
The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018 857

Reverse Engineering of Object Oriented System

using Hierarchical Clustering

Aman Jatain1 and Deepti Gaur2
 1Department of Computer Science, Amity University, India

2Department of Computer Science, North Cap University, India

Abstract: Now a day’s common problem faced by software community is to understand the legacy code. A decade ago the

legacy code referred as the code written in language like Common Business Oriented Language (COBOL) or Formula

Translation (FORTRAN). Today software engineers primarily use object oriented language like C++ and Java. This implies

that tomorrow’s legacy code is written today because object oriented programs are even more difficult and complex to

understand which leads us towards making software that is vague and having insufficient design documentation. Object

oriented programming produce many problems to software developers in maintenance phase. So reverse engineering

methodologies can be applied to resolve it. In literature various techniques has been proposed by researchers to recover the

architecture and components of legacy systems. The use of clustering algorithms has recently been discussed by many for

reverse engineering and architecture recovery. Methodology: In this paper Rational Software Architect (RSA) is used to

recover the design from source code during reverse engineering process and then feature selection method is applied to select

the features of software system. Hierarchical clustering is used after calculating the similarity measure between classes to

cluster the similar classes into one component. The proposed technique is demonstrated by a case study.

Keywords: Clustering, feature selection, hierarchical, reverse engineering, rational software architect.

Received April 28, 2015; accepted November 29, 2015

1. Introduction

Today’s software development is defined by continuous

evolution of software products that are regularly

updated during their usage. In most of the cases

systems grow inevitably by adding new features or by

changing the system architecture due to new

technologies or business plans. This unusual growth

makes the systems difficult to manage and maintain.

But in many case, these systems have been

maintained for many years, these are “legacy systems”

that are vital for organization, but often difficult to

understand and maintain [7]. Ian Somerville defines the

legacy systems as “older legacy system” that remain

vital to organization.

Most of the time legacy applications are not capable

to support changing business requirements and new

upcoming technologies because they were developed

many years ago by using traditional programming

language like C, Common Business Oriented Language

(COBOL) and Pascal. Legacy applications are vital for

the organization, so it is not a wise decision to replace

the existing application for business due to cost and

other hidden issues. To address the legacy system

issues, reverse engineering process has been adopted as

one of the most promising technologies [25]. This

paper focuses on analysing the object oriented system

through the reverse engineering process. Here motive

of reverse engineering is to extract design information.

Here emphasis is given on class diagram because class

diagram are widely used for visualizing, describing

and documenting different aspect of system. Class

diagram shows the structural information of the

system. There are various reverse engineering tools

available in literature for C and other procedural

oriented language. But as focus is on object oriented

programming language specially C++ and JAVA,

so widely used tools are: Sniff, Together Java,

Understand Cee PlusPlus, Rational Rose. Most

promising tools for reverse engineering are

developed by International Business Machines

(IBM), which includes: Rational Rose, Rational

Architect and Rational Raphsody. We have used

Rational Software Architect (RSA) to extract the

class diagram from the source code. After getting

the class diagram, the hierarchical clustering

algorithm is implemented considering various

similarity measure to group classes into meaningful

subsystems. The proposed methodology is

implemented on payroll management system.

2. Reverse Engineering Process

Reverse engineering has always been a central point

and subject of active research in software

engineering [29].

Reverse engineering is the process of analysing a

subject system to identify the system’s components

and their interrelationships and create representation

of the system in another form or at a higher level of

858 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

abstraction [28]. During reverse engineering the system

architecture, feature, design and structure of the legacy

system are captured to obtain the design model and

allows the legacy system to be easily modified without

the risk and cost associated with the changes in the

legacy system. As shown in Figure 1 Chikofsky and

Cross [7] reverse engineering is defined as the process

of analysing a system:

 To identify its components and interrelationship

between them. 

 To represent the system at higher level of

abstraction.

Figure 1. Reverse engineering.

Reverse engineering efforts for object oriented

programming is difficult because program written in

C++ and Java are highly fragmented [2, 21]. During

modernization of the legacy system, software

developers devote most of their effort in understanding

the behaviour and structure of the system. In case of

object oriented code, this might be more difficult, as

multiple scattered objects assigned to the same

function. The lifetime of legacy system can be

increased by renovating or reengineering it [11].

