
142 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

An Efficient Algorithm for the Generalized

Partially Instantiated Same Generation Query in
Deductive Databases

Nabil Arman
Palestine Polytechnic University, Palestine

Abstract: The expressive power and intelligence of traditional database systems can be improved by recursion. Using
recursion, relational database systems are extended into knowledge-base systems (deductive database systems). Linear
recursion is the most frequently found type of recursion in deductive databases. In this paper, an algorithm to solve the
generalized partially instantiated form of the same generation query in deductive databases is presented. The algorithm uses
special data structures, namely, a special matrix that stores paths from roots of the graph representing a two-attribute
normalized database relation to all nodes reachable from these roots, and a reverse matrix that stores paths from any node to
all roots related to that node. Using simulation, this paper also studies the performance of the algorithm and compares that
with the standard depth-first search based algorithms.

Keywords: Deductive databases, linear recursive rules, same generation query.

Received April 28, 2003; accepted July 22, 2003

1. Introduction
The development of efficient algorithms to process
recursive rules and queries within the context of large
database systems has recently attracted a large amount
of research efforts due to the important role of
recursive rules in improving the intelligence of
database systems and extending them into knowledge-
base systems [1-11]. One of the main features of these
intelligent database systems, namely deductive
databases, is their ability to define recursive rules and
to process queries on them directly.

In deductive databases, most recursive rules appear
in a simple form in which the rule’s head appears only
once in the body of the rule [5]. In general, this type of
logic rules is called linearly recursive. A same
generation (sg) rule is a linearly recursive rule of the
following form:
sg(nXXX ,...,, 21):- par(11 , XY), par(22 , XY),…,

par(nn XY ,), sg(nYYY ,...,, 21)
where “par” is an extensional (base) predicate and “sg”
is an intentional database predicate. Within the context
of deductive databases, the extensional database
predicate “par” is defined by a two-attribute
normalized database relation with very many tuples as
shown in Figure 1-a [5, 7]. Another common view for
the base relation is represented by a directed graph, as
shown in Figure 1-b. For every tuple <x,y> of the base
relation, there exists, in the corresponding graph, a
directed edge from node x to node y. The nodes in such

a graph are the set of distinct values in the two
columns of the base relation (i.e., the domain).

Figure 1. The binary relation “par” in a) table form b) graph form.

To generate solutions from the above recursive rule,

another non-recursive rule, the exit rule, which defines
the predicate “sg(nXXX ,...,, 21)” must exist. This
non-recursive rule is given by:
sg(nXXX ,...,, 21):- par(1, XY), par(2, XY),…,

par(nXY ,)

X Y
s
s
r
r
q
q
p
p
n
n
n
m
m
l
l
k
j
i
h
g
f
f
e
c
c

r
q
o
p
p
m
o
g
m
k
l
g
i
k
j
i
i
h
c
f
e
d
d
a
b

a) Relation form

s

r

o

q

p m

n
l

j

k

g

f

e

d

i

h

c

b a

b) Graph form

 An Efficient Algorithm for the Generalized Partially Instantiated Same Generation Query in Deductive Databases 143

A query on a predicate that is defined by the the
recursive and the exit rule is called a same generation
query. This query is a headless rule of the following
form:

:- sg(nXXX ,...,, 21)

A query typically involves a predicate symbol with
some variable arguments, and its meaning or answer is
the different constant combinations that when bound
(assigned) to the variables, can make the predicate true.
In general, an n-place unit query, such as the above
one, may have different forms depending on the
instantiation status of the variables [8]. In this article,
we propose an algorithm for solving the generalized
partially instantiated form of the same generation
query, i.e., a query that has the form:

:- sg(iXXX ,...,, 21 , nii ccc ,...,, 21 ++)

where iXXX ,...,, 21 are the uninstantiated variables

whose values are to be determined and nii ccc ,...,, 21 ++
are constants representing nodes in the graph. The
order of the arguments is irrelevant since “sg” is a
symmetric relation. Let the uninstantiated set of nodes
(USN) be { iXXX ,...,, 21 } and the instantiated set of

nodes (ISN) be { nii ccc ,...,, 21 ++ }, then the answer of
such a query is the set of nodes with a cardinality of i
that are of the same generation as nii ccc ,...,, 21 ++ (i.e.,
the set of nodes that are on the same level of a family
tree with nii ccc ,...,, 21 ++).

