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Abstract: We consider the problem of verifying invariance properties for duration systems. Such systems are (extended) timed 
graphs with duration variables. They are especially suitable for describing real time schedulers. However, for this kind of 
systems, the verification problem of invariance properties is in general undecidable. We propose an over approximation 
method based on a particular extension of a given duration system, and we show that our over approximation includes all the 
digitization of all the real computations of the duration system. The over-approximated system can then be used to perform an 
interesting close analysis of invariance properties of the initial system, while other existing approaches fail. 
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1. Introduction 
Timed graphs constitute a powerful formalism widely 
adopted for modelling real-time systems [3, 7, 16, 18, 
21]. A timed graph is a finite control locations graph, 
supplied with a set of clocks that can be tested and 
reset at each transition between locations. Each clock 
counts the elapsed time since its last reset; clocks 
values range over the positive reals and they are 
supposed to increase continuously. So, the clocks of a 
timed graph can be seen as continuous (real valued) 
linear variables running with rate 1 at every control 
location; the tests on these clocks allow one to explain  
the elapsed time between transitions executed by the 
modelled system. 

However, it is often interesting to account for the 
accumulated times spent by computations at some 
particular locations. This corresponds to the concept of 
duration introduced in [12]. In particular, the whole 
time spent by some computation is simply the 
accumulation of the times spent at each visited 
location. For instance, consider a system where several 
tasks are executed in parallel. Suppose that we are 
interested in constraining the execution time of some 
particular task and assume that this task may be 
interrupted by other tasks of higher priority. Then, the 
constraint on the execution time of the considered task 
must be expressed using the accumulated times 
corresponding to its execution. Intuitively, to compute 
these accumulated times, we must use a clock that can 
be stopped (frozen) when the task is interrupted, and 
resumed when the task is active. This is typically the 
case of real-time schedulers with pre-emption [8]. 
Thus, a natural and interesting extension of timed 
graphs remains consistent considering duration 

variables that count accumulated times spent at some 
particular control locations.  

Actually, duration variables are continuous linear 
variables with rates 0 or 1 at each location. Hence, we 
use the Duration Variables Timed Graphs (DVTG's) 
that have been introduced in [8] which are defined 
exactly as timed graphs except that they involve 
duration variables instead of clocks. DVTG are 
particular cases of the general models of hybrid 
systems proposed in [4, 6, 10, 18, 19]. Duration 
variables are called integrators or stopwatch in [4, 18]. 
It is proved in [13] that stopwatch automata [18] have 
the same expressivity as linear hybrid automata [5]. 

The problem we consider in this paper is the 
verification of invariance properties for timed systems 
modelled by DVTG's. Invariance properties 
correspond to safety requirements on the behavior of 
these systems, and thus, they constitute the major part 
of their specifications [20]. Invariance properties are 
the duals of reachability properties. Hence, the 
verification of invariance properties is equivalent to 
solving reachability problems. 

It is well known that the reachability problem for 
timed graphs is decidable [3]. The decision procedure 
for these systems is based on the construction of a 
finite region graph obtained by partitioning the (non-
countable) set of states into a finite set of regions such 
that all the states in a same region satisfy the same 
reachability properties [1, 2]. However, such a finite 
region graph does not exist in general when integrators 
are considered. Actually, it has been shown that the 
reachability problem is undecidable for timed graphs 
extended by one integrator [11]. 

This paper presents a technique extending a given 
DVTG system into another one containing the initial 
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computations as well as additional ones. Then we 
present a discretisation technique (called also 
digitization) allowing the translation from the 
continuous case to the discrete one. Using this 
digitization, we show that to each real computation in 
the initial system corresponds a discrete computation 
in the extended system. Thanks to this digitization 
technique, we can determine all the computations 
leading to locations falsifying the invariant. We show 
that our verification method can be used to verify 
duration systems represented by DVTG's with a finite 
number of integrators while all the known models for 
which reachability is decidable [6, 8, 18] or can be 
verified by approximation [22, 23] have strong 
constraints and have at most one integrator. 