Reengineering is the part of a software

modernization process. But before a legacy system can

be reengineered, the system must be reverse engineered

[16, 24]. Reverse engineering is the prerequisite for

legacy system’s renovation. Reverse engineering

includes various activities such as recovery of

architecture, redocumentation and so on and it has

strong relationship to the field of reengineering and

software maintenance [12, 32]. Though the term

“legacy system” is associated with systems written in

older programming languages, but recent object

oriented systems are having similar problems.

3. Related Work

In today’s scenario every aspect of business is driven

by IT and job in the field of IT is not stable because in

IT people keep switching their jobs form one industry

to other. So, when people switch their jobs and leaving

the ongoing project in between creates a lot of

confusion for the newly joined people. So at that time

reverse engineering can be better option to get

insight into the project. Several past works have

described how to reverse engineer an object

oriented legacy system to make it suitable for future

technologies. Origin of reverse engineering has

been in analysis of hardware for commercial or

military advantage [7, 27].

The objective is to extract design information

from end products without having any additional

knowledge of the methods involved in the

production. The same techniques are being

researched in the last few years for application in

legacy software systems to modernize it. Research

in reverse engineering of object oriented software

has mainly started in 1999 after leading European

companies, namely Daimler-Benz and Nokia

launched a research project named FAMOOS [23]

to investigate tools and techniques for dealing with

object oriented legacy systems. Major contribution

of researcher in the field of reverse engineering is

summarised in Table 1. Beishu and Qian [5]

discussed the design and implementation of reverse

engineering tool for object oriented paradigm

named as Jade Bird Object Oriented Reverse

Engineering Tool (JBOORET) for C++ program.

It is developed in Microsoft Visual C++.

JBOORET extract design information from C++

code through pairing and store information in

database. After storing design information in

database, model mapping is done to obtain the

Object Oriented Development (OOD) model and

OOD diagram are shown using automatic layout

algorithm.

Lanza in [20] proposed an approach to reverse

engineer object oriented system by combining

graphs and metrics. Lanza implemented a tool

called as CodeCrawler, which graphically display

source code and provided an interactive

environment to the user.

Lanza discussed various reasons why reverse

engineering is needed and what are the different

problems software industry is facing during

reengineering the legacy system. First he collected

various class metrics and attributes metrics and then

object oriented system is visualized using graphs by

using layout algorithm. Graphs are generated by a

tool “CodeCrawler” implemented in Smalltalk in

the Visual Works 3.0 environment and framework

used by CodeCrawler to produce the graph is

HotDraw. Systa [31] provided some evidence of

importance of SCED, a prototype tool used for

modelling the dynamic behaviour of object oriented

system because both static and dynamic information

need to be extracted to understand the system.

During reverse engineering of existing software, a

parser and debugger are used for extracting the

static and dynamic behaviour. This parsed

information can be seen as a graph using Rigi, a

Reverse Engineering of Object Oriented System using Hierarchical Clustering 859

reverse engineering environment. Both static and

dynamic information is extracted to understand the

different aspect of the software system. Static

information is visualized using the Rigi environment

and dynamic information is gathered by running the

Java software in a debugger called JDebugger. This

information is viewed as scenario diagram using the

SCED tool.

The objective of reverse engineer is to cope with the

complexity of the software system by constructing

various models. A system can be visualized using

multiple views. Ramasubu in [26] discussed the use of

UML Model to produce the multiple views of a system

in 2001. He explained the various difficulties in reverse

engineering complex object oriented system and then

emphasized the use of Unified Modelling Language

(UML) models. In this paper an Energy Information

System (EIS) is taken as a case study to formulate the

experience of reverse engineering process. The EIS

application is created by an energy service provider and

frequently used application in real word. In reverse

engineering process, the practical tools play an

important role. Kollmann et al. [19] discussed in the

importance of case tools for reverse engineering and

presented state of art of reverse engineering of object

oriented systems. In this paper four tools are compared

form industry and research regards to reverse

engineering process.

Comparison is done both manually as well as

automatically. The compared tools are from industry

and research regards to reverse engineering process.

The compared tools are TOGETHER and

RATIONAL ROSE from industry and IDEA and UML

to Java and Back Again (FUJABA) from research

prototype. Reverse engineering frameworks are also

discussed in literature. Ferenc et al. [15] in had made an

effort in this direction. They presented a framework for

reverse engineering process named as Columbus. This

tool is capable to analyse the large C++ projects and

schema.

