 10 1.297 0.699 0 8 25 7.71 7.71

20 20 2.144 0.891 0.1221 10 28 9.33 9.33

30 30 2.75 0.987 0.2981 9 26 10.91 10.91

40 40 2.956 1.022 0.3876 8 29 13.53 13.53

50 50 3.219 1.127 0.4243 8 28 15.53 15.53

60 60 3.485 1.169 0.4548 8 29 17.22 17.22

70 70 3.79 1.212 0.4702 9 27 18.47 18.47

80 80 4.069 1.234 0.5101 8 27 19.66 19.66

90 90 4.469 1.302 0.5231 6 29 20.14 20.14

100 100 4.678 1.359 0.5871 9 31 21.38 21.38

110 110 4.912 1.421 0.6204 7 31 22.39 22.39

120 120 5.247 1.531 0.7299 9 31 22.87 22.87

130 130 5.531 1.591 0.8626 8 32 23.50 23.50

140 140 6.112 1.728 0.9241 8 31 22.91 22.91

150 148 9.202 2.233 1.4324 8 30 16.30 16.08

160 154 12.214 3.691 2.814 8 29 13.10 12.61

170 164 14.203 3.981 3.021 6 28 11.97 11.55

180 170 16.782 4.117 3.394 8 29 10.73 10.13

190 178 19.469 4.4 3.697 7 32 9.76 9.14

200 181 22.563 4.404 3.962 10 31 8.86 8.02

210 186 24.204 4.527 4.178 7 33 8.68 7.68

220 195 27.641 4.806 4.436 8 32 7.96 7.05

230 199 31.719 5.135 4.406 7 31 7.25 6.27

240 207 34.859 5.312 5.222 7 29 6.88 5.94

250 210 36.36 6.24 6.508 7 32 6.88 5.78

Mean service time mean service time and mean

waiting time as shown in Figure 3, increased when the

number of transactions entering the system increased

because the system workload increased.

Figure 3. System performance at row level locking.

Figure 4 shows the mean number of locks needed by

transactions at row level locking because it depends on

the mean number of operations that the transactions

need.

Figure 4. System locking overhead at row level locking.

4.2. Performance Evaluation of Field Level

 Locking

After modifying the hierarchy tree by adding the

attributes level to be locked, simulation is executed 25

times on different workloads to show the system

behaviour, the results are presented in Table 6. The

new system (alternative two) executes up to 190

transactions successfully without deadlock. When the

number of transactions becomes 200 or higher, the

system begins thrashes as shown in Figure 5.

Figure 5. System throughput at field level locking.

The important thing is that 150 transactions are

completed successfully on alternative two (at field

level locking), while there are two transactions were

deadlocked, when using the row as minimum lockable

unit mean service time and mean waiting time on

alternative two becomes less than those produced when

using alternative one. Figure 6 shows this behaviour

because the transaction does not need to waits for long

time to get its lock. But unfortunately, the mean

number of locks increased as shown in Figure 7.

Figure 6. System performance at field level locking.

294 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

Table 6. Results of 25 runs of simulation at field level locking.

Number of

Transactions

Completed

Transactions

Simulation

Time

Mean Service

Time

Mean Waiting

Time

Mean Number of

Operations

Mean Number of

Locks

Arrival

Rate
Throughput

10 10 1.713 0.492 0 8 35 5.84 5.84

20 20 2.105 0.512 0.0031 10 36 9.50 9.50

30 30 2.609 0.613 0.0123 9 38 11.50 11.50

40 40 2.934 0.696 0.0985 8 41 13.63 13.63

50 50 3.202 0.76 0.1223 8 41 15.62 15.62

60 60 3.437 0.816 0.1876 8 42 17.46 17.46

70 70 3.714 0.835 0.2068 9 40 18.85 18.85

80 80 3.991 0.885 0.3482 8 42 20.05 20.05

90 90 4.361 0.893 0.3527 6 41 20.64 20.64

100 100 4.612 0.914 0.3621 9 43 21.68 21.68

110 110 4.835 1.02 0.4102 7 42 22.75 22.75

120 120 5.177 1.125 0.4863 9 44 23.18 23.18

130 130 5.429 1.231 0.5361 8 44 23.95 23.95

140 140 5.678 1.369 0.5422 8 46 24.66 24.66

150 150 5.922 1.387 0.6101 8 45 25.33 25.33

160 160 6.188 1.402 0.7512 8 45 25.86 25.86

170 170 6.429 1.454 0.7723 6 43 26.44 26.44

180 180 6.612 1.491 0.7856 8 44 27.22 27.22

190 190 7.181 1.522 0.7902 7 45 26.46 26.46

200 198 9.736 1.712 1.0125 10 49 20.54 20.34

210 200 11.914 1.979 1.4701 7 49 17.63 16.79

220 206 13.204 2.081 1.6164 8 50 16.66 15.60

230 215 15.345 2.189 1.6731 7 47 14.99 14.01

240 220 18.631 2.295 1.8697 7 48 12.88 11.81

250 227 21.241 2.441 1.8341 7 46 11.77 10.69

Figure 7. System locking overhead at field level locking.

