
912 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

Multi-Classifier Model for Software Fault

Prediction

Pradeep Singh1 and Shrish Verma2
1Department of Computer Science and Engineering, National Institute of Technology, Raipur

2Department of Electronics and Telecommunication Engineering, National Institute of Technology,

Raipur

Abstract: Prediction of fault prone module prior to testing is an emerging activity for software organizations to allocate

targeted resource for development of reliable software. These software fault prediction depend on the quality of fault and

related code extracted from previous versions of software. This paper, presents a novel framework by combining multiple

expert machine learning systems. The proposed multi-classifier model takes the benefits of best classifiers in deciding the

faulty modules of software system with consensus prior to testing. An experimental comparison is performed with various

outperformer classifiers in the area of fault prediction. We evaluate our approach on 16 public dataset from promise

repository which consists of National Aeronautics and Space Administration(NASA) Metric Data Program (MDP) projects

and Turkish software projects. The experimental result shows that our multi classifier approach which is the combination of

Support Vector Machine (SVM), Naive Bayes (NB) and Random forest machine significantly improves the performance of

software fault prediction.

Keywords: Software metrics, software fault prediction, machine learning.

Received February 7, 2015; accepted September 7, 2015

1. Introduction

As software systems are becoming part of the human

life, the developments of these systems are getting

more complicated. Development of quality system is

desirable and due to the limited budget and the

complexity of testing, complete and exhaustive

software testing is not possible for generation of nearly

fault free software. Hence, to reduce the cost and to

generate nearly error free software, identification of

fault-prone module prior to system testing can guide the

software manager for resource allocation to appropriate

modules. The ultimate goal of designing these fault

identification system is to predict the best possible fault

prone modules.

Generally, different machine learning techniques

have been used for fault prediction. But there is no

single machine learner is always best [9]. So, for

critical application, an effective technique is required to

achieve best results and combining the best classifier is

one possible solution. The results from the combination

of multiple classifiers may generate a better prediction

than the individuals concerned. These observation

motivated researchers in combining the learners to get

decision on consensus of each classifier.

In Software fault identification we have software

module with fault data, suppose (xi, yi) for i = 1. . .N

software modules, with xi Є Rd and yi Є {Faulty, Not

Faulty}. Our objective is to design an efficient learner S

such that Rd => R2. In other words there is an unknown

function S which efficiently transforms x to y. Various

classifier combination schemes have been devised and

it has been experimentally demonstrated that some of

them consistently outperforms than a single best

classifier. The main benefits of combining classifiers

are efficiency and accuracy. Majority voting is a

combination strategy of classifiers and widely used by

researcher [19]. An extensive study on the possibilities

of classifiers input and attribute space is presented in

[6, 8]. Various studies have investigated the software

fault prediction using different machine learning

techniques. These techniques have performed well on

some data set but failed to perform on other data set.

In order to build a consistent model which can

efficiently perform on all different data set ensemble

approach is one possible solution. We demonstrate our

model on CM1, KC1, PC1, KC2, JM1, MC1, PC2,

PC5, PC1, PC3, PC4, CM1, MW1, KC1, KC3, KC4,

MC2, AR1, AR3, AR4 and AR5 software fault data.

These include software metrics at method level.

 Our approach uses software metrics data and its

related fault status. We have taken three best

performer classifiers reported by the researches of this

field [2, 3, 9, 11]. The classifier combination schemes

are then compared with the individual experimentally.

A surprising outcome of the comparative study is that

the combination of multiple machine learners

outperforms with other classifier schemes. To explain

this empirical finding, we investigate the accuracy and

Area Under Curve (AUC) of various schemes to

estimation fault prediction capability. We have used t -

test at 0.05 level of significance to identify the

Multi-Classifier Model for Software Fault Prediction 913

significant difference between the prediction

performance of our model and the other compared

models.