The architecture of the tool is very flexible and is

also extensible for reverse engineering process. The

developed tool first analyses the subject system and

then extracted information is presented in the form of

schema. In this paper evaluation of the tool is also

performed to check its capabilities on three case

studies: IBM Jikes compiler, Leda graph library and

StarOffice Writer. Reverse engineering of object

oriented systems using grouping is also adopted by

researchers. Grouping adds much benefit to the process

of reverse engineering. Some of the benefits discussed

by Talerico [32], in his master thesis are: better

understanding of system and its design recovery, higher

abstraction level and reduced complexity. Some of the

researchers worked towards developing product tools

for visualizing the software artifacts during reverse

engineering process. Eshah [13] in 2003 extended a

software product tool named Visualizing Object

Oriented C++ files (VOO++) which was developed

by Mersa in 2000 by incorporating the software

metrics into the VOO++ and the new developed

tool was named as Visualizing and Measuring C++

files (VMCPP). The tool was developed to visualize

the software and its main objective was extraction

of the software components and software attributes,

and presenting them graphically to software

developers. Lanza in [20] performed reverse

engineering ofan object oriented system by

combining two techniques:

1. Software visualization.

2. Software metrics.

 By using combination of these two techniques a

new approach is developed named as polymetric

view. The polymetric views were used in three

different reverse engineering contexts i.e.,

1. Coarse- grained software visualization.

2. Fine-grained software visualization.

3. Evolutionary software visualization.

 Tonella in [33] discussed approaches to

reverseengineer various design views from source

code. He presented a framework based approach

that consisted of a graph representation of a

program. This approach was named as Object Flow

Graph (OFG).

The proposed technique is based on tracing the

flow of information of objects by allocation

statements. To understand the structure and

behaviour of a legacy system whose documentation

is not available Lopez and S. et al proposed a

metamodel in [22], for reverse engineering of C++

code into sequence diagram. In metamodel the

characteristics of the system such as entities,

attributes and relationship are included. UML is

widely used high level object oriented language for

specification.

Model driven architecture approach i.e., Model

Driven Architecture (MDA) is also emerged in last

few years. Favre in [14] discussed the MDA

concept in his paper on reverse engineering.

He discussed this approach in reference to of

both platform dependent and platform independent

model of object oriented system. Objective of MDA

is to increase the level of abstraction by incorporating

the use of models.

Models are the primary artifacts in the software

development. MDA is a model driven technical

framework to enhance the portability,

interoperability and reusability using separation of

concerns. Now a day’s distributed software system

has become important for the functioning and

growth of civilization. In [9] Cosma analysed the

distributed object oriented systems through the

process of reverse engineering in his Ph.D thesis.

The most important part of any system is having

860 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

the source code available for documentation [34].

But if the source code is not available due to some

unavoidable reasons then it poses several problems in

understanding the system on software engineers.

Tonella et al. [34] discussed various reverse

engineering techniques when source code is not

available.

Table 1. Techniques and tools for reverse engineering.

S.

No
Year Author Methodology Tool

Legacy

language

1 1997 Huang et al.
Reverse

Engineering
JBOORET C++

2 1999 Michele Lanza

Reverse

Engineering

combining
graph and

metrics

Code

Crawler
C++

3 2000 TarjaSysta

Static and
Dynamic

Reverse

Engineering

SCED

Prototype
Java

4 2001 Surendranath UML Notation
Rational

Rose
Java

5 2002
Rudolf, Tibor et

al.

Reverse
Engineering

Framework

Columbus C++

6 2003 Daniele Talerico

Reverse
Engineering

using graphical

grouping

Code

Crwaler
Smalltalk

7 2003
Nidal Bashir

Eshah

Reverse
Engineering by

combining

metrics

VMCPP C++

8 2003 Michele Lanza
Polymetric

View
Code Crwler C++

9 2005 Polo Tonella
Object flow

graph
Algorithm

Object
Oriented

10 2005
Wei,Tzerpos et

al.
Design pattern DPVK C++, Java

11 2006
Maximo,

Azucena et al.

Metamodel and

conversion

algorithm

- C++

12 2006
Chiara, Lazzaro

et al.
UML Models -

Object
Oriented

13 2007
Xinyi, Godfrey

et al.
Hybrid Model Swagkit

Object

Oriented

14 2008 Liliana Favre
MDA based

Framework
- Java

15 2009 Dan Cosma
Distributable
features based

approach

M SiDe
Object

Oriented

16 2010
Holger, Muller

et al.