4.3. Comparing the Two Alternatives

Table 7, shows mean service time, mean waiting time,

throughput and the mean number of locks for the two

alternatives in order to compare between them.

The throughput for field level locking is higher than

for row level locking as shown in Figure 8, because the

competitions among transactions becomes less due to

increasing in a database size (i.e., the number of

transactions that are completed successfully is higher

than at an alternative one). Alternative one (row level

locking) becomes thrashes before alternative two (field

level locking). At the same time, the mean service time

and mean waiting time in alternative two becomes less

in general as shown in Figures 9 and 10, because

transactions can proceed immediately when no

conflicts occurs. Figure 11 shows the increasing of

locking overhead, because at field level locking

approach, the lock manager needs extra work to

manage the locks needed, especially when transactions

need many attributes in the same row. It can be

reduced by returning one level up on the hierarchy tree

-at row level- when transactions need many attributes.

Figure 8. Throughput for the two alternatives.

Figure 9. Mean service time for two alternatives.

Figure 10. Mean waiting time for two alternatives.

Figure 11. Locking overhead for two alternatives.

Implementing New Approach for Enhancing Performance and Throughput in a Distributed Database 295

Table 7. Row level locking versus field level locking performance.

Number of

Transactions

Row level locking Field level locking

Mean Service

Time

Mean Waiting

Time
Throughput

Mean Number

of Locks

Mean Service

Time

Mean Waiting

Time
Throughput

Mean Number of

Locks

10 0.699 0 7.71 25 0.492 0 5.84 35

20 0.891 0.1221 9.33 28 0.512 0.0031 9.50 36

30 0.987 0.2981 10.91 26 0.613 0.0123 11.50 38

40 1.022 0.3876 13.53 29 0.696 0.0985 13.63 41

50 1.127 0.4243 15.53 28 0.76 0.1223 15.62 41

60 1.169 0.4548 17.22 29 0.816 0.1876 17.46 42

70 1.212 0.4702 18.47 27 0.835 0.2068 18.85 40

80 1.234 0.5101 19.66 27 0.885 0.3482 20.05 42

90 1.302 0.5231 20.14 29 0.893 0.3527 20.64 41

100 1.359 0.5871 21.38 31 0.914 0.3621 21.68 43

110 1.421 0.6204 22.39 31 1.02 0.4102 22.75 42

120 1.531 0.7299 22.87 31 1.125 0.4863 23.18 44

130 1.591 0.8626 23.50 32 1.231 0.5361 23.95 44

140 1.728 0.9241 22.91 31 1.369 0.5422 24.66 46

150 2.233 1.4324 16.08 30 1.387 0.6101 25.33 45

160 3.691 2.814 12.61 29 1.402 0.7512 25.86 45

170 3.981 3.021 11.55 28 1.454 0.7723 26.44 43

180 4.117 3.394 10.13 29 1.491 0.7856 27.22 44

190 4.4 3.697 9.14 32 1.522 0.7902 26.46 45

200 4.404 3.962 8.02 31 1.712 1.0125 20.34 49

210 4.527 4.178 7.68 33 1.979 1.4701 16.79 49

220 4.806 4.436 7.05 32 2.081 1.6164 15.60 50

230 5.135 4.406 6.27 31 2.189 1.6731 14.01 47

240 5.312 5.222 5.94 29 2.295 1.8697 11.81 48

250 6.24 6.508 5.78 32 2.441 1.8341 10.69 46

5. Conclusions

Simulation is implemented to prove the idea of

obtaining a lock at attributes level on a distributed

database. The discussion presented in sections 4.1

through 4.3, shows that the system at field level

locking behaves better than at row level locking

because multiple transactions can proceed at the same

database row simultaneously, which decreases the

mean service time as well as the mean waiting time

because transactions does not need to wait for a long

time to get their locks, which increases the availability

of data. Also alternative two executes more

transactions than alternative one at a time unit before

thrashing occurs, which means that more transactions

are completed successfully than alternative one which

means higher throughput obtained, it is due to the

increasing of database size by attribute level.