The paper is organized as follows. In the next 
section, we introduce our computational models, 
namely the duration variables timed graphs and their 
operational semantics. Section 3 defines the invariance 
and reachability properties and sets the verification 
problem that this paper deals with. Section 4 presents 
an example of the use of DVTG's to model timed 
systems and invariance formulas to express safety 
requirements on these systems. Then, in section 5, we 
present the notion of digitization [15] that we use and 
we define our approximation method. In section 6, we 
present the verification results. Concluding remarks are 
presented in section 7. 

 
2. Duration Variables Timed Graphs 
We introduce in this section models for timed systems, 
called duration variables timed graphs, which are 
extensions of the well-known timed graphs [3]. A 
Duration Variables Timed Graph (DVTG) is described 
by a finite set of locations and a transition relation 
between these locations. In addition, the system has a 
set of duration variables that are constant-slope 
continuous variables. Each of them changes 
continuously with a rate in {0, 1} at each location of 
the system (the rates of a same variable at different 
locations may be different). The transitions between 
locations are conditioned by guards that are 
arithmetical constraints on the values of the duration 
variables. The execution of any transition may reset 
some subset of the duration variables of the system. 
Duration variables can be seen as clocks that can be 
stopped (frozen) at some locations and then resumed at 
some other locations. This allows one to reason about 
the durations of some particular locations instead of the 
whole elapsed time in some computation. DVTG's are 
particular cases of the general models of hybrid 
systems proposed in [4, 9, 14, 18, 19]. We give 
hereafter their formal definition and their operational 
semantics. 

 
 
 

2.1. Definition 

First of all, let us introduce the notion of guard. Given 
a set of variables X, a guard on X is a boolean 
combination of constraints of the form xpc where 
x∈X, c is an integer constant (c ∈ N), and  p ∈{<, ≤}, 
the symbols < and ≤ representing the usual (strict and 
non-strict) ordering relations over the reals. Let G(X) 
be the set of guards on X. Clearly, we can assume 
without loss of generality that a guard is a union of 
conjunctions of constraints of the form apx , xpb, x≡nc 

or x?nc, where the p's are in {<,≤}, the a's in N, the b's 

in N, the c's in N, and the n's in N-{0}. We say that a 
guard is closed if all the p's it contains are ≤'s (i.e., 
non-strict inequalities). 
 Now, let P be a set of atomic propositions and let       
Σ= 2P. Then, a DVTG is a tuple M= (Σ, L, d, ? , X, ? , 
a, θ) where L is a finite set of locations, d is a set of 
transitions (edges) between locations, i.e., d⊆ L×L,    
? : L? S associates with each location l the set of 
atomic propositions that hold at l, X is a finite set of 
duration variables, ?: d? G(X)  associates with each 
transition a guard which should be satisfied by the 
duration variables whenever the transition is taken,     
a: d? 2X gives for each transition the set of variables 
that should be reset when the transition is taken, and 
finally, θ: L×X? {0, 1} associates with each location 
l∈L and each variable x in X the rate at which x 
changes continuously while the computation is at l. 
This means that if the computation stays t amount of 
time at l, the variation of x is θ (l, x)⋅t. 
 We say that a variable x is a timer, if for every 
location l∈L, θ(l, x)= 1, otherwise we say that x is an 
integrator. Notice that the class of DVTG's such that 
all their variables are timers is the class of Timed 
Graphs (TG's) introduced in [3].  
 
2.2. State Graph 
We now give an operational semantics for the 
DVTG's. Consider a DVTG M. A state of the model M 
consists of a location and a valuation that assigns to 
each variable a real value, i.e., a state is a pair (l, ν) 
such that l∈L and ν∈[X→R ]. Let SM be the set of 
states of the model M. A state (l, ν) is called integer 
state if ν∈[X→N]. We denote by N(SM) the set of 
integer states of SM. 
 We associate with the DVTG M a state graph. For 
this, we define two transition relations (→) and (.) 
between the states of M. The relation (→) corresponds 
to transitions due to time progress at some location 
whereas (.) corresponds to moves between locations 
using transitions in d. Before giving the formal 
definition of these relations, let us first introduce some 
notations.  
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 Given a valuation ν: X→R , a variable x∈X and a 