The rest of the paper is organized as follows, section

2 describes the related work in the area, section 3

discusses about software project and their

corresponding description. Section 4 presents the

combination of classifier scheme section 5 provides the

results and discusses their comparison with standard

machine learners and section 6 offers conclusion with a

summary and future work.

2. Related Work

Several papers are presented about machine learning

techniques for software fault prediction [17, 18]. Some

of these papers discussed methods for fault prediction

using size and complexity metrics by applying Naïve

Bayes, K-NN, decision tree and Bayesian belief

networks [4]. Radjenović et al. [12] presented a broad

literature survey on software fault prediction based on

metrics. When building a software fault prediction

model, the software metrics are processed for each

module and then associated with number of faults in

each module. The machine learners are used to learn

the pattern to predict the faults for new modules.

Naïve Bayes (NB) is used by Menizes et al. [11] for

fault prediction. Area under receiver Operating

Characteristic (AUC) as a predictor evaluator is used by

Lessmann et al. [9] for an extensive study on 10 project

data of National Aeronautics and Space Administration

(NASA) Metric Data Program (MDP). They evaluated

prediction based on Area Under ROC (AUC) using

static code attributes. In this paper, we used AUC and

accuracy evaluators to evaluate the proposed prediction

algorithms.

A group of researchers conducted manual software

reviews to find defective modules. They found that

approximately 60% of defects can be detected manually

[11]. Prediction of faulty module is an efficient

technique because the software metrics for any project

can be collected easily by processing the source code

automatically. On the other hand traditional methods

like manual code reviews are labour intensive and only

eight to twenty lines of code per minutes can be

inspected by humans [15].

In fault prone module prediction the machine

learners are trained using metric and fault related to that

module.

Arisholma et al. [1] evaluated a large Java legacy

system project for faulty modules. They reported that

process metrics are very useful for fault prediction, and

the best model is highly dependent on the performance

evaluation parameter. They proposed cost effectiveness

measure for assessment of models.

Catal and Diri [2] focus on various issues like

selection of metrics, efficient predicator for small data

sets based on machine learning such as Random Forests

and Artificial Immune Systems. They used Public

NASA datasets.

In their study they shown Random Forests provides

the best prediction performance for large datasets and

Naive Bayes is the best prediction algorithm for small

datasets in terms of the Area under Receiver

Operating Characteristics Curve (AUC) evaluation

parameter. Other author Lessman et al. [9] also agrees

with the same.

Elish et al. [3] empirically evaluated the capability

of Support Vector Machine (SVM) on four dataset

NASA dataset in predicting defect-prone software

modules and compared its prediction performance

against eight machine learning and statistical models.

Their results indicate that the prediction performance

of SVM is generally better than, or at least, is

competitive against the compared models.

So we have taken Random forest, NB and Support

vector machine.

Turhan and Bener [20] showed that independence

assumption in Naive Bayes algorithm is not

detrimental with Principal Component Analysis (PCA)

pre-processing and they used Probability of Detection

(PD), Probability of False alarm (PF) and balance

parameters in their study. Numerous software fault

prediction approaches have been proposed by various

researchers as tree based learners, Logistic

Regressions, Naive Bayes, Case-based Reasoning, and

random forest.

However, the performance of fault prediction

models varies and it depends on the machine learning

algorithm used. In order to generate an efficient fault

prediction model using software attributes and the

module class (i.e., Module is faulty or not), a

combination strategy is developed to measure the

prediction accuracy of various software’s. These

software’s were developed by NASA and its attribute

and fault related datasets are available in PROMISE

repository. Table 1 shows a summary of the fault

datasets.

