

35 A Study on Multi-Screen Sharing System Using H.264/AVC Encoder

A Study on Multi-Screen Sharing System
Using H.264/AVC Encoder

Shizhe Tan and Fengyuan Zhang

Department of Electronic Engineering, Ocean University of China, China

Abstract: H.264/AVC is a standard for video compression developed by the ITU-T Video Coding Experts Group (VCEG) and
the ISO/IEC JTC1 Moving Picture Experts Group (MPEG). However, the computational complexity of H.264/AVC
contributed a lot to the delay time of multi-screen sharing system. In this paper, the motion estimation algorithms provided in
X264 have been analysed, and an optimized algorithm has been proposed, this optimized algorithm can reduce a lot of
unnecessary computation. And more, this paper designed and implemented the multi-screen sharing system with the improved
encoder. Experimental results show that the proposed method has increased the encoding speed and decreased the delay time,
while incurring little, if any, loss in quality.

Keywords: Multi-screen sharing system, H.264/AVC, motion estimation, delay time.

Received August 25, 2013; accepted October 26, 2014.

1. Introduction
With the development of technology, a variety of
intelligent home appliances constantly entered millions
of households, and the concept of digital home has
been widely accepted by consumers [1]. As one of the
most common application of digital home,
multi-screen sharing system aims at helping users to
access their media resources stored on different
devices whenever necessary [5, 13]. Currently, the
study of multi-screen sharing system is not yet
in-depth, home appliances on the market using it
mostly based on the standard video encoder, users
obtained poor experience because of the delay time of
frames. An efficient video encoder is the key for
designing a multi-screen sharing system.

H.264/AVC is a video coding standard that
outperforms all of previous standards in terms of
coding efficiency. To achieve a higher coding
performance and better subjective visual quality,
H.264/AVC uses many new techniques such as
variable block-size motion estimation, multiple
reference frames, in-the-loop deblocking filtering, and
so on, which lead to a significant increase in
computational complexity [6]. Motion estimation is the
most important and time-consuming part of
H.264/AVC and it amounts to 74.29 % computation of
the encoder [2]. H.264/AVC adopts Block-Matching
Algorithm (BMA) in motion estimation [6].
Researchers have proposed many methods for
improving performance [8, 10, 11], which include fast
BMAs, such as Three-Step Search (TSS) [7], Diamond
Search (DS) [19], Hexagon Based Search (HEX) [18,
20], and Unsymmetrical-cross Multi-Hexagon-grid
search (UMH) [17] to accelerate the process of

block-matching with acceptable distortion
performance.

In this paper, basing on the properties of frames, an
optimized the HEX algorithm has been proposed.
Experimental results show that the optimization has
improved the speed of encoding. And more, we
designed and implemented the multi-screen sharing
system using the optimized H.264/AVC algorithm, and
it shown that the improvement has shortened the delay
time of frames by contrast.

The rest of this paper is organized as follows. In
section 2, the process of H.264/AVC encoder and the
existing motion estimation algorithms are analysed,
and an optimized algorithm is proposed through
research of statistical characteristics of Macro-Blocks
(MBs) of video sequence. Section 3 designs the
multi-screen sharing system using improved
H.264/AVC encoder. We present the setup and results
of our experiments in section 4 and we conclude in
section 5.

2. The Optimization of H.264/AVC Encoder
2.1. Process of H.264/AVC Encoder
Generally, H.264/AVC encoder can be divided into
Motion Estimation (ME), Motion Compensation (MC),
intra prediction, Transform (T), Quantifier (Q), and
entropy encode. The basic unit in H.264/AVC is MB
which is illustrated in Figure 1.

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 36

ME

MC

T Q Reorder

Entropy
Encoder

Fn
(Current)

F’
n-1

(reference)

F’
n

(Reconstructed)
Filte

r T-1 Q-1

Intra
Prediction

+ Dn X

Inter

Intra

P

+

+

D’

n

NAL

Figure 1. Flowchart of H.264/AVC encode.