real value v∈R , we denote by ν [x←v] the new 
valuation which assigns v to x and coincides with ν for 

all the other variables. Moreover, for any t∈R +, and 
every location l∈L, we denote by [ν+t]l the valuation 
ν’ such that for every x∈X, ν’(x)= ν(x) + θ(l, x)⋅t. 
Finally, given a valuation ν and a guard g, we denote 
by ν ? g the fact that the evaluation of g under the 
valuation ν is true.  
 Now, we define two families of relations between 

states ? t and .d with t∈R + and d∈d. For every t∈R + 
and every d∈d, these relations are defined as the 
smallest relations included in SM×SM such that: 

• (l,ν)? t (l, [ν + t]l), 
• If d= (l1, l2) and ν . ? (d) Then  
   (l1,ν).d (l2,ν[x←0]x∈ α(d))  
 We define →=U

0≥

→
t

t  and .= U>
δ∈d

d , and we 

consider the relation ? =→ ∪ .. Then, the state graph 

associated with M is (SM,? ). We denote by ? * the 

reflexive-transitive closure of ? . 
 
2.3. Computation Sequences and Trails 
We define now the notion of computation sequence of 
a DVTG M. These sequences are defined as finite 
sequences of configurations. A configuration is a pair 

(s, τ) where s is a state in SM and τ∈R + is a time value. 
Intuitively, a computation sequence is a finite path in 
the state graph of an extension of M by an observation 
clock that records the global elapsed time since the 
beginning of the computation. 
 Formally, we extend the transition relations →t and .d 
from states to configurations. We denote these 
extensions by (;t) and (;d) respectively. Given two 
configurations (s,τ) and (s’,τ’), these relations are 
defined by: 

• (s, τ);t (s’, τ’) iff s ? ts’ and τ’ = τ +t 
• (s, τ);d (s’, τ’) iff s .d s’ and τ’ = τ 

Let us denote by (;) the union of all the (;t 's) and the 
(;d' s.) Then,  a  computation  sequence  of  M starting 
from a state s is a finite sequence 
(s0, τ0); (s1, τ1)… ; (sn, τn) such that s0= s and τ0= 0. We 
denote by CS(M, s) the set of computation sequences 
of M starting from s. 
 Now, let us introduce the notion of complete 
computation sequences which is useful for the 
digitization issue. We say that a computation sequence 
(l0, νO, τ0); (l1, ν1, τ1); …(ln, νn, τn) is complete, if for 
each u∈N such that u≤τn, there exists some rank i≥0 
such that τi= u. 

 It is clear that every computation sequence can be 
completed by adding intermediate configurations 
corresponding to the missing integer time values. 
Indeed, given a computation sequence, for each rank   
i≥0 such that τi≠τi+1 (hence, necessarily li=li+1), let 
{u1,…,um} be the set of integers between τi and τi+1. 
Then, we can insert between the configurations (li, νi, 
τi) and (li+1, νi+1, τi+1) the following sequence:  
(li, νi, τi);t1(li, νi

1, u1)…;tm(li, νi
m, um);tm+1(li+1, νi+1, 

τi+1) 
where t1= u1-τi, tm+1= τi+1-um, ∀j∈{2,…,m}, tj= 1, and 

∀j∈{1,…,m},   νi
j= [νi+∑

=

j

p

t
1

p]li. 

 Now, we introduce the notion of trail which is also 
useful for the digitization issue. We define a trail as a 
sequence:  (l0, τ0); (l1, τ1); …(ln, τn) 
where the τ's are positive real such that τ0=0, and for 
every i≥0, τi≤τi+1.  

Given a computation sequence of M                            
s= (l0,νO,τ0); (l1,ν1,τ1); …(ln,νn,τn) 

the trail corresponding to s is the sequence  
ρs= (l0, τ0); (l1,τ1); …(ln,τn). 

 Finally, we introduce the notions of integer 
computations sequences and integer trails. We say that 
a computation sequence (resp. trail) is an integer 
computation sequence (resp. integer trail) if all the τi's 
in its configurations are integers.  
 