The counting technique for linear rules and the
magic-sets rule rewriting are the two best-known
techniques to solve such query in its simplest form
(without the generalization to n-place queries) [9]. In
solving queries like the partially instantiated same
generation, these techniques process every node on the
paths of the graph. The Modified HaNa method is
similar to the counting technique and the magic-sets
rule rewriting in the sense that it processes all the
nodes on the paths of the graph [6]. The generalized
partially instantiated same generation query algorithm,
as presented in this article, is more efficient than these
techniques. The algorithm considers the relevant part
of the graph/database by examining the set of nodes
that are connected to the selected node from the set of
instantiated nodes in the query and involves less
computation.

2. The Structure Used in the Algorithm
The structure used in the algorithm is a special matrix.
This structure has been used in computing the
transitive closure of a database relation [8], and in
answering the simple form of the partially instantiated
same generation query in deductive databases [7]. In
this matrix, the rows represent some paths in the graph

starting from the roots/source nodes to the leaves.
Basically, depth-first search is used to create the paths
of the graph. Instead of storing every node in all paths,
the common parts of these paths can be stored only
once to avoid duplications. If two paths

>=< mn bbbaaaP ,...,,,...,, 21,211 and >=< ln cccaaaP ,...,,,...,, 21,212

have the common parts < naaa ...,, ,21 >, then 1P and

2P can be stored in the two consecutive rows of the

matrix as >< mn bbbaaa ,...,,,...,, 21,21 and < -- n

empty entries -- >lccc ,...,,, 21 , where the first n
entries of the second row are empty. To prevent the
duplicate storage of the nodes in the matrix, a different
technique is used; for the first visit to the node, it is
entered into the matrix and the coordinates of its
location is recorded. On subsequent visits, instead of
entering the node itself, its coordinates are entered into
the matrix (a pointer to the already stored node). In this
way, only a single copy of each of the graph’s nodes is
guaranteed to be entered in the matrix. Moreover, there
will be only one entry (either a node or a pointer) in the
matrix for each edge in the graph. In Figure 2-a, the
matrix representation of the graph given in Figure 1-b
is presented. In that graph, there are 25 edges, and in
its matrix representation there are 25+2 =27 nonempty
entries in the matrix (another two entries for the nodes
s and n). An important advantage of this matrix
structure is that it stores a path from each node to all
the roots that can reach the node.

 0 1 2 3 4 5 6
0 s r o
1 p 0,2
2 g f e d
3 2,6
4 q 1,2
5 m 2,3
6 i h c a
7 b
8 n 5,2
9 k 6,3
10 l 9,1
11 j 6,3

a) Matrix representation.

b) Reverse matrix representation.

Figure 2. Matrix and reverse matrix representation of the graph of
Figure 1.

 0 1 2 3 4 5 6
0 o r s
1 p 0,1
2 q 0,2
3 d e f g 1,1
4 m 2,2
5 n
6 3,2
7 a c h i 4,4
8 k 5,5
9 1 5,5
10 j 9,5
11 b 7,1

144 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

0,0 0,1 0,2 1,2 1,3 2,3 2,4 2,5 2,6 3,5 4,1 4,2 5,2 5,3 6,3
s r o p 0,2 g f e d 2,6 q 1,2 m 2,3 i

6,4 6,5 6,6 7,6 8,0 8,1 9,1 9,2 10,1 10,2 11,2 11,3
h c a b n 5,2 k 6,3 l 9,1 j 6,3

Figure 3. An array representation of the matrix of Figure 2-a.