In the Figure 1, Fn represents the current encoding
frame, and each MB segmented from Fn select predict
mode according to the type of Fn. In case of inter
prediction, predicted MB (P) is achieved by ME and
MC referring to the previous frame (Fʼn-1), and in intra
prediction, P is predicted through its neighbouring
MBs from reconstructed frame (Fʼn). After predictions,
the residuals MB (Dn), which is achieved from the
actual MB minus P, will be transformed and
quantified. When all MBs have completed the above
process, the Dns will be reordered and entropy
encoded into bit stream. At the last step, Network
Abstract Layer (NAL) adds the control information
that decoder requires and NAL Unit (NALU) header
into this bit stream, the entire work of one frame have
done.

2.2. Motion Estimation Algorithms
For H.264/AVC standard, there are three major open-
source projects, JM, X264, and T264. Among these
projects, X264 abandoned some functions that have
high computational complexity and contribute little to
coding performance, so the practicability have been
improved greatly. This paper chooses X264 as the
research object.

X264 offers four full-pixel motion estimation
algorithms, hadamard Transform Exhaustive Search
(TESA), DS, HEX, and UMH [4].

TESA uses hadamard transform to motion vectors,
then searches all possible candidate transformed
vectors in a predetermined neighbourhood search
window. Although, TESA produces the best quality, it
demands the most computation.

DS in X264 was executed with small diamond
pattern which is shown in Figure 2. Using smaller
pattern is able to find the suitable vector quickly for
the slowly moving MBs, but increases the risk of
falling into local optimum when MBs have violent
movement.

Figure 2. Small diamond pattern.

To avoid falling into local optimum, UMH uses a
variety of patterns which have variable radius, and
introduces the early termination judged. But compared
with HEX, UMH is not suitable for real-time encoding
because of the higher complexity of the algorithm.

HEX is the most widely used ME algorithm, which
benefit from better search efficiency. The detailed
description of each step is as follows:

• Step 1: Predict search starting point using spatial
correlation. Calculate the average value (MV0(x0,
y0)) of the motion vectors which belong to the
adjacent MBs from the current block on the left,
above, and upper left (MV1(x1, y1), MV2(x2, y2),
MV3(x3, y3)). Use the above 4 vectors and vector of
original point (0, 0) as candidate, then calculate the
error cost of reference MB (COST) on those 5
points. The COST is given by Equation 1. Mark the
minimal COST value as BPRED_COST, and the
vector of BPRED_COST as PMV.

1 1

(,) (,) (,)
M N

m = n=

COST i j = C m n - R m + i n + j∑∑

COST(i, j) is the error cost of motion vector (i, j),
and C(m, n) and R(m+i, n+j) are pixel values in the
current MB and the reference MB, respectively.

 1 2 30
3

MV + MV + MVMV =

• Step 2: Transform PMV from Step 1 into full-pixel
format, set the transformed vector as central point,
and calculate COST on central point(MVC(xc, yc))
and the 6 vertices of hexagon (solid points in Figure
3). Mark the minimal COST as BCOST_T, and the
vector of BCOST as BMV_T(xc', yc'), if BMV_T is
the current central point skips to Step 4; otherwise
next.

 ((), (2,),
(2,), (1, 2), (1 2),
(1, 2), (1, 2))

BCOST_T = Min COST xc, yc COST xc + yc
COST xc - yc COST xc + yc + COST xc + , yc -
COST xc - yc + COST xc - yc -

Figure 3. Hexagon search pattern.

• Step 3: Set the BMV_T as central point, and
calculate COST on 3 extra vertices of new hexagon

(1)

(2)

(3)

37 A Study on Multi-Screen Sharing System Using H.264/AVC Encoder

(hollow points in Figure 3). Mark the vector of
minimal COST as BMV_T, if BMV_T is the current
central point skips to step 4; otherwise repeat step 3.

• Step 4: Set the BMV_T from above as central point,
and calculate COST on 8 points around central point
(solid points in Figure 4). Mark the minimal COST
as BCOST, and the vector of BCOST as BMV,
search stops, and BMV is the best vector of
estimation.

Figure 4. Square search pattern.

