
94 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

CFS: A New Dynamic Replication

Strategy for Data Grids

Feras Hanandeh
1
, Mutaz Khazaaleh

2
, Hamidah Ibrahim

3
, and Rohaya Latip

3

1
Prince Al- Hussein bin Abdullah II Faculty of Information Technology, Hashemite University, Jordan

2
Irbid College, Al-Balqa Applied University, Jordan

3
Faculty of Computer Science and Information Technology, University Putra Malaysia, Malaysia

Abstract: Data grids are currently proposed solutions to large scale data management problems including efficient file

transfer and replication. Large amounts of data and the world-wide distribution of data stores contribute to the complexity of

the data management challenge. Recent architecture proposals and prototypes deal with dynamic replication strategies for a

high-performance data grid. This paper describes a new dynamic replication strategy called Constrained Fast Spread (CFS).

It aims to alleviate the main problems encountered in the current replication strategies like the negligence of the storage

capacity of the nodes. The new CFS strategy enhanced the fast spread strategy by concentrating on the feasibility of

replicating the requested replica on each node among the network.

Keywords: Grid computing, dynamic replication strategies.

Received March 1, 2010; accepted May 20, 2010

1. Introduction

Data management is one of the key features of a data

grid where large amounts of data are distributed and/or

replicated to remote sites, potentially all over the world.

In general, a data grid needs to provide features of a

pure computational grid [7]; (resource discovery,

sharing etc.,) as well as more specialized data

management features like dynamic replication

strategies for a high performance data grid which is the

main focus of this article.

With respect to replication, there are two types of

files in a data grid: “master” files and “replicas”. A

replica is any copy of a file other than the master. The

master file is owned and managed by the creator of the

file, but the replicas are managed by the grid

(middleware). For example, a storage element may

delete unused replicas to make space available for new

replicas without notifying the owner of the file. The use

of replicas is transparent to users; they are created as

needed by the grid middleware in order to improve

overall performance of jobs. However, sites can

explicitly ask for the creation of replicas locally.

Initially, replica files are by definition read-only; read-

write implies the creation of a new master file. This is

to avoid the extremely difficult synchronization

problem of allowing users to write to multiple replicas

of the same file. Master files would typically be stored

on a "reliable" system, (i.e., backed up), whereas a

replica does not require backup. A simple example of

replica usage is as follows: To improve the

performance of a data grid job to be run at site A, data

in permanent storage at site B is copied to site A. This

data may then be used by subsequent jobs at site A, or

by jobs at site C, which has a better network

connection to site A than site B. For this reason, the

data should be kept at site A as long as possible.

However, there is no need to store this file

permanently at site A, because the file can always be

retrieved from site B. The replica manager keeps track

of all replica data so that the replica selection service

can select the optimal physical file to use for a given

job, or to request the creation of a new replica. Replica

usage can be thought of as a type of long-term cache,

where the data remains in the cache for use by future

jobs until the cache is full, in which case the least

recently used files are removed, subject to their

"lifetime" attributes.

Both master and replica file include the notion of a

"lifetime". Master files may be given a finite lifetime

so that they can be deleted automatically by the

system. Replicas may always be deleted by the

system, but they may also be assigned a lifetime so

that they are not deleted too soon. A replica lifetime

might be set manually by a user who knows the same

file will be used for a series of jobs, or it could be set

by the scheduler.

Replicas are currently defined in terms of files and

not objects. The initial focus is on the movement of

files, without specific regard for what the files contain.

We realize that many users are mainly interested in

objects. However, we believe that there are well

defined mechanisms to map objects to files for both

objectivity and root, and that all of this will be

completely transparent to the applications. However,

achieving this transparency will require close

CFS: A New Dynamic Replication Strategy for Data Grids 95

interaction with the applications' data model. In the

case of most other commercial database products, it

appears that this is difficult to do efficiently, and

requires additional study.

The article is organized as follows. In section 2, we

outline briefly previous work that influenced our new

strategy. The methodology of this article is presented in

section 3. In section 4, the proposed algorithm is

presented and discussed. We present experimental

results and discussions in section 5. Section 6 contains

a summary and our conclusions from this effort.