In the implementation of this sparse matrix, the

empty entries are not stored explicitly. The matrix can
be stored sequentially row by row as shown in Figure
3. For each row, storing the column number of its first
non-empty entry and the sequence of non-empty
entries in the row is sufficient. Thus, the size of the
stored matrix is much smaller than the original relation
and matrix.

After the special matrix form is created, a (reverse)
matrix, which is the matrix representation of the
reverse graph, is generated using the reverse graph. For
our purposes, the reversed graph is defined as follows.

Definition: Let G=(V,E) be a graph, where V is a finite
set of vertices/nodes and E is a finite set of arcs/edges
such that each arc e in E is associated with an ordered
pair of vertices/nodes v and w, written as e=(v,w), then
the reverse graph RG is given by RG=(V,E') where V is
a finite set of vertices/nodes (the same set of vertices of
the original graph) and E' is a finite set of arcs such
that each arc e' in E' is associated with an ordered pair
of vertices w and v, written by e'=(w,v) for each
e=(v,w) in E.

The reverse matrix representation generated from
the graph in Figure 1-b is the matrix given in Figure 2-
b. An important advantage of this matrix structure is
that it stores paths from every node to the root node(s).
For solving the same generation query, we are
interested in the parents and ancestors of a certain node
and not in its descendants and this information can be
extracted easily from the reverse matrix (and not from
the original matrix). Therefore, we need the reverse
matrix representation. The reverse matrix can also be
stored sequentially row by row as explained for the
original matrix. In fact, there is no need even to store
the whole matrix structure, because storing the row
beginnings, row ends, the entries stored at the row
ends, and matrix coordinates of the nodes is sufficient.
This is due to the fact that we are interested in the path
lengths and not in the stored nodes themselves, from
the reverse matrix structure.

3. The General ized Partially Instantiated

Same Generation Query Algorithm
As mentioned before, the matrix structure stores paths
from the roots to all nodes reachable from these roots.
This means that the nodes in the matrix are clustered
on the roots of the graph, i.e., starting from any root,
all nodes reachable from that root can be accessed. The
reverse matrix structure stores paths from each node to
all roots related to that node, which means that the

nodes in the reverse matrix are clustered on the leaves
of the graph, i.e., starting from any node, all roots
related to that node can be accessed. This information
can be exploited to solve the generalized partially
instantiated same generation query. In solving such a
query, the algorithm proceeds as follows:

1. Starting from one of the nodes in the instantiated set
of nodes (ISN) of the query and using the reverse
matrix structure, the path lengths to all relevant
roots are determined. During this computation, only
the row beginnings and ends are used. In addition to
that, only the relevant roots of the graph are
considered. After that, these path lengths are sorted
in ascending order, according to the roots and
lengths, and duplicate paths are removed.

2. Taking each root from the above step and using the
forward matrix structure, all nodes having the same
path lengths as the selected node from step (1) are
determined. Let this set of nodes in the result be
(RS). In this step, only the row beginnings and row
ends are also used in the computation of the paths.
The original matrix entries are used only in the
collection of nodes.

3. Having all nodes (RS) collected in step (2), the
algorithm makes sure that all nodes in ISN are in the
result i.e., ISN ⊆ RS. In addition, the number of
nodes in RS-ISN should be greater than or equal to
the number of nodes in USN (i.e., |RS-
ISN| ≥ |USN|). The result of the query will consist of
all combinations of the nodes in the set RS-ISN.

The path lengths will be sorted because the algorithm
will collect all the nodes in the same generation with
the given node in a single step. For example, if a
certain node has a set of path lengths
{ klll ,...,, 21 | klll <<< ...21 } from the selected query
node, then all nodes that are reachable from that root
node with these path lengths are collected in a single
step. The duplicate paths will be removed because they
will not add new nodes to the solution set. The
generalized partially instantiated same generation
query algorithm, as described above, can be
summarized as shown in Figure 4.