2.3. Optimization on HEX
It can be seen through the last section that for the MBs
which have violent movement, HEX is able to quickly
locate to the surrounding area of best vector with
bigger hexagon pattern, then uses square pattern to
find the accurate location. But, according to the
characteristics of center offset, the probability
distribution of motion vectors is decline around the
start point [15]. Statistical experiments show that for
the video sequences with lower activity there are 90%
of MBs whose motion vectors locate in the 3*3 region
around the starting point, even for the video sequence
which have violent movement, like ‘football’, the
probability of motion vectors locate in the 3*3 region
is 72%. For those MBs, the calculations of COST on
the six vertices of hexagon are unnecessary. In order to
solve this problem, this paper made the following
improvements to HEX, as shown in Figure 5.

Figure 5. Process of optimized HEX.

Set the transformed PMV as central point, and
calculate COST on central point and 8 points around it

(solid and hollow points in Figure 4). Mark minimal
COST value as BCOST, and the vector of BCOST as
BMV. If BCOST is less than BPRED_COST (the
minimal COST of prediction), stops search, BMV is
the best vector of estimation; otherwise, sets BMV as
starting point then executes HEX.

For 70% at least of MBs, HEX needs to calculate
COST on 15 points, and the optimized algorithm only
needs 9, the improvement of speed is significant.

3. Design of Multi-Screen Sharing System
The module chart of multi-screen sharing system is
shown in Figure 6.

Figure 6. Module chart of the system.

In order to improve the system scalability and
portability, server and client has been divided into 3
modules respectively. In server side, screen capture
module captures image from the screen of server
devices [14], and then video encode module encodes
image data into video stream, at last network module
packages video stream and sends them to client.
network module in client receives packages from
server and extracts video stream from packages, then,
the video decode module decode video stream into
image which finally be displayed on the screen of
client by display module.

In the screen capture module, the image data of
screen is obtained from the framebuffer device. A
framebuffer device is an abstraction for the graphic
hardware in Linux system. It represents the frame
buffer of some video hardware, and allows application
software to access the graphic hardware through a
well-defined interface, so that the software doesn't
need to know anything about the low-level interface
stuff [9]. The framebuffer mechanism is also been
supported in Android system. To capture the screen of
server, we need to open the device file of framebuffer
in read-only mode and read data from the file
continuously. The process of screen capture module is
shown in Figure 7.

(4)

(5)

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 38

Open the Framebuffer device file

Get the parameter of screen

Video Encode
Module request ?

Read and copy the data from
Framebuffer device file

NO

YES

Figure 7. Process of screen capture module.

The network module depends on Real-time
Transport Protocol (RTP). RTP is a network protocol
which published by the IETF working group on
multimedia transmission in RFC 1889, it provides end-
to-end network transport functions suitable for
applications transmitting real-time data, such as audio,
video or simulation data, over multicast or unicast
network services [3, 12, 16]. As shown in Figure 8,
data from encoder will be packaged by RTP with
information needed by client such as sequence number
and timestamp, and then the packages will be
transported to client by UDP.

Initialization

Client requests

Call the Video Encode Module

Package data by RTP

Transport packages by UDP

YES

NO

Figure 8. Process of network module.

4. Experiment
This experiment was carried out to test the
performance of Optimized HEX algorithm (OHEX)
compared with TESA, and HEX. The test sequences of
‘akiyo’ , ‘foreman’ and ‘football’ were been selected,
which are shown in Figure 9. The resolution of
these test sequences is 176×144 and format is QCIF.
The ‘akiyo’ is a video sequences with lower activity,
and ‘foreman’ has moderate movement, and ‘football’
is the violent movement video.

a) ‘akiyo’. b) ‘foreman’. c) ‘football’.

Figure 9. test sequences.

The experiment results were shown in Tables 1, 2
and 3. Here, the PSRN is the average peak signal to
noise ratio. ΔPSNR represents the change of OHEX
algorithm with respect to the HEX. ΔBR is the percent
change of bit rate about OHEX algorithm with respect
to the HEX. The Δt is the percent change of motion
estimation time for OHEX with respect to the HEX.
These parameters are defined as following:
 OHEX HEXPSNR PSNR PSNR∆ = −

 100%OHEX HEX

HEX

BR BRBR
BR

−
∆ = ×

 100OHEX HEX

HEX

t - tΔt =× %
t

These sequences have been encoded by X264 encoder
with different motion estimation algorithm for 100
times respectively.