Rigi

Environment
Rigiedit

C, C++
and

COBOL

17 2011
Pereira, Favre et

al.

MDA based

Approach
Algorithm Java

18 2012
Salman, Basha

et al.

UML

(Extraction of

State Transition
Diagram)

- C++

19 2012 Thakore et al.
Software

Quality Metrics
SRET Java

20 2013 Mrinal et al.
UML (Sequence

Diagram)

GNU

pic2plot
Java

21 2013
Abhijeet, Sagar

et al.
UML Diagram Framework Java

22 2014
Hugo, Jordi et

al.

Model Driven

Reverse

Engineering

Framework Java

Rigi environment also played an important role in

analysing and documenting the large software system

in the late nineties. Rigi environment is a research

tool that helps in reverse engineering of large

software systems. Kienle and Müller in [18] in their

article described Rigi‟s main components and its

functionality, and asses its effectiveness on reverse

engineering. Rigi is used to model C, C++ and

COBOL code. Some of the researcher also

emphasis the role of use case diagram while reverse

engineering the software system. Claudia et al. [8]

discussed an MDA approach to recover the use case

diagram form java code. With emergence of MDE

in last decade, its principle and techniques have

been used as effective reverse engineering solution.

Application of MDE in reverse engineering is

called as Model Driven Reverse Engineering

(MDRE) and it is used to reverse engineer the

legacy system in order to generate the model based

views to facilitate the legacy system understanding

and manipulation. Bruneliere et al. [6] discussed the

different MDRE practices and based on their

experience in legacy system modernization they

introduced MoDisco: a generic, extensible and

global MDRE approach and a framework

implemented in eclipse plug in.

4. Proposed Methodology

Since last decade software industry and research

communities felt the need of practice tools to

support reverse engineering activities. Now days

many of the CASE tools help support reverse

engineering. To recover the architecture of

software, reverse engineering plays an important

role. UML is the most commonly used standard

today in the industries to represent the object

oriented software at higher level of abstraction [1].

Most of the existing systems do not have a software

architecture which is reliable and robust [30].

Even some of the legacy systems are designed

without software architecture as design phase. To

migrate the object oriented systems into component

based systems, reverse engineering is the first step

and to transform into component based system class

diagram needs to be recovered from code. By using

reverse engineering tools, class diagrams can be

generated as part of software architecture recovery

An UML class diagram is the best suited diagram in

UML to present classes and relationship between

them and in turn the architecture of object oriented

systems.

We have examined various reverse engineering

tools to generate the class diagrams form object

oriented code and studied tools are: ArgoUML,

Astah, Enterprise Architect, Rational Software

Architect and Eclipse. Based on some model

properties and language support we have examined

during reverse engineering process, we found

Rational Software Architect as best suited for our

Reverse Engineering of Object Oriented System using Hierarchical Clustering 861

Cluster Formation

Extracting

Fact Extraction

Analysis Phase

Supply into

Object Oriented

Legacy System

Understanding of the

Source Code of the

System

Reverse

Engineering

Tool (RSA)

Comprehension

Class Diagram

Selection of

Similarity Measure

by using

Hierarchical

Clustering
Algorithm

Feature Vector

Based Method

Interdependency

Matrix

Clusters depicting

Components

requirements. It is a modelling and development

environment that provides aid to UML. It helps in

designing architecture of system developed in C++ and

Java. It is built on the Eclipse framework. Rational

Software Architect is well recognized tool to depict no.

of classes and dependency information between them.

It takes source code file as input and produce

corresponding UML diagram. In our work we have

generated the class diagram, to understand the

dependency information. Figure 2 depicts the research

framework.

Figure 2. Framework for reverse engineering of object oriented

system.

4.1. Agglomerative Hierarchical Clustering

In this section, we have provided an overview of

hierarchical clustering algorithm and illustrate howit is

utilized to cluster the similar classes into one cluster.

The generated cluster can be seen as a component

having similar set of classes [24]. In agglomerative

clustering algorithm set of individual entities are

grouped into one cluster [3]. So, first step is to identify

the entities to be clustered. In this paper our aim is to

reverse engineer the object oriented system to identify

classes and cluster similar classes into one with purpose

of generating the components. Classes are considered

as the entities to be clustered because they are the

fundamental units of an object oriented system.

Agglomerative hierarchical clustering takes the set

of classes as input and then a similarity measureis used

to calculate the similarity between classes. In this paper

the following notations are used to describe a software

system:

 Assume ΔC is a set of classes in a software system X

and ΔCOM is the set of components in a software

system.