2. Previous Work

The European Data Grid project (EDG), one of the

largest data grid projects today, have a main focus on

providing and deploying such data replication tools.

Although the project officially started in January 2001,

prototype implementations started already in early 2000

and first data management architecture was presented

in [7]; thus, within the project there is already a well-

established experience in providing replication tools

and deploying them on a large-scale testbed.
Since interoperability of services and international

collaborations on software development are of major

importance for EDG as well as other grid projects in

Europe, the U.S. etc., the first set of data management

tools (i.e. replication tools) provided and presented

here, are based on established de-facto standards in the

Grid community. In addition, for parts of the software

presented here, EDG has development and deployment

collaborations with partner projects like the Particle

Physics Data Grid collaboratory pilot (PPDG),

TransAmerica Grid (TAG) project and LHC

Computing Grid (LCG).

Caching frequently accessed data in a mobile client’s

memory has been proposed to improve the performance

of the various systems by increasing the availability of

data in the presence of disconnectivity, reducing the

data retrieval from the original server, relieving the

bandwidth consumption, and reducing the latency in

data access [15]; In mobile environment, caching

classified into two categories, the Stateless approaches

[1, 3, 4, 8, 10, 12, 13, 15, 16, 17, 18] and stateful

schemes [9, 15].

In most of the grid computing researches,

researchers implemented and evaluated six different

strategies. This helped demonstrate what the simulator

is capable of doing, as well as helped them understand

the dynamics of a grid system better. In this paper, we

distinguish between caching and replication.

Replication is assumed to be a server side phenomenon.

A server decides when and where to create a copy of a

file it has. It may do this randomly or by recording

client behaviour or by some other means. But the

decision to make a copy (replica) and send it to some

other node is taken solely by the server. Caching is

defined as a client side phenomenon. A client requests

for a file and stores a copy of the file locally for future

use. Any other nearby node can also request for that

cached copy.

The first strategy is no replication or caching. In

this strategy no replication takes place. The entire data

set is available at the root of the hierarchy. Any

request for some files from any node, the file will be

called from the root. The second strategy is the best

client. The criterion that this strategy adopts is the

history of files [6]; where the number of requests for

those files is kept. The number of request will be

compared with a specified threshold. If it exceeds the

threshold it considered as a best client. The best client

is the one that has generated the most number of

requests for that file. The third strategy is cascading

replication. In this strategy, the free space is

considered in each node. Once the capacity of a

specific node becomes less than the specified

threshold then a replica is created and sent to the node

at the next level taking into consideration that the

replica is created to be placed at the path to the best

client. The fourth strategy is plain caching. The client

that requests a file stores a copy locally. Since these

files are large and a client has enough space to store

only one file at a time, the files get replaced quickly.

This strategy is straight forward. The fifth strategy is

caching plus cascading replication. This combines

strategy three and four. The sixth strategy is fast

spread. In this method, a replica of the file is stored at

each node along its path to the client [5]; That is,

when a client requests a file, a copy is stored at each

tier on the way. This leads to a faster spread of data.

When a node does not have enough space for a new

replica it deletes the least popular file that had come in

the earliest.

In such strategies, this might delete a relatively new

file that has just come in and not yet been requested

for. It might hold potential to become popular in the

future. Thus there needs to be a measure of time and

hence the age of each file in that cache. The

replacement strategy we employed takes care of both

these aspects and is a combination of least popular and

the age of the file. If more than one file are equally

unpopular, the oldest file is deleted. One detail to be

noted here is that the popularity logs for all the files

are cleared periodically. Thus the dynamic aspect of

changing user patterns is captured.

3. Preliminaries

This article uses the PARallel Simulation

Environment for Complex systems (PARSEC)

simulator downloaded from parsec home page,

"http://pcl.cs.ucla.edu/projects/parsec". The reason

why we use the PARSEC is its ability to execute a

discrete-event simulation model using several

different asynchronous parallel simulation protocols

on a variety of parallel architectures. The simulator

96 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

was built to formulate the data grid and the transference

of the data among it. The data structure adopted is the

tree structure were only one shortest path is considered.