The experiment is implemented in a 2.67GHz PC
with 2GB memory. The CPU optimizations have been
disabled, and the other options have been set to the
default value.

Table 1. Contrast of average PSNR (dB) for these algorithms.

Sequence Frame Number FS HEX OHEX ΔPSNR

Football 130 36.313 36.308 36.309 0.001
Foreman 150 37.108 37.117 37.080 -0.037

Akiyo 300 38.695 38.727 38.669 -0.058

Table 2. Contrast of bit rate (kbit/s) for these algorithms.

Sequence Frame Number FS HEX OHEX ΔBR(%)
Football 130 705.63 716.37 730.395 1.95
Foreman 150 209.65 213.35 215.54 1.02

Akiyo 300 28.74 28.70 28.81 0.38

Table 3. Contrast of motion estimate time (s) for these algorithms.

Sequence Frame Number FS HEX OHEX Δt (%)

Football 130 2886.261 271.372 192.595 -29.03
Foreman 150 2152.65 205.894 159.353 -22.60

Akiyo 300 1958.774 228.670 198.810 -13.05

From Tables 1, 2 and 3, the PSNR of ‘football’
increases slightly and its ΔBR is also increased most
which will influence the transmission efficiency. But
its percentage of motion estimate time decreases most.
For the ‘Foreman’, the motion estimate time decreases
about 22.6%, while the change of its ΔBR and PSNR is
relatively small. So the OHEX is effective for the
moderate movement test sequences. For the ‘akiyo’,
the PSNR is decreased only 0.058 dB and its bit rate
increases 0.38%, but the motion estimate time
decreases 13.05%.

Overall, the PSNR of OHEX algorithm decreased,
the average of ΔPSNR is about -0.031dB, the change is
very small which is almost negligible. The average
increase of the bit rate of OHEX is about 1.11 %. But
the average of motion estimate time decreases about
21.56%. Thus, the speed of OHEX algorithm has been
improved while the changes of PSNR and bit rate are

(6)

(7)

(8)

39 A Study on Multi-Screen Sharing System Using H.264/AVC Encoder

almost negligible. So the OHEX algorithm is effective.
The proposed method is not only fast but also encodes
video sequences at a very high quality.

As described above, the quantitative analysis
demonstrated the effectiveness of the OHEX. Specially,
this algorithm decreased the motion estimate time
while the reduction in image quality was almost
negligible. In order to further demonstrate the
effectiveness, the qualitative analysis was done. Figure
10 showed the contrast of the original image and
decoded image. Figures 10-a, d, and g showed the
original images which were thirty-third frame of each
test sequence. Figures 10-b, e, and h showed the
decoded images for the same frame using HEX
algorithm and Figures 10-c, f, and i showed the
decoded images for the same frame using OHEX
algorithm. The contrast results showed that there is
almost no difference in image quality, but the speed of
the motion estimation increased. So the optimized
HEX algorithm is more suitable for the real-time
application.

a) Original image. b) Decoded image for HEX. c) Decoded image for OHEX.

d) Original image. e) Decoded image for HEX. f) Decoded image for OHEX.

g) Original image. h) Decoded image for HEX. i) Decoded image for OHEX.

Figure 10. Contrast of original and decoded image.

And more, in order to verify that the improvement
of encoder has enhanced the performance of the
system, we have tested the delay time of frames
comparing with the X264 encoder using original HEX.
The delay time is defined as the time interval from the
server beginning to capture the screen to the client
finally displaying the image to users. In this
experiment, the server is based on Android system,
with an Nvidia Tegra3, 1.3GHz CPU and 2GB
memory; the client using a 2.67GHz CPU and 2GB
memory in Linux system; the experiment was taken
under a local area network. The screen of server device
has the resolution as 1024*600, and the bit rate of
encoder has been set as 800kb/s. The experimental
scene is shown in Figure 11.

Figure 11. Experimental scene.

In each group, the system has worked for 15
minutes, and during the 15 minutes, the same video
has been played in server. The experimental results are
shown in Table 4.