 Let U_SET(com) is the set of classes in a component

com. Classes are denoted by clasi and clasj. Classes

are grouped into components.

 Rel (comi,comj) depict the set of dependency relation

between classes comi and comj.

 Con (clasi , clasj.), indicate the connection strength

between classes.

In agglomerative hierarchical clustering, we start

with the single entity i.e., class and as we move

forward at each step similar entities are grouped

together into one. During clustering process to

calculate the similarity there are various linkage

methodologies available of hierarchical algorithm.

To depict the working of linkage method, consider

com𝑖 and com𝑗 denotes two different components

and comn is newly formed component after

combining comi, and comj. sim (comi,comj)

indicates the similarity between comi, and comj.

 Single Linkage

Sim(comi, comn)=Max(sim(comi, comj), sim(comi,

comn))

 Complete linkage

Sim(comi, comn)=Min(sim(comi, comj), sim(comi,

comn))

 Average Linkage

a. Weighted Average Linkage

Sim(comi, comn)=1/2(sim(comi, comj),

1/2sim(comi, comn))

b. Unweighted Average Linkage

Sim (comi,comn)= (sim (comi,comj)*size

(comj)+sim(comi, comn)*size (comn)) /(size

(comj)+ (size(comn))

Algorithm 1: Agglomerative Hierarchical Clustering

1. Find the similarity between classes in ∆C.

2. Initially a set of component is created having a

single class in each component.

3. Repeat

a. Most similar component com and com

are grouped into a new component.

b. U_SET (com) is updated with newly

formed component.

c. Recompile the similarity between newly

formed component com and other

component till |U_SET(com)| =1

4. Return U_SET(com)

In literature researcher discussed that, for software

clustering complete linkage provides the most

appropriate clusters [4, 17]. In this paper we have

adopted the complete linkage method during

hierarchical clustering.

4.2. Selection of Similarity Measure and

Weighting Scheme

To quantitatively determine the similarity between

classes, similarity measures play an important role.

The choice of a similarity measure has put more

impact on the results rather than clustering

algorithm [17]. The relation between classes is

weighted by using connection strength of classes. It

is likely that higher the number of connection

between classes, more similar would be classes; this

methodology is called as direct link method. A class

862 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

can be more accurately measured by features it is

providing to the system. The method used to quantify

the classes using feature is called as feature vector

method. In software clustering feature vector method is

more appealing than direct link method [4]. For object

oriented system, the value of feature vector can be

easily calculated by weighted schemes. In literature

there are three weighted scheme:

1. Binary weighting scheme.

2. Absolute weighting scheme.

3. Relative weighting scheme.

In this paper we have applied binary weighting scheme

to avoid additional amount of time wasted in

computation of weights and due to this it has been

largely used in software clustering [10, 17]. Binary

weighting scheme weight is determined in between

classes by using the connection strength. This scheme

is defined as follows:

 
 

 

1 0

0 =

0

, if con clas clas |
i j

W clas clas or | con clas clas | or i j
i j i jB

, otherwise

 




 




Equation (1) depicts that there is a connection between

classes and 0 denotes, there is no connection. A class is

connected to itself, so there is one when i=j. By

assigning weight to classes based on the connection

strength and the binary weighting scheme, an

interdependency matrix is prepared. For example a

class can be modelled by the interdependency matrix as

(1, 0, 1, 0), which denotes that clas1 is having

connections with clas1, clas3.

5. Case Study-Payroll Management System

In this section proposed framework is implemented on

the case ‘Payroll Management System (PMS)’. PMS is

a window based system for a small company. Mainly it

includes three modules: salary management, attendance

management and employee management. The system is

implemented in Java to support object oriented

concepts. The aim of the PMS is to help the

administrative staff in getting all the information

required by the employer. The source code of the

project is available at the link:

http://www.enggroom.com/java.aspx. In our case study

we have retrieved the classes in the form of class

diagram from the source code of the project. Extracted

class diagram is shown in Figure 3. and classes are

shown by Rectangle boxes. Each class is consisting of

operations and methods inside it. PMS is having 10

classes. After getting the class diagram next step is to

implement the hierarchical clustering algorithm to

cluster the similar classes into one component as

discussed below stepwise.

 Step 1. First step is to generate the

interdependency matrix using the feature vector

method. In interdependency matrix classes are

characterized by features and are applied to

feature vector method to calculate the similarity

between classes.