The data grid consists of three levels as depicted in

Figure 1. The responsibility of producing data is the top

most level (the root).

Figure 1. Three level tree structure data grid.

The storage capacity at each level is given in Table

1. All network links have the same bandwidth which is

320 Mbytes/Sec. The files have a uniform size equal to

two gigabytes each.

Table 1. The storage capacity at each level.

Level Storage Capacity (GB)

Level 0 2000

Level 1 1000

Level 2 500

The experiments were run on three different kinds of

access patterns:

• P-random: Random access patterns. No locality in

patterns.

• P1: Data, which contained a small degree of

temporal locality.

• P2: Data containing a small degree of geographical

and temporal locality.

Locality is varying from 0 to 1, where 0 indicates that

the requests are completely random and there is no

locality. At the other end of the spectrum, when locality

is 1, it means all the requests are for the same file. Tests

were also conducted with data of varying degrees of

locality and the results are in section 5.

4. Constrained Fast Spread Algorithm

The main concentration of our approach is the

consideration of two criterions, the size of the

Requested Replica (RR) and the number of requests of

the RR. A ratio is calculated to produce the Partial

Number Of Requests (PNOR). PNOR is the ratio of the

Number Of Requests (NOR) to the shortage of the

requested space to accommodate the RR.

In Constrained Fast Spread method (CFS), a replica

is verified to be stored at each node along its path to

the client. This leads to a constrained faster spread of

data when a node does not have enough space for a

new replica; it verifies the number of requests of each

file. A comparison process is performed to compare

the number of requests of the files in each node.

Summations of the sizes of some of replicas are

compared with the size of the requested replica. If the

space allocated by the replica is sufficient to be

allocated by the requested replica then all the replicas

will be deleted and the requested replica replaces

them. Figure 2 presents the algorithm to check

whether the newly RR deserves to be copied to the

Requested Node (RN) based on the criterions

mentioned above or not*. The definitions of pseudo

code variables used in the CFS algorithm listed in

Table 2.

Table 2. Definitions of pseudo code variables of CFS algorithm.

If the process of verifying the existence of the RR

at the RN finds that the RR exists then the replica will

be used and no more verification will be performed.

Otherwise, the process proceeds to verify whether the

checked node’s free storage space is enough to

accommodate the RR. If the storage space is enough

to be replaced by the RR then the replica will be

copied and used and no more verification will be

performed.

Otherwise, the process proceeds to compute the

PNOR and to be compared with the NOR of the

accommodated replica(s). Based on the results one can

report that the RR will replace the accommodated

replica(s) or not.

Variable Definition

RR Requested replica

RN Requesting node

CNFSS Checked node’s free storage space

NOR Number of requests of RR

PNOR

Partial number of requests of RR which is the ratio

of the NOR to the shortage of the requested space
to accommodate the RR

SOS

Sum of sizes, where this variable contains the sum

of sizes of a group of replicas on the checked node

to be replaced by the RR

NSPList

The list that contains the nodes on the shortest path

from RN +1 to the main server, where RN +1 is

the parent of RN

ReplicaList

The list that contains the existing replicas on the
checked node sorted in non-increasing order based

on their sizes. If two or more replicas have the

same size, these replicas are sorted in non-
decreasing order based on their number of

requests. If they also have the same number of

requests, they are sorted randomly

SizeList
The list that contains the sizes of the corresponding

replicas in ReplicaList

NORList

The list that contains how many times each replica

in ReplicaList has been requested by the current
node

* Different results has been developed and evaluated in [2]. However, in this paper, a new enhancement of the fast spread algorithm was

 evaluated under different scenarios which represents a new contribution.