Table 4. Test of delay time.
 Maximum Delay Time

(ms)
Average Delay Time

(ms)
Origin 225.40 89.38

Optimized 194.37 82.54
Change -13.77% -7.65%

As illustrated in Table 4, the maximum delay time
of multi-screen sharing system has been shortened by
13.77%, and the average delay time has been shortened
by 6.21%. Even though the delay time is mainly
consisted of encoding time and network transmission
time, the improvement proposed in this paper has
reduced it in a certain extent.

5. Conclusions
In this paper, an optimized motion estimati algorithm
of H.264/AVC has been proposed, and the
experimental results demonstrate that the new method
has saved about 10% of encoding time while PSNR
decreasing slightly. Furthermore, a multi-screen
sharing system with the improved X264 encoder has
been designed and implemented. Experiments show
that the delay time of frames has been shortened in a
certain extent. This research result can be used for the
application development of smart TV, smart phone,
tablet PC and other devices, and it will improve the
user experience of entertainment.

References
[1] Chazalet A., Bolle S., and Martin S., “Analyzing

the Digital Home's Quality of Service,” in
Proceedings of International Conference on
Annual Computer Software and Applications
Conference, Germany, pp. 446-451, 2011.

[2] Chien S. and Huang Y., “Analysis and
Architecture Design of an HDTV720p 30
Frames/s H.264/AVC Encoder,” IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673-688, 2006.

[3] Diaz C. and Cabrera J., “A Video-Aware
FEC-Based Unequal Loss Protection System for
Video Streaming Over RTP,” IEEE Transactions
on Consumer Electronics, vol. 57, no. 2, pp.
523-531, 2011.

The International Arab Journal of Information Technology, Vol. 14, No. 1, January 2017 40

[4] Duanmu C. “A Fast Hexagon-based Search
Algorithm on SIMD Architectures,” in
Proceedings of IEEE Asia-Pacific Conference on
Circuits and Systems, Singapore, pp. 1579-1582,
2006.

[5] Jun G., “Home Media Center and Media Clients
for Multi-Room Audio and Video Applications,”
in Proceedings of 2nd IEEE Consumer
Communications and Networking Conference,
Las Vegas, pp. 257-260, 2005.

[6] Khan N., Masud S., and Ahmad A. “A Variable
Block Size Motion Estimation algorithm for
Real-Time H.264 Video Encoding,” Signal
Processing: Image Communication, vol. 21, no.
4, pp. 306-315, 2006.

[7] Koga T., Iinuma K., Hirano A., Iijima Y., and
Ishiguro T., “Motion Compensated Interframe
Coding for Video Conferencing,” in Proceedings
of NTC Record-National Telecommunications
Conference, New Orleans, pp. G5.3.1-G5.3.5,
1981.

[8] Mittal A., Moorthy A., and Bovik A., “Visually
Lossless H.264 Compression of Natural Videos,”
Computer Journal, vol. 56, no. 5, pp. 617-627,
2013.

[9] Schulzrinne H., Casner S., Frederick R., and
Jacobson V., RTP: A Transport Protocol for
Real-Time Applications, Internet Draft, 2003.

[10] Shen L. and Liu Z., Yan T., and Zhang Z.,
“View-Adaptive Motion Estimation and
Disparity Estimation for Low Complexity
Multiview Video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol.
20, no. 6, pp. 925-930, 2010.

[11] Tai S., Chen Y., Huang Z., and Wang C., “A
Multi-pass True Motion Estimation Scheme with
Motion Vector Propagation for Frame Rate
Up-Conversion Applications,” IEEE/OSA
Journal of Display Technology, vol. 4, no. 2, pp.
188-197, 2008.

[12] Thomas S., Fuente La., Globisch R., Hellge C.,
and Wiegand T., “Priority-Based Media Delivery
Using SVC with RTP and HTTP Streaming,”
Multimedia Tools and Applications, vol. 55, no.
2, pp. 227-246, 2011.

[13] Vun N. and Ooi Y., “Implementation of an
Android Phone Based Video Streamer,” in
Proceedings of 2010 IEEE/ACM International
Conference on Green Computing and
Communications, China, pp. 912-915, 2010.