Various researcher have investigated the

relationship between various feature reduction

method and the resulting classification performance

on software fault prediction and quality models [10,

11]. Singh and Verma [16] have utilized two

different models of machine learning: J48 (a

decision tree) and NB algorithm on open source

project developed in object oriented language They

used the object oriented design metric CK and

reported the prediction accuracy of 98.15% and

95.58% respectively. As indicated by Lessmann et

al. [9] and other researchers that sophisticated

techniques are well prepared to cope pre-processing

and feature selection through inbuilt regularization

facilities. Our model include number of classifiers

that are sophisticated approaches, it seems unlikely

that pre-processing activities would alter our overall

predictive accuracy significantly. So in this

914 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

investigation pre-processing activity is not used for

our model preparation.

3. Experimental Dataset

In order to find a consistent classifier, we propose a

combination of classifiers as a solution [7, 8] and

conducted extensive comparative study on 16

benchmark dataset from public-domain data sets from

the PROMISE repository [13]. Furthermore, we apply

state-of-the-art hypothesis testing methods to validate

the statistical significance of performance differences

among different classification models [13].

The software projects used for this study are CM1,

KC1, KC2, KC3, PC1, PC2, PC3, PC4, MC2, MW1,

JM1, AR1, AR3, AR4, AR5, and AR6. The data used

in this study originates from NASA and Turkish

software industry projects. Each data set is consisting

of software modules, together with label as fp, for fault

prone whereas error-free modules were categorized as

nfp (not fault prone). Table 1 shows the brief details of

the various projects.

Table 1. Datasets used in this study.

s

Not

Faulty

Module

Faulty

Modules

Total no of

Modules in

Software

Features % Defective Language

CM1 449 49 498 21 9.84 C

KC1 1783 326 2109 21 15.46 C++

KC2 415 107 522 21 20.5 C++

KC3 415 43 458 39 9.39 Java

PC1 1032 77 1109 21 6.94 C

PC2 5566 23 5589 36 0.41 C

PC3 1403 160 1563 37 10.24 C

PC4 1280 178 1458 37 12.21 C

MC2 109 52 161 39 32.3 C++

MW1 372 31 403 37 7.69 C

JM1 8779 2106 10885 21 19.35 C

AR1 112 9 121 29 7.44 C

AR3 55 8 63 29 12.7 C

AR4 87 20 107 29 18.69 C

AR5 28 8 36 29 22.22 C

AR6 86 15 101 29 14.85 C

The software metrics of various projects are of

broadly LOC based Halsted metrics, Mc-Cabe metric

and few other metrics. Readers can get the details of

each project and software metrics used in [11, 13].

4. Development of Predictive Model

 To develop a predictive model we have used three best

performers as reported by the researches. These are

support vector machine, Random forest and NB [2, 3,

9, 14].

SVM: The SVM is a novel machine learning

technique based on a statistical learning theory

proposed by the Vapnik in 1995 [21]. SVM has gained

attention and introduced in various areas like pattern

recognition, regression estimation, handwriting

identification and object tracing etc., Based on the

structural risk minimization concept, it can minimize

the probability of misclassifying a previously unseen

data. SVMs were originally linear binary classifiers,

which allocate the labels +1and−1. The core operation

of SVMs is to construct a separating hyper plane (i.e.,

a decision boundary) on the basis of the properties of

the training samples, specifically their distribution in

feature space.

Suppose a training sample set, W={(xi, yi), i=1,…n}

an input sample, xi∈Rd, and class lables, yi∈{+1, -1},

Where xi is the feature and yi is the label of the

information class for training case i. The label is +1

or-1, representing class faulty and class not faulty for

a linearly separable binary classification problem, the

separation hyper plane is:

= 0
i

x .w b

Where w is a weight vector and b is a bias. The

optimal hyper plane that separates the data into two

classes with the decision boundary

[()] 1
i i

y x .w b 

Which minimizes

21 1
() ()

2 2
w || w|| w.w  

Information classes derived from software fault data

are not usually totally separated by liner boundaries.