CFS: A New Dynamic Replication Strategy for Data Grids 97

Pseudo code 1: CFS Algorithm

Initialize SOS to 0;

If RR exists on RN then

Use RR;

Else

 For i = 1 to NSPList.size do

 If RR exists on NSPList(i) then

 For j = NSPList(i -1) to 1 do

 If CNFSS > RR.Size then

 Copy RR;

 Else if CNFSS < RR.Size then

 PNOR = NOR * RR.Size - CNFSS

 RR.Size

 For x = 1 to ReplicaList.size do

 If SOS < RR.Size - CNFSS then

 SOS = SOS + SizeList(x);

 Else

 Break;

 End

 End

 x - 1

 If ∑ y = 1 NORList(y) < PNOR then

 For y = 1 to x - 1 do

 Delete ReplicaList(y), SizeList(y), NORList(y);

 End

 Copy RR;

 End

 End

 End

 End

 End

End

Figure 2. The proposed CFS algorithm.

5. Experimental Results and Discussions

We compare the results of four of the experiments, no

replication, caching plus cascading, fast spread and

CFS strategy. The experiments were run on the three

access patterns P-random, P1 and P2.

5.1. P_Random

P-random: Is random access pattern, in order to

evaluate the effect of replication strategies, the three

replication strategies using P-random pattern listed in

Table 3 were compared to the base case of no

replication. Table 3 lists the improvement ratio in

response time and bandwidth savings.

Table 3. Improvement in response time and bandwidth savings for

random data as compared to the base case of no replication.

Replication Strategy
Improvement in

Response Time

Bandwidth

Savings

Cascading Plus Caching 34% 30%

Fast Spread 31% 29%

CFS 29% 27%

From the results above, it is clear that cascading plus

caching is the best among other strategies including

CFS using P-random pattern. The reason of that is the

random frequent propagation of the popular files to the

clients which improves the response time and

bandwidth because of the availability of such files

regardless the consideration of the space. This

consider as drawback of such strategy although the

much improvement of response time and bandwidth

savings. There is neglect in considering the space

which is considered in this article.

5.2. P1

P1: Is temporal locality patterns, the three replication

strategies using P1 pattern listed in Table 4 were

compared to the base case of no replication. Table 4

lists the improvement ratio in response time and

bandwidth savings.

Table 4. Improvement in response time and bandwidth savings for

temporal locality data as compared to the base case of no

replication.

Replication

Strategy

Improvement in

Response Time

Bandwidth

Savings

Cascading Plus Caching 37% 41%

Fast Spread 34% 41%

CFS 34% 40%

From the results above, it is clear that the

improvement of bandwidth is approximately close. At

the same time cascading plus caching is still the best

in improving the response time among other strategies

including CFS using P1 pattern. The reason of that is

the temporal frequent propagation of the popular files

to the clients concentrating on the time of the request

over the available space which improves the response

time and bandwidth. This consider as drawback of

such strategy although the much improvement of

Response time savings. There is neglect in considering

the space which is considered in this article.

5.3. P2

P2: Is geographical locality patterns, the three

replication strategies using P2 pattern listed in Table 5

were compared to the base case of no replication.

Table 5 lists the improvement ratio in response time

and bandwidth savings.

Table 5. Improvement in response time and bandwidth savings for

geographical locality data as compared to the base case of no

replication.

Replication Strategy
Improvement in

Response Time

Bandwidth

Savings

Cascading Plus Caching 59% 58%

Fast Spread 65% 62%

CFS 66.5% 60%

From the results above, it is clear that the

improvement of bandwidth using CFS is

approximately close and is more efficient than

cascading plus caching. At the same time CFS is the

best in improving the response time among other

strategies using P2 pattern. The reason of that is the

planned availability of the requested files nearby the

98 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

requested node. Although the CFS concentrates on the

spreading the files among the network, it takes into

consideration the PNOR to decide whether replacing

the requested file or not.

Followings are Figure 3 and Figure 4 which show

via graphs the percentage savings in response time and

bandwidth, respectively, using the three patterns for the

three strategies, cascading plus caching, fast Spread and

CFS. Figure 5 shows via a graph the comparison of the

response time as a function of q in terms of

geographical locality index for Fast Spread and CFS. q

is the index used to measure the amount of locality in

the patterns, where 0<q<1. If q=0, it means there is no

locality, when q=1 it means all the requests are for the

same file.