Table 2. Interdependency matrix of PMS.

 Cls1 Cls2 Cls3 Cls4 Cls5 Cls6 Cls7 Cls8 Cls9 Cls10

Cls1 1 0 0 0 0 0 1 1 1 0

Cls2 0 1 0 0 0 0 1 1 1 0

Cls3 0 0 1 0 0 0 1 1 1 0

Cls4 0 0 0 1 0 0 1 1 1 0

Cls5 0 0 0 0 1 0 1 1 1 0

Cls6 0 0 0 0 0 1 0 0 1 0

Cls7 1 1 1 1 1 0 1 1 0 0

Cls8 1 1 1 1 1 0 1 1 0 0

Cls9 1 1 1 1 1 1 0 0 1 0

Cls10 0 0 0 0 0 0 0 0 0 1

 Figure 3. Extracted class diagram of PMS.

So, by using binary weighting scheme weight is

assigned to each feature and interdependency

(1)

http://www.enggroom.com/java.aspx

Reverse Engineering of Object Oriented System using Hierarchical Clustering 863

matrix is prepared as shown in Table 2. Here, cls1 can

be represented by the vector <1, 0, 0, 0, 0, 0, 1, 1, 1,

and 0>, which denotes that cls1 has calling connection

with the classes cls1, cls7, cls8 and cls9 and so on.

 Step 2. Next step is to cluster the most similar

classes. For this distance between each pair of class

which is represented by feature in interdependency

matrix is calculated. Here distance measure is

Euclidean distance and the resulting matrix is shown

in Figure 4.

Figure 4. Euclidean distance between classes.

 Step 3. In step 2 distances between various classes is

calculated. Now in this step grouping of those

classes takes place, those are in close proximity.

Two individual classes or newly formed clusters are

grouped together into one individual cluster using

the linkage function or similarity measure as shown

in Figure 5.

Figure 5. Linkage matrix.

In Figure 5 each row identifies a link between

clustered classes. The first two columns denote the

classes that have been clustered. The third column

denotes the distance between these classes. Here the

linkage function starts by grouping clas7 and clas8,

which have close proximity and distance value=0 and

continue grouping clas4 and clas5. The third row

denotes that the linkage function clubbed together clas1

and clas12. Question here is that if in the PMS there are

only 10 classes, what are the clas12, clas13, clas14,

clas15, clas16, clas17 and clas18 in the Figure 6.

Clas12 is the newly formed cluster by grouping the

clas4 and clas5 and similarly clas13 is the newly

formed cluster by groping class4 and clas5, clas14 is

the newly formed cluster by combining clas1 and

cluster 12 and so on.

 Step 4. Final output is shown in the form of

dendrogram is shown in Figure 6. All the steps are

implemented in matlab.

Figure 6. Dendrogram.

 Step 5. Now the clusters from the dendrogram

are extracted using inconsistency matrix.

Inconsistency matrix is shown in Figure 7.

Figure 7. Inconsistency matrix.

In Figure 7 column1 gives mean of the length of

all the links, column2 gives the standard deviation

of all the links till its level. Column3 denotes the

number of links and column4 indicates the

inconsistency coefficient. Lower the value of

inconsistency coefficient, more similar the classes

within a cluster. Figure 7 shows that clas1, clas2,

clas3, clas4, clas5 are more similar as they have

zero inconsistency coefficients and validated our

results where we have placed these classes into one

cluster. Same way, clas10 with clas6 is having less

similarity value and clas9 with clas7 and clas8 are

least similar.

Figure 8. Clusters of classes.

We have presented the final result in Figure 8 in

the form of cluster. Here each cluster represents a

component consisting of number of classes inside it.

864 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

6. Conclusions and Future Work

In this paper we have proposed a novel approach for

reverse engineering object oriented legacy systems.

We have provided a through literature in the field of

reverse engineering and summarize the review in the

form of a table. Reverse engineering is the powerful

technique to understand a legacy system working. We

have considered the source code as an important

artefact in the proposed methodologies and class

diagram is extracted using Rational Software Architect

(RSA) tool. After getting the class diagram hierarchical

clustering algorithm is implemented. The hierarchical

clustering is a very appropriate algorithm to apply to

any software system because the nature of this is clear

and demonstrative. Classes are represented in the form

of feature and weight is assigned to each feature using

binary weighting scheme. Similarity measures are used

to calculate the similarity between classes so that

similar classes can be placed into a cluster that

represent component. To validate the cluster formation

inconsistency coefficient is applied. The proposed

methodology is implemented on a case study PMS.