Thus constraint shown in Equation (3) cannot be

satisfied in practice, so the slack variables, are used to

get

[()] 1
i i. i

y x w b  

Where i=1, 2,…l, Now the problem becomes:

1

1
() () 1

2 i

w, w.w c ,i ,...,l


      
  

Where C is a penalty parameter determined by the

user. A large value of C means assign a high penalty

to error. Introducing Lagrange multipliers, αi and using

the Karush-Kuhn-Tucker theorem of optimization

gives the solution as follows:

i i i
w y x

Only a few of the αi coefficients are nonzero. The

corresponding xi values are known as support vectors,

and they also define the decision boundary. At the

same time, all other training samples with zero αi

values are now rendered irrelevant. Finally, the

decision function can be obtained as follows:

 
1

() ()
l

i i i
i

f x sign y x ,x b


  

In some case linear hyper plane is unable to separate

the class appropriately. In such cases SVM maps the

raw input data into a higher dimensional space to

improve the seperability between the classes. A

transformation, Φ (xi), maps the data from the input

space to a feature space that allows linear separation.

 (1)

 (2)

 (3)

(4)

(5)

 (6)

(7)

Multi-Classifier Model for Software Fault Prediction 915

We then seek the optimization separation plane in

feature space. An inner product operation is needed in

feature space. The inner product operation may be

implemented by a certain function (called a kernel

function). In SVM, a kernel function K (xi,xj)= Φ(xi). Φ

(xj) used to reduce the computational loading. Then the

basic form of SVM can be obtained:

 
1

() ()
l

i i i
i

f x sign y K x ,x b


  

The common choice for kernel functions is Linear,

Polynomial and Gaussian radial basis function. In this

experiment we have taken Gaussian radial basis

function as kernel function in this study.

 Random forest. A random forest uses a large number

of individual, unpruned decision trees which are

created by randomizing the split at each node of the

decision tree. Each tree is likely to be less accurate

than a tree created with the exact splits. But, by

combining several of these approximate trees in an

ensemble, can improve the accuracy. Random forest

and NB are well known classifiers so the details are

left here.

Classifier combining strategy: Combining multiple

classifiers can be performed in various ways. In multi

classifier combination method various learners work in

parallel.

Let X = {x1, x2,…,xp) be a set of input vector in Rp ,

xi represents a software module that assigned the

software metric at design and Y=(y1,y2) in R2 denotes

its binary class labels as output vector. Suppose that the

new multiclassifier is the ensemble D = {D1 ,…,DL).

Each classifier Di produce support denoted by di,,j(x) to

the hypothesis that x comes from yi. The larger the

support, the more likely the class label is yi. The output

of L classifiers is organized in a decision profile as

follows.

 Class labels

Classifier 1 d1,1(x) d1,2(x)

Classifier i di,1(x) di,2(x)

Classifier L dL,1(x) dL,2(x)

The combiner calculates the support for class yi using

only the ith column of decision profile. In our case there

are two classes. These outputs are combined by the way

of averaging these using the following typical average

estimator.

1

1
() ()

L

j i , j
i

u x d x
L 

 

The reason for choosing this average strategy is that

this method will work even if the number of the

classifiers in the ensemble is even; it is possible to

classify the faulty and fault free modules. After

calculating the overall support for each class the input x

is labeled with the largest average support. The

multiclassifier system is first trained using training

data. As soon as the all base classifiers are trained the

test data of new company is then provided to

muticlassifier system to predict the faults of the later

project. The combiner calculates the support for faulty

and not faulty class for each classifier. The classifier

outputs for a particular input are organized as decision

profile. Each classifier model outputs the support

values indicating the probability of a module

belonging to faulty or not faulty classes.

Figure 1 shows the detailed process of our multi -

classifier system which is based on average

probability.

4.1. Measuring Performance

For two class problems a variety of measures has been

proposed and there are four possible cases represented

as confusion matrix which gives the TP, FP and FN

and TN as shown in Table 2. TP and TN are the

correctly identified faulty and not faulty modules. A

FP occurs when outcome is predicted yes when it is

actually not faulty. A FN occurs when the when the

outcome is incorrectly predicted as negative when it is

actually positive.