It is worth emphasizing that this algorithm considers
only the relevant part of the database/graph, i.e., it
considers only the set of nodes that are somehow
relevant to the instantiated part of the query (the node
in ISN that has been used in determining the path
lengths to all relevant roots). In addition to that, the
algorithm jumps from one node to another, skipping
many nodes on the paths of the underlying graph, since

 An Efficient Algorithm for the Generalized Partially Instantiated Same Generation Query in Deductive Databases 145

it only uses the row beginnings and row ends of the
matrices in the computation of the paths rather than the
nodes of the graph themselves.

Figure 4. The generalized partially instantiated same generation
query algorithm.

Example: For the graph in Figure 1-b, the answer of
the query :- sg(j, 21 , XX) is computed as follows:

1. The algorithm starts from one of the instantiated
arguments (i.e., j, where ISN={j} and
USN={ 21 , XX }) and uses the reverse matrix
structure to determine the set of path lengths to all
relevant roots. These paths are sorted and duplicates
are removed. Thus, this step generates one path of
length 2 to root n.

2. From the above step, the algorithm determines that
n is the only relevant root (the root s is not
considered in the computation). Therefore, the
algorithm starts from n and uses the forward matrix
structure to determine all nodes with path lengths of
2 from root n. When a node of path length 2 is
reached, it is recorded and the search continues until
all relevant parts of the graph is traversed up to path
lengths of 2 (the search terminates at this point for
the current path of the graph since nodes with
lengths greater than 2 are irrelevant in answering the
query) or until leaves are encountered. The set of
nodes in the result is RS={g,i,k,j}.

3. Since ISN ⊆ RS (i.e., {j}⊆ {g,i,k,j}) and |RS-
ISN| ≥ |USN| (i.e., |{g,i,k}|≥ |{ 21 , XX }|), then the
answer of the query is the set of all combinations of
{g,i,k}, which is equal to {(g,i),(g,k),(i,k)}. Each
combination has two nodes since there are two
uninstantiated variables in the query.

4. Performance Evaluation of the Algorithm
To determine the performance of the new algorithm,
simulations of the algorithm were performed for
random database relations with 2000 tuples with 4

different outdegree values from 1 to 4. For more
accurate results, the algorithms were executed 5 times
for each case and the average was taken. The same
generation query algorithm was tested for 50 randomly
generated queries. The number of nodes visited to
answer these queries was determined for the algorithm
and the depth-first search based technique such as the
magic-sets rule rewriting technique and the counting
technique. These numbers were plotted for different
outdegrees of the randomly generated graphs as shown
in Figure 5. When the graph obtained from the
execution of the algorithms was examined, two things
were observed. First, the number of nodes visited in
the algorithms (where the row beginnings and row
ends of the matrix representation are visited only) is
less than the number of nodes visited in the usual way
(where all nodes along the paths are visited). Second,
increasing the outdegree of the underlying graph, is in
favor of the technique used in visiting the nodes in our
algorithm. This is due to the fact that larger outdegree
values of the underlying graph generate longer paths,
which results in skipping larger number of nodes in the
graph.

Fifty Randomly Generated Queries

0

50

100

150

200

1 2 3 4

Outdegree

of

 V
is

ite
d

N
od

es

(T
ho

us
an

ds
)

Standard DFS
Based Alg.

Our Algorithm

Figure 5. Comparative performance for the generalized partially
instantiated same generation query algorithm.

According to [6, 9], the counting technique, the
magic-sets rule rewriting, and the Modified HaNa
method are not significantly different and they are the
best-known techniques to solve such a query. In
solving queries like the partially instantiated same
generation query, these techniques process every node
on the paths of the graph. It is clear that the generalized
partially instantiated same generation query algorithm,
as presented in this article, is more efficient than the
above-mentioned techniques. The algorithm considers
the relevant part of the graph/database by examining
the set of nodes that are connected to the selected node
from the set of instantiated nodes in the query and
involves less computation than the above techniques.
Therefore, the algorithm solves the generalized
partially instantiated same generation query efficiently.