The increasing of overhead that occurs in alternative

two can be managed by choosing the appropriate

granule size for each transaction because the approach

implemented here is suitable for the applications that

have mixed size of transactions (short and long). It can

be reduced by returning one level up on the hierarchy

tree to be at the row level when transactions need many

attributes.

Acknowledgment

This research is funded by the Deanship of Research

and Graduate Sudies in Zarqa University/Jordan.

References

[1] Bernstein P. and Newcomer E., Principles

of Transaction Processing for the Systems

Professional, Bentham Press, 2004.

[2] Chandy K., Misra J., and Hass L., “Distributed

Deadlock detection,” ACM Transactions on

Computer Systems, vol. 1, no. 2, pp. 144-156,

1983.

[3] Coffman E., Elphick M., and Shoshani A.,

“System Deadlocks,” ACM Computing Surveys,

vol. 3, no. 2, PP. 67-78, 1971.

[4] Croker A., “Improvements in Database

Concurrency Control with Locking,” Journal of

Management Information Systems, vol. 4, no. 2,

pp. 74, 1987.

[5] Elmasri R. and Navathe S., Fundamentals of

Database Systems, Pearson Addison Wesley,

Boston, 2010.

[6] Krivokapi N., Kemper A., and Gudes E.,

“Deadlock Detection in Distributed Database

Systems: A New Algorithm and a Comparative

Performance Analysis,” The VLDB Journal, vol.

8, no. 2, pp. 79-100, 1999.

[7] Maabreh K. and Hamami A., “Increasing

Database Concurrency Control Based on

Attribute Level Locking,” in Proceedings of

International Conference on Electronic Design,

Penang, pp. 1-4, 2008.

[8] Maabreh K. and Hamami A., “Applying

Attribute Level Locking to Decrease the

Deadlock on Distributed Database,” in

Proceedings of the 11
th
 International Arab

Conference on Information Technology, Libya,

2010.

[9] Matthias N. and Matthias J., “Performance

Modeling of Distributed and Replicated

Databases,” IEEE Transactions on Knowledge

296 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

Data Engineering, vol. 12, no. 4, pp. 645-672,

2000.

[10] Ozsu T. and Valduriez P., Principles of

Distributed Database Systems, Springer Science

and Business, New York, 2011.

[11] Silberschatz A., Korth H., and Sudarshan S.,

Database System Concepts, McGraw-Hill, New

York, 2010.

[12] Sinha M. “Constraints: Consistency and

Integrity,” ACM SIGMOD Record, vol. 13, no. 2,

pp. 60-63, 1983.

[13] Taibi T., Abid A., Jiann W., Fei Y., and Ting C.,

“Design and Implementation of a Two-Phase

Commit Protocol Simulator,” The International

Arab Journal of Information Technology, vol. 3,

no. 1, pp. 20-27, 2006.

[14] Weikum G. and Vossen G., Transactional

Information Systems, Theory, Algorithms and the

Practice of Concurrency Control and Recovery,

Morgan Kaufman Publishers, USA, 2002.

[15] Wu H., Chin W., and Jaffar J., “An Efficient

Distributed Deadlock Avoidance Algorithm for

the AND Model,” IEEE Transactions on

Software Engineering, vol. 28, no. 1, pp. 18-29,

2002.

Khaled Maabreh is a lecturer in

computer information system at

Zarqa University, Jordan. He holds

PhD degree in computer science

from Amman Arab University for

Graduate Studies in 2008. He has

more than 17 years of experience

including developing IT-related projects. He also

teaches different courses at BSc level in computer

science and computer information systems.

Alaa Al-Hamami is senior lecturer

in computer science. He holds a BS

in physics from Baghdad University,

in 1970, MSc in computer science

from Loughborough University,

England in 1979, and a PhD degree

in computer science-database

security from the University of East Anglia-England in

1984. He has a membership in many different

scientific societies including ACM and IEEE. He is a

deanship of Graduate College of Computer Studies-

Amman Arab University for Graduate Studies. He has

more than 31 years of experience including extensive

project management experience in planning and

leading a range of IT-related projects in addition to

management posts. He has more than 117 published

papers in different indexed journals. He supervises

more than 50 PhD and MSc students in computer

science, information management and integration,

security, and knowledge management. He also leads

and teaches modules at BSc, MSc and PhD levels in

computer science and security.