Table 2. Confusion matrix.

 Actual

P
re

d
ic

te
d

 Faulty Module Not Faulty Module

Faulty Module TP(True positive) FP (False positive)

Not Faulty Module FN (False negative) TN (True Negative)

The Accuracy is calculated as the number of correct

classifications divided by the total number of

classifications:

()

TP TN
Accuracy

TP TN FP FN




  

For the purpose of reliable and stable results in the

experiments, K fold cross validation strategy was

used. K fold classifier is generally used for

classification accuracy measure in this we have to

make K partitions and one is used for testing and rest

is used for training.

1 1 2 3
=

1 k
V X P X X ... X   

2 2 1 3
=

2 k
V X P X X ... X   

...

1 2 1
=

k k k k
V X P X X ... X


   

In the above, V1, V2, …Vk are the partitions for testing

and P1, P2 ,…, PK are for training. K is typically 10 or

30. K=10 has been used for all our experiments.

To compare the results we have taken the average

value of AUC and accuracy in 10 fold cross

validation. As it is known and also reported by other

research that AUC represents the most informative

and objective indicator of predictive accuracy [5, 20].

(8)

(9)

(10)

916 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

A better classifier should produce a higher AUC. We

have also used AUC for our study.

To evaluate our composite classifier with individual

classifier we have used statistical significance of

performance using the corrected resampled t-test at

95% confidence level (0.05 level of significance).

The results reported in the ‘Significance’ columns of

Tables 2 and 3 of the corrected resampled t-test. In

these columns, *means that there is a significant

performance difference between our model and the

corresponding model, and o is used if other model has

significantly performed better. The algorithm shown

below gives the procedure used for model building and

evaluation on various datasets.

Figure 1. Proposed multi-classifier system for fault prediction.

Algorithm 1: (Detection of faulty modules in software projects)

Input: Project= [CM1, KC1, PC1, KC2, JM1, MC1, PC2, PC5,

PC1, PC3, PC4, CM1, MW1, KC1, KC3, KC4, AR3 ,MC2, AR1,

AR4 and AR5]

Output: Fault prediction capability in terms of area Under the

Curve, Accuracy

M=10;

N=10;

Meta Learner [Combined Multiple Classifiers (SVM, Naïve

Bayes, Random Forest)]

Learner Algorithms =Learner [Metal earner, SVM, Naïve

Bayes, Random Forest]

For ALL Projects

For 1=1 to M

R=Randomize the data of Project

T=Generate N parts of Project R

For J =1 to N do

Test=T[j]

Train=T- T[j]

 For Each L Є learner

 Model=Apply L on Train

 Prediction L=Apply model to test

 End for

End for

End for

Prediction=Learner

(Pred_Meta,Pred_NB,Pred_SVM,Pred_RF)

End for

5. Result

Table 3 summarizes the results for all sixteen data sets

considered in this study by applying 4 learners and 10

accuracies for each case. In the first column we

include the data sets, while in the second column we

list the correctly classified by our proposed multi

expert model which is combination of three classifiers.

In the remaining columns of this table we report the

result by Naïve Bayes, SVM and Random forest

respectively.

Table 3. Comparative result on accuracy values of proposed model

with different best learners.