[14] Wang Q., Chang X., and Feng A.,
“Implementation and Application of DSP-LCD
Driver Based on Framebuffer,” Lecture Notes in
Electrical Engineering, vol. 140, pp. 627-632,
2012.

[15] Wei X. and Jiang J., “A New Adaptive Motion
Estimation Algorithm Based on Selecting

Predictive Initial Search Point,” Journal of Image
and Graphics, vol. 10, no. 7, pp. 873-877, 2005.

[16] Werda I., Chaouch H., Samet A., Ayed M., and
Masmoudi N., “Optimal DSP Based Integer
Motion Estimation Implementation for
H.264/AVC Baseline Encoder,” The
International Arab Journal of Information
Technology, vol. 7, no. 1, pp. 96-104, 2010.

[17] Xu X. and He Y., “Improvements on Fast Motion
Estimation Strategy for H.264/AVC,” IEEE
Transaction on Circuits and System for Video
Technology, vol. 18, no. 3, pp. 285-293, 2008.

[18] Zhu C., Lin X., and Chau L., “Hexagon-Based
Search Pattern for Fast Block Motion
Estimation,” IEEE Transactions on Circuits and
System for Video Technology, vol. 12, no. 5, pp.
349-355, 2002.

[19] Zhu S. and Ma K., “A New Diamond Search
Algorithm for Fast Block-Matching Motion
estimation,” IEEE Transaction on Image
Processing, vol. 9, no. 2, pp. 287-290, 2000.

[20] Zou B., Shi C., Xu C., and Chen S., “Enhanced
Hexagonal-Based Search Using
Direction-Oriented Inner Search for Motion
Estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 20, no. 1, pp.
156-160, 2010.

Shizhe Tan received his PhD
degree from Shanghai Jiaotong
University, China in 2002. He is
currently working a assistant
professor in the Department of
Electronic Engineering of Ocean
University of China. His area of

specialization includes video decoding the
compression technology, information science
technology.

Fengyuan Zhang received his MS
degree in Department of Electronic
Engineering from Ocean University
of China; His research interests
include digital home, information
technology, and data mining.

https://comjnl.oxfordjournals.org/search?author1=Anush+K.+Moorthy&sortspec=date&submit=Submit�
https://comjnl.oxfordjournals.org/search?author1=Alan+C.+Bovik&sortspec=date&submit=Submit�

	A Study on Multi-Screen Sharing System Using H.264/AVC Encoder
	Introduction
	The Optimization of H.264/AVC Encoder
	Process of H.264/AVC Encoder
	Generally, H.264/AVC encoder can be divided into Motion Estimation (ME), Motion Compensation (MC), intra prediction, Transform (T), Quantifier (Q), and entropy encode. The basic unit in H.264/AVC is MB which is illustrated in Figure 1.
	Figure 1. Flowchart of H.264/AVC encode.
	In the Figure 1, Fn represents the current encoding frame, and each MB segmented from Fn select predict mode according to the type of Fn. In case of inter prediction, predicted MB (P) is achieved by ME and MC referring to the previous frame (Fʼn-1), a...
	Motion Estimation Algorithms
	Optimization on HEX
	Design of Multi-Screen Sharing System
	Experiment
	This experiment was carried out to test the performance of Optimized HEX algorithm (OHEX) compared with TESA, and HEX. The test sequences of ‘akiyo’ , ‘foreman’ and ‘football’ were been selected, which are shown in Figure 9. The resolution of these te...
	Figure 9. test sequences.
	The experiment results were shown in Tables 1, 2 and 3. Here, the PSRN is the average peak signal to noise ratio. ΔPSNR represents the change of OHEX algorithm with respect to the HEX. ΔBR is the percent change of bit rate about OHEX algorithm with re...
	These sequences have been encoded by X264 encoder with different motion estimation algorithm for 100 times respectively.
	The experiment is implemented in a 2.67GHz PC with 2GB memory. The CPU optimizations have been disabled, and the other options have been set to the default value.
	Table 1. Contrast of average PSNR (dB) for these algorithms.
	Conclusions