Figure 3. The graph compares the percentage savings in response

time for P-random, P1 and P2 for three strategies (cascading plus

caching, fast spread and CFS).

Figure 4. The graph compares the percentage savings in bandwidth

for P-random, P1 and P2 for three strategies (cascading plus

caching, fast spread and CFS).

Figure 5. The graph of comparing the response time as a function of

q in terms of geographical locality index for fast spread and CFS.

6. Conclusions

This article defined a new dynamic replication strategy

that supports, via a network, the use, copy,

replacement, and management of requested replicas

with dynamic, managed lifetime. The article discussed

the need for improving the dynamic replication

strategies to manage large data sets in a high

performance data grid. Dynamic replication enables

faster access to files, decreases the bandwidth

consumption and distributes server load. The above

can be said about static replication too. The advantage

of dynamic replication is that it automatically creates

and deletes replicas according to changes in the access

patterns. This ensures that the benefits of replication

do continue even if user behaviour changes frequently.

We also presented various dynamic replication

strategies for this scenario and tested them using the

simulator. We generated three different kinds of

access patterns, random, temporal, and geographical

and showed how the bandwidth savings and latency

differ with each kind of access pattern. Three

strategies performed the best in our tests: Cascading

plus caching, fast spread and CFS. While cascading

plus caching worked well for cases when the request

patterns were random, fast spread worked better when

there was a small amount of locality in the file usage
patterns. On the other hand, CSF worked better when

there was a geographical locality patterns. We

analyzed why we thought these were the best

strategies and the constraints of each method.

References

[1] Barbara D. and Imielinski T., “Sleepers and

Workaholics: Caching Strategies for Mobile

Environments,” in Proceedings of the ACM

SIGMOD International Conference on

Management of Data SIGMOD, USA, pp. 1-12,

1994.

[2] Bsoul M., Al-Khasawneh A., Kilani Y., and

Obeidat I., “A threshold-based dynamic data

replication strategy,” J Supercomput, Published

online: 13 AUGUST 2010. DOI

10.1007/s11227-010-0466-3.

[3] Cao G., “On Improving the Performance of

Cache Invalidation in Mobile Environments,”

Computer Journal of Mobile Networks and

Applications, vol. 7, no. 4, pp. 291-303, 2002.

[4] Chuang P. and Chiu Y., “Constructing Efficient

Cache Invalidation Schemes in Mobile

Environments,” in Proceedings of 3
rd

International IEEE Conference on Signal-Image

Technologies and Internet-Based System,

Shanghai, pp. 281-288, 2007.

[5] Fan L., Cao P., Almeida J., and Broder Z.,

“Summary Cache: A Scalable Wide-Area Web

Cache Sharing Protocol,” IEEE/ACM

Transactions on Networking, vol. 8, no. 3, pp.

281-293, 2000.

[6] Gwertzman J. and Seltzer M., “The Case for

Geographical Push-Caching,” in Proceedings of

Presented at 5
th
 Annual Workshop on Hot

Operating Systems, USA, pp. 51-55, 1995.

[7] Hoschek W., Jean-Martinez J., Samar A.,

Stockinger H., and Stockinger K., “Data

CFS: A New Dynamic Replication Strategy for Data Grids 99

Management in an International Data Grid

Project,” in Proceedings of 1
st
 IEEE/ACM

International Workshop on Grid Computing,

Bangalore, India, pp. 17-20, 2000.

[8] Hou W., Su M., Zhang H., and Wang H., “An

Optimal Construction of Invalidation Reports for

Mobile Databases,” in Proceedings of the 10
th

International Conference on Information and

Knowledge Management, USA, pp. 259-269,

2001.

[9] Huang Y., Cao J., Wang Z., Jin B., and Feng Y.,

“Achieving Flexible Cache Consistency for

Pervasive Internet Access,” in Proceedings of the

5
th
 Annual IEEE International Conference

Pervasive Computing and Communications, NY,

pp. 239-250, 2007.