Future work will focus on finding a cut-off position to

get accurate clustering results and identification of

suitable components from legacy object oriented

system by clustering. We will also study procedure for

implementation of validation rules for better output.

References

[1] Abbaneo G., Flammini F., Lazzaro A., and

Marmo P., “UML Based Reverse Engineering for

the Verification of Railway Control Logics,” in

Proceedings of the International Conference on

Dependability of Computer Systems, Szklarska

Poreba, pp. 3-10, 2006.

[2] AbdulMoiz S. and Basha J., “Extraction of State

Transition Diagrams from Legacy C++

Application,” Procedia Technology, vol. 4, pp.
543-547, 2012.

[3] Abu Abbas O., “Comparison between Data

Clustering Algorithm,” The International Arab

Journal of Information Technology, vol. 5, no. 3,

pp. 320-325, 2008.

[4] Anquetil N. and Lethbridge T., “Experiments with

Clustering as Software Remodularization

Method,” in Proceedings of 6th Working

Conference On Reverse Engineering, Atlanta, pp.

235-255, 1999.

[5] Beishu H. and Quian B., “JBOORET: An Object

Oriented Reverse Engineering Tool,” in

Proceedings of 25th International Conferenceon

Computer and Application, China, pp. 71-76,

1999.

[6] Bruneliere H., Cabot J., Dupe G., and Madiot F.,

“MoDisco: A Model Driven Reverse Engineering

Framework,” Journal of Information and

Software Technology, vol. 56, no. 8, pp. 1012-

1032, 2014.

[7] Chikofsky E. and Cross J., “Reverse

Engineering and Design Recovery: A

Taxonomy,” IEEE Software, vol. 7, no. 1, pp.
13-17, 1990.

[8] Claudia P., Liliana M., and Liliana F.,

“Recovering Use Case Diagram form Object

Oriented Code: an MDA Based Approach,” in

Proceedings of the 8th International

Conference on Information Technology: New

Generations, Las Vegas, pp. 737-742, 2011.

[9] Cosma D., Reverse Engineering of Distributed

Object Oriented System, Ph.D Thesis,

Politehnica, University of Timisoara, 2009.

[10] Davey J. and Burd E., “Evaluating the

Suitability of Data Clustering For Software

Remodularization,” in Proceedings of the 7th

Working Conference on Reverse Engineering,

Brisbane, pp. 268, 2000.

[11] Demeyer S., Ducasse S., and Nierstrasz O.,

Object Oriented Reengineering Patterns,

Morgan Kaufann, 2002.

[12] Dong X. Godfrey M., “A Hybrid Program

Model for Object-Oriented Reverse

Engineering,” in Proceedings of 17th

International Conference on Program

Comprehension, Canada, pp. 1-10, 2007.

[13] Eshah N., Incorporating Object-Oriented

Metrics into a Reverse Engineering Tool,

Thesis, University of Putra, 2003.
[14] Favre L., “Formalizing MDA-Based Reverse

Engineering Processes,” in Proceedings of the

6th International Conference on Software

Engineering Research, Management and

Applications, Prague, pp. 153-160, 2008.

[15] Ferenc R., Beszedes A., Tarkiainen M., and

Gyimothy T., “Columbus- Reverse

Engineering Tool and Schema for C++,” in

Proceedings of the International Conference

on Software Maintenance, Montreal, pp. 172 -

181, 2002.

[16] Gade A., Patil S., Patil S., and Pore D.,

“Reverse Engineering of Object Oriented

System,” International Journal of Scientific

and Research Publications, vol. 3, no. 4, pp.

1-7, 2013.

[17] Jackson D., Somers K., and Harvey H.,

“Similarity Coefficient: Measures of

Occurrence and Association or Simply

Measure of Occurrence,” The American

Naturalist, vol. 133, no. 3, pp. 436-453, 1989.

[18] Kienle H. and Muller H., “Rigi: an

Environment for Reverse Engineering,

Exploration, Visualization and

Redocumentation,” Science of Computer

Programming, vol. 75, no. 4, pp. 247-263,

2010.

Reverse Engineering of Object Oriented System using Hierarchical Clustering 865

[19] Kollmann R., Selonen P., Stroulia E., Systa T.,

and Zndorf A., “Study on the Current State of the

Art in Tool- Supported UML-Based Static

Reverse Engineering,” in Proceedings of the 8th

Working Conference on Reverse Engineering,

Richmond, pp. 22-32, 2002.