Dataset Our Model Naïve Bayes SVM RF

CM1 88.34 85.32* 90.16 87.93

KC1 86.06 82.36 * 84.54 * 85.44

KC2 83.72 83.52 79.70 * 82.18

KC3 89.53 85.16* 90.61 89.09

PC1 93.42 89.18 * 93.06 93.24

PC2 99.55 97.30 * 99.59 99.55

PC3 89.64 48.67 * 89.76 89.89

PC4 89.71 87.04* 87.79 * 91.02

MC2 71.40 73.86 67.72 68.93

MW1 92.55 83.87 * 92.31 90.81*

JM1 81.3 80.42 * 80.65 * 81.14

AR1 90.06 85.06 92.56 89.23

AR3 90.71 90.48 87.38 89.05

AR4 85.18 84.27 81.27 85.18

AR5 78.33 84.17 78.33 80.83

AR6 86.18 82.27 85.18 87.18

From the result Table it is evident that our multi

classifier system is significantly outperforming than

Naïve Bays on 9 out of 16 data set on the basis of t-

test at 0.05 level of significance. Our multi- classifier

is significantly outperforming on 4 dataset in

comparison with the SVM. Also it can be seen from

the result that even if the some values are not

significant but most of the time it is outperforming

than the single classifiers. Also it is found that none of

the result for any data set is significantly outperformed

by our model. From the graph in Figure 2 we can see

the result of multi classifier have the better output in

comparison with NB and SVM.

Table 4 summarizes the results for all sixteen data

sets considered in this study using area under Receiver

Operating Characteristic ROC (AUC). In the first

column we include the data sets, while in the second

column we list the correctly classified by our proposed

multi classifier model.

Figure 2. Performance measure using accuracy.

Learner 1

Learner 2

Learner 3

Predictors

Predictors

Predictors

Predicting

Prediction

Result

Combine

Training

data set

Test data

set

Multi-Classifier Model for Software Fault Prediction 917

Table 4. Comparative result on AUC values of proposed model with
different best learners.

Dataset Our Model Naïve Bayes SVM RF

CM1 0.77 0.73 0.50 * 0.72

KC1 0.81 0.79 0.50 * 0.79 *

KC2 0.82 0.85 0.50 * 0.80 *

KC3 0.81 0.82 0.50 * 0.76

PC1 0.83 0.71 * 0.50 * 0.81

PC2 0.82 0.82 0.50 * 0.61 *

PC3 0.8 0.77 * 0.50 * 0.79

PC4 0.92 0.84 * 0.50 * 0.93

MC2 0.77 0.71 0.50 * 0.72

MW1 0.78 0.76 0.50 * 0.73

JM1 0.73 0.69 * 0.50 * 0.72 *

AR1 0.85 0.67 0.50 * 0.81

AR3 0.76 0.78 0.50 0.77

AR4 0.85 0.8 0.50 * 0.81

AR5 0.96 0.92 0.50 * 0.85

AR6 0.67 0.66 0.50 0.63

In the remaining columns of this table we report the

result by Naïve Bayes, SVM and Random forest

respectively. It is evident from the results that our

multi-classifier model is significantly outperforming

than Naïve bays on 4 data sets. If we see the results our

model has significantly outperformed SVM on 14

dataset out of 16 dataset. Also our model has

significantly outperformed on 4 dataset in comparison

with the RF. It can be seen from the result that even if

the values is not significant but most of the time our

model is better than the single classifiers.

From the graph in Figure 3 we can see the result of

multi-classifier have the better output in comparison

with other classifiers. It can be seen that the in AUC the

performance of SVM is not at acceptable level. By the

graph it is evident that the performance of our model is

best and consistent and reliable than the other best

model. Our model is consistently outperforming than

the other single classifier based models.

Finally we have compared the result of our model

with other published result on the same data set.

Figure 3. Performance measure using AUC.

Table 5. Comparative study with catal and Diri [2].

 Results by Catal and Diri [2]

Dataset Our Model
Naïve

Bayes
RF AIRS1 AIRS2

CM1 0.77 0.73 0.72 0.55 0.53

KC1 0.81 0.79 0.79 0.60 0.57

KC2 0.82 0.84 0.80 0.56 0.67

PC1 0.83 0.71 0.81 0.55 0.57

JM1 0.73 0.69 0.72 0.55 0.54

Table 5 shows the comparison between results of

our model and results reported by Catal and Diri [2].