5. Conclusion
This paper presents an efficient algorithm to solve the
generalized partially instantiated same generation

Procedure Generalized_Partially_Instantiated_Same
_Generation()
begin

Compute all paths from one of nodes in ISN to all
 relevant roots using the reverse matrix structure.
Sort the path lengths in ascending order.
Remove duplicate paths.
for all generated roots r and using the original
matrix structure do
 Collect the nodes RS that are of a length as one
 of the path lengths of r.

 if ISN ⊆ RS and |RS-ISN| ≥ |USN| then
 the result of the query will consist of all
 combinations of the nodes in RS-ISN
end

146 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

query in deductive databases. The algorithm uses
special data structures, namely, a matrix representation
of the graph, representing the two-attribute normalized
database relation, and a reverse matrix representation
of the reverse graph. The paper also presents a
performance study of the algorithm, and shows the
advantages of the techniques used in the algorithm in
solving the generalized form of the partially
instantiated same generation query in deductive
databases. Finally, the paper compares the algorithms
with other approaches used to solve such queries like
the counting technique, magic-sets rule rewriting, and
the Modified HaNa method.

References
[1] Banchilon F., Maire D., Sagiv Y., and Ullman J.,

“Magic Sets and other Strange Ways to
Implement Logic Programs,” in Proceedings of
5th ACM Symp. on Principles of Database
System, pp. 1-15, 1986.

[2] Elmasri R. and Navathe S., Fundamentals of
Database Systems , The Benjamin/Cummings
Publishing Company Inc., 2000.

[3] Hopfner M., and Seipel D., “Reasoning about
Rules in Deductive Databases,” in Proceedings
of 17th Workshop on Logic Programming
(WLP'2002), 2002.

[4] Onet A., “An Approach on Semantic Query
Optimization for Deductive Databases,”
Informatica, vol. 48, no. 1, 2003.

[5] Qadah G., Henschen L., and Kim J., “Efficient
Algorithms for the Instantiated Transitive
Closure Queries,” IEEE Transactions on
Software Engineering, vol. 17, no. 3, 1991.

[6] Suzuki S., Kishi M., and Ibaraki T., “Query
Evaluation of the Same Generation Problem with
any Variables,” Systms and Computers in Japan,
vol. 24, no. 10, 1993.

[7] Toroslu I. and Arman N., “An Efficient
Algorithm for the Partially Instantiated Same
Generation Query in Deductive Databases,” in
Proceedings of the 10th International Symposium
on Computer and Information Sciences, Istanbul,
Turkey, 1995.

[8] Toroslu I., Qadah G., and Henschen L., “An
Efficient Database Transitive Closure
Algorithm,” Journal of Applied Intelligence 4,
pp. 205-218, 1994.

[9] Ullman J., Principles of Database and
Knowledge-Base Systems, Computer Science
Press, 1989.

[10] Yahya A., “Duality for Efficient Query
Processing in Disjunctive Deductive Databases,”
Journal of Automated Reasoning, vol. 28, no. 1,
pp. 1-34, 2002.

[11] Young C., Kim H., Henschen L., and Han J.,
“Classification and Compilation of Linear

Recursive Queries in Deductive Databases,”
IEEE Transactions on Knowledge and Data
Engineering, vol. 4, no. 1, 1992.

Nabil Arman received his BSc in
computer science with high honors
from Yarmouk University in 1990
and an MSc in computer
engineering from Middle East
Technical University in 1995. He
also received an MSc in computer

science from The American University of Washington
DC in 1997. In May 2000, he received his PhD in
information technology/computer science from the
School of Information Technology and Engineering,
George Mason University, Virginia, USA. He is an
assistant professor at Palestine Polytechnic University,
Hebron, Palestine, and was on a one-year leave
teaching at the Department of Computer Science,
Alisra University while part of this work was done. He
is interested in database and knowledge-base systems,
and algorithms.