[20] Lanza M., Object-Oriented Reverse Engineering

Coarse-grained, Fine-grained, and Evolutionary

Software Visualization, Ph.D Thesis, Universitat

Bern, 2003.

[21] Lejter M., Meyers S., and Reiss S., “Support for

Maintaining Object-Oriented Programs,” IEEE

Transactions on Software Engineering, vol. 18,

no.12, pp. 1045-1052, 1992.

[22] López M., Alfonzo G., Pérez J., González S., and

Montes R., “A Metamodel to Carry out Reverse

Engineering of C++ Code into UML Sequence

Diagrams,” in Proceedings of the Electronics,

Robotics and Automotive Mechanics Conference,

Cuernavaca, pp. 1-6, 2006.

[23] Markus H. and Oliver C., “The FAMOOS Object-

Oriented Reengineering Handbook,” ESPRIT

Program Project no. 21975 (FAMOOS), Swiss

Government under Project no .NFS-2000-

46947.96 and BBW-96.0015, 1999.

[24] Meng F., Zhan D., and Xu F., “Business

Component Identification of Enterprise

Information System: A Hierarchical Clustering

Method,” in Proceedings of the International

Conference on E-Business Engineering, Beijing,

pp. 473-480, 2005.

[25] Muller H., Story M., Jahnke J., Smith D., Tilley

S., and Wong K., “Reverse Engineering: A

Roadmap,” in Proceedings of the Conference on

The Future of Software Engineering, Limerick,

pp. 47-60, 2000.

[26] Ramasubbu S., Reverse Software Engineering

Large Object Oriented Software Systems using

the UML Notation, Master Thesis, Virginia

Polytechnic Institute and State University, 2001.

[27] Rosenberg L., Software Re-Engineering, Software

Re-engineering,” Lawrence E. Hyatt Manager,

Software Assurance Technology Centre System

Reliability and Safety Office Goddard Space

Flight Centre, (NASA), Report No. -301-286-

7475, 1997.

[28] Salton G., “Development in Automatic Text

Retrieval,” Science, vol. 253, no. 5023, pp. 974-

980, 1991.

[29] Sarkar M. and Chaterjee T., “Reverse

Engineering: An Analysis of Dynamic Behavior

of Object Oriented Programs by Extracting UML

Interaction Diagram,” International Journal of

Computer Technology and Applications, vol. 4,

no. 3, pp. 378-383, 2013.

[30] Sinha A. and Jain H., “Ease of Reuse: an

Empirical Comparison of Components and

Objects,” IEEE Software, vol. 30, no. 5, pp. 70-

75, 2013.

[31] Systa T., Dynamic Modeling In Forward And

Reverse Engineering Of Object Oriented,

Software Systems, Ph.D Thesis, University of

Tampere, 1999.

[32] Talerico D., Grouping in Object-Oriented

Reverse Engineering, M.Tech Thesis,

University of Bern, 2003.

[33] Tonella P., “Reverse Engineering of Object

Oriented Code,” in Proceedings of the 27th

International Conference on Software

Engineering, Saint Louis, pp. 724-725, 2005.

[34] Tonella P., Torchiano M., Bois B., and Systa

T., Empirical Studies in Reverse Engineering:

State of The Art and Future Trends,”Journal

of Empirical Software Engineering, vol. 12,

no. 5, pp. 551-571, 2007.

Aman Jatain is currently

working with Amity University,

Gurgaon in the department of

computer science. She is pursuing

her doctoral degree in software

engineering. She has 6 years of

teaching and research experience.

She has done her master’s from Thapar University,

Patiala and B.tech from MaharshiDayanand

University, Rohtak. She has published more than 27

research papers in peer-reviewed international

journals and international conferences.

Deepti Gaur received M.Tech in

CSE degree from BIT Mesra

Ranch, India and Ph. D. from

Banashali University, Banasthali

India. Dr. Gaur is presently

working Associate professor in

NorthCap University, formerly

ITM University Gurgaon, Haryana, India. She has

17 years of teaching and research experience. She

had successfully completed a sponsored project of

AICTE Govt. of India. She has published more than

25 research papers in peer reviewed international

journals and international conference of repute. She

was convener of IEEE International Conference

(IACC) 2014, Gurgaon, India.