We have compared with the results of first experiment

of which uses same 21 metrics in and five dataset.

From the results shown in Table 5 it can be seen that

our proposed model is outperforming with other

classifiers in AUC. The result of our model is

excellent in comparison with Artificial Immune

Recognition Systems (AIRS 1 and AIRS2) used by

Catal and Diri [2] To summarize, the above

experiment results show that the performance of single

learner for each dataset is distrustful; this means the

prediction performance is unlikely to be good for each

dataset. The proposed framework is an improved

approach. The prediction performance of the proposed

framework is higher than that of all best performers.

This indicates that the proposed framework performed

consistently better for each data set which intern

reduce the time of search of best classifiers for

different data sets.

6. Conclusions

A novel and efficient model for software fault

prediction has been presented. Sixteen standard fault

dataset of software’s have been analyzed. The

proposed model is combination of Naïve Bayes, SVM

and Random forest. The fault prediction capability of

our model is compared with previously reported

approaches. The proposed model has better prediction

capability than SVM, Random forest and Naïve

Bayes, AIRS1, AIRS2. It is also clear from the results

that the combination of learner can give better result

than a single classifier. Identification of which

classifier is best fault predicator is tough task. So the

proposed model has consistently performed better as it

takes the best of all three classifiers. By the results it is

evident that the combination of learner not only

increases the fault prediction capability as well as it

also provides consistent better result for all dataset. It

also reduces the search for the best classifier for the

different dataset. The accuracy of the proposed

method is excellent for all the fault data set in term of

AUC and accuracy. Thus the proposed approach is

efficient, robust and consistent in case of software

fault prediction for various software projects.

References

[1] Arisholma E., Briand L., and Johannessen E., “A

Systematic and Comprehensive Investigation of

Methods to Build and Evaluate Fault Prediction

Models,” Journal of Systems and Software, vol.

83, no. 1, pp. 2-17, 2010.

[2] Catal C. and Diri B., “Investigating the Effect of

Dataset Size, Metrics Sets, and Feature Selection

Techniques on Software Fault Prediction

918 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

Problem,” Information Sciences, vol. 179, no. 8,

pp. 1040-1058, 2009.

[3] Elish K. and Elish M., “Predicting Defect-Prone

Software Modules Using Support Vector

Machines,” Journal of Systems and Software, vol.

81, no. 5, pp. 649-660, 2008.

[4] Hall T., Beecham S., Bowes D., Gray D., and

Counsell S., “A Systematic Literature Review on

Fault Prediction Performance in Software

Engineering,” IEEE Transactions on Software

Engineering, vol. 38, no. 6, pp. 1276-1304, 2012.

[5] Jiang Y., Cukic B., Menzies T., and Bartlow N.,

“Comparing Design and Code Metrics for

Software Quality Prediction,” in Proceedings of

the 4th international Workshop on Predictor

Models in Software Engineering, Leipzig, pp. 11-

18, 2008.

[6] Kimura F. and Shridhar M., “Handwritten

Numerical Recognition Based on Multiple

Algorithms,” Pattern Recognition, vol. 24, no. 10,

pp. 969-983, 1991.

[7] Kittler J., Matas J., Jonsson K., and Sánchez M.,

“Combining Evidence in Personal Identity

Verification Systems,” Pattern Recognition

Letters, vol. 18, no. 9, pp. 845-852, 1997.

[8] Kittler J., Hatef M., Duin R., and Matas J., “On

Combining Classifiers,” IEEE Transactions

Pattern Analysis and Machine Intelligence, vol.

20, no. 3, pp. 226-239, 1998.

[9] Lessmann S., Baesens B., Mues C., and Pietsch

S., “Benchmarking Classification Models for

Software Defect Prediction: A Proposed

Framework and Novel Findings,” IEEE

Transactions on Software Engineering, vol. 34,

no. 4, pp. 485-496, 2008.