[10] Jing J., Elmagarmid A., Helal A., and Alonso R.,

“Bit-Sequences: An Adaptive Cache Invalidation

Method in Mobile Client/Server Environments,”

Mobile Networks and Applications, vol. 12, no.7,

pp. 115-127, 1997.

[11] Kahol A., Khurana S., Gupta S., and Srimani P.,

“A Strategy to Manage Cache Consistency in a

Distributed Mobile Wireless Environment,”

Computer Journal of IEEE Transaction on

Parallel and Distributed Systems, vol. 12, no. 7,

2001.

[12] Lam K., Chan E., Leung H., and Au M.,

“Concurrency Control Strategies for Ordered

Data Broadcast in Mobile Computing Systems,”

Computer Journal of Information Systems, vol.

29, no. 3, pp. 207-234, 2004.

[13] Lee S., “System and Method for Maintaining

Cache Consistency in a Wireless Communication

System,” United States Patent, no. 14, 2006.

[14] Madhukar A. and Alhajj R., “An Adaptive Energy

Efficient Cache Invalidation Scheme for Mobile

Databases,” in Proceedings of the ACM

Symposium on Applied Computing, Dijon France,

pp. 23-27, 2006.

[15] Shao X. and Shanglu Y., “Maintain Cache

Consistency of Mobile Database using Dynamical

Periodical Broadcast Strategy,” in Proceedings of

the Second International Conference on Machine

Learning and Cybernetics, China, pp. 2389-2393,

2003.

[16] Yi S., Shin H., and Jung S., “Enhanced Cost

Effective Cache Invalidation for Mobile Clients in

Stateless Server Environments,” Lecture Notes in

Computer Science, vol. 3207, pp. 387-397, 2004.

[17] Yi S., Song W., Jung S., and Park S. “A Cost

Effective Cache Consistency Method for Mobile

Clients in Wireless Environment,” DASFAA,

Lecture Notes in Computer Science, vol. 2973,

pp. 908-915, 2004.

[18] Yuen J., Chan E., Lam K., and Leung H.,

“Cache Invalidation Scheme for Mobile

Computing Systems with Real-time Data,”

Computer Journal of ACM SIGMOD Record,

vol. 29, no. 4, pp. 34-39, 2000.

Feras Hanandeh is currently an

assistant professor at the Prince Al

Hussein Bin Abdullah II Faculty of

Information Technology, Al-

Hashemite University, Jordan. He

obtained his PhD in computer

science from University Putra

Malaysia, Malaysia in 2006. His current research

interests include distributed databases, parallel

databases focusing on issues related to integrity

maintenance, transaction processing, query processing

and optimization; grid computing, artificial

intelligence and geographical information systems.

Mutaz Khazaaleh is a lecturer in

computer science and information

technology at Al-Balqa Applied

University, Irbid, Jordan. He holds

Master degree in computer science

and information from the Yarmouk

University, Jordan in 2005. He has

more than 8 years of teaching experience.

Hamidah Ibrahim is currently an

associate professor at the Faculty of

Computer Science and Information

Technology, Universiti Putra

Malaysia. She obtained her PhD in

computer science from the

University of Wales Cardiff, UK in

1998. Her current research interests include databases

(distributed, parallel, mobile, bio-medical, XML)

focusing on issues related to integrity constraints

checking, cache strategies, integration, access control,

transaction processing, and query processing and

optimization; data management in grid and

knowledge-based systems.

Rohaya Latip is a senior lecturer at

the Technology Communication and

Network Department, Faculty of

Computer Science and Information

Technology. She received her BSc

degree in computer science from

University Technology Malaysia in

1999. Her MS degree in distributed system in 2001,

and her PhD in distributed database in 2009 from

University Putra Malaysia. She is a member of IEEE

computer society and also an associate researcher at

the Laboratory of Computational Science and

Informatics, Institute of Mathematical Science

(INSPEM), University Putra Malaysia. Her main

research interest includes data grid, distributed

database, grid computing, and network management.