[10] Marchetto A. and Trentini A., “A Framework to

Build Guality Models for Web Applications,” The

International Arab Journal of Information

Technology, vol. 4, no. 2, pp. 168-176, 2007.

[11] Menzies T., Greenwald J., and Frank A., “Data

Mining Static Code Attributes to Learn Defect

Predictors,” IEEE Transactions on Software

Engineering, vol. 33, no. 1, pp. 2-13, 2007.

[12] Radjenović D., Heričko M., Torkar R., ans

Živkovič A., “Software Fault Prediction Metrics:

A Systematic A Systematic Literature Review,

Information and Software Technology,” vol. 55,

no. 8, pp. 1397-1418, 2013.

[13] Sayyad S. and Menzies T., “The PROMISE

Repository of Software Engineering Databases,”

School of Information Technology and

Engineering., University of Ottawa,

http://promise.site. uottawa.ca/SERepository, Last

Visited, 2005.

[14] Sebastiani F., “Machine Learning in Automated

Text Categorization,” ACM Computing Surveys,

vol. 34, no. 1, pp. 1-47, 2002.

[15] Shull F., Basili V., Boehm B., Brown A., Costa

P., Lindvall M., Port D., Rus I., Tesoriero R.,
and Zelkowitz M., “What We Have Learned

About Fighting Defect,” in Proceedings of 8th

International Software Metrics Symposium,

Ottawa, pp. 249-258, 2002.

[16] Singh P. and Verma S., “Empirical Investigation

of Fault Prediction capability of Object Oriented

Metrics of Open Source Software,” in

Proceedings of 8th International Conference on

Computer Science and Software Engineering,

Bangkok, pp. 323-327, 2012.

[17] Singh P. and Verma S., “An Investigation of the

Effect of Discretization on Defect Prediction

Using Static Measures,” in Proceedings of

International Conference on Advances in

Computing, Control, and Telecommunication

Technologies, Trivandrum, pp. 837-839, 2009.

[18] Singh P. and Verma S., “Effectiveness Analysis

of Consistency Based Feature Selection in

Software Fault Prediction,” International

Journal of Advancements in Computer Science

and Information Technology, vol. 2, no. 1, pp. 1-

9, 2012.

[19] Tumer K. and Ghosh J., “Analysis of Decision

Boundaries in Linearly Combined Neural

Classifiers,” Pattern Recognition, vol. 29, no. 2,

pp. 341-348, 1996.

[20] Turhan B. and Bener A., “Analysis of Naive

Bayes’ Assumptions on Software Fault Data: An

Empirical Study,” Data Knowledge Engineering,

vol. 68, no. 2, pp. 278-290, 2009.

[21] Vapnik V., The Nature of Statistical Learning

Theory, Springer Science and Business Media,

2013.

Multi-Classifier Model for Software Fault Prediction 919

Pradeep Singh is with the

Department of Computer Science

Engineering as Assistant Professor at

National Institute of Technology,

Raipur. He has completed his

M.Tech. from Motilal Nehru

National Institute of Technology

(MNNIT) Allahabad, India with specialization in

Software Engineering. He has completed his PhD in

Computer Science and Engineering from National

Institute of Technology Raipur His current research

interests include empirical studies on software quality,

software fault prediction models, and computational

intelligence. He has more than ten years experience in

various government academic institutes. He has

published over 12 referred articles and served as

reviewer of several journals including Knowledge

Based System. He is a Member of IEEE, CSI and the

ACM.

Shrish Verma is Professor in the

department of Electronics and

Telecommunication, National

Institute of Technology, Raipur. He

has completed his Post graduation in

Computer Engineering from Indian

Institute of Technology, Kharagpur.

He has completed his PhD in Engineering from Pt. Ravi

Shankar Shukla University Raipur. His area of interest

is Image processing, data mining, Software fault

prediction models and Software bug classification. He

has published over 20 referred articles and served as

reviewer of several journals.