Notation 1: let M be a DVTG, we denote by Comp 
(M) the set of all the real computations of M, we 
denote by Digit (Comp (M)) the set of all the 
digitization of all the real computations of M. 
 
3. Invariance Properties 
Invariance properties correspond to safety 
requirements on the behaviors (computations) of some 
given system (DVTG). These properties are the duals 
of reachability properties. We define in this section 
formulas expressing invariance and reachability 
properties on the variables of DVTG's. 
 Let M= (s , L, d, Π, X, ?, a, θ) be a DVTG. Then, an 
invariance formula (resp. reachability formula) on M 
is written ∀¤φ  (resp. ∃◊φ) where φ  is a boolean 
combination of atomic propositions (p∈P), and 
constraints of the form xpc with x∈X, c∈N, and p∈{<, 
≤}. The semantics of invariance and reachability 
formulas is defined by a satisfaction relation ² between 
the states in SM and these formulas. For every state    
s= (l, ν), the satisfaction relation ² is inductively 
defined by: 

s²∀ ¤φ   iff  ∀s’∈SM ,   s? s’ implies  s’²φ  

s²∃◊φ  iff ∃s’∈SM,  s? s’ and s’²φ  
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s²p iff p∈Π(l) 
s²¬φ iff s 2 φ  

s²φ1∨φ2  iff s²φ1 or s²φ2 
s² xpc iff  ν ? xpc 

Clearly, we have ∀¤φ  =¬∃◊¬φ . Then, using 
standard laws of the Boolean connectives, together 
with the fact that any formula ∃◊(φ1∨φ2) is equivalent 
to (∃◊φ1)∨(∃◊φ2), it can be easily shown that every 
invariance formula is equivalent to the negation of a 
formula of the form 

                ∨
=

n

i 1
∃◊ (Πi   ∧  ∧

mi

j1

 xi
j p j

i
ci

j)                    (1) 

where the Πi's are boolean combinations of atomic 
propositions, the xi

j are in X, the ci
j  are integers, and 

the p j

i
are in {<, >, ≤, ≥, ≡n, ?n}. In this paper, we 

consider the verification of invariance formulas on 
DVTG's, i.e., deciding whether some given state s of 
some given DVTG satisfies some invariance formula φ  
(s²φ). As we have seen, this problem reduces to the 
verification of reachability formulas. 
 It is well known that this problem is decidable for 
timed graphs [3]. However, it has been shown that this 
problem is undecidable for DVTG's [11], and even for 
DVTG's with one integrator (non timer) [14]. In [4], 
the problem is shown to be semi-decidable. 
 
4. A Real-Time Scheduler 
In this section, we illustrate our framework through an 
example. This example cannot be treated by other 
existing formal verification methods given in [6, 8, 
18]. Actually in [6, 8, 18] all the models for which 
reachability is decidable have strong constraints and 
have at most one integrator. 
 

Example 1 
We consider a real time scheduler with pre-emption 
which handles three (families of) tasks a and b and c 
using the following policy:  The priority of the tasks 
are as follows: apbpc, in other words the tasks c have 
the highest priority, the tasks a have the lowest priority 
and the tasks b are in the middle. 

The timing assumptions are: 

• The execution time of a is in the real interval ]0, 2[. 
• The execution time of b is in the real interval ]0, 1[. 
• The execution time of c is in the real interval ]0, 3[. 
The system is modelled in the following manner: we 
consider the DVTG represented in Figure 1. The model 
has eleven locations with the following interpretations: 

• In S0, a, b and c are not active. 
• In S1, a is active (b and c are not active). In this 

location a can be suspended. 

• In S9, a is active (b and c are not active). In this 
location a cannot be suspended. 

• In S6, b is active (a and c are not active). In this 
location b can be suspended. 

• In S7, b is active, a is suspended and c is not active. 
In this location b can be suspended. 

• In S8, b is active, a is suspended and c is not active. 
In this location b cannot be suspended. 

• In S10, b is active, (a and c are not active). In this 
location b cannot be suspended. 

• In S2, c is active (a and b are not active). c cannot be 
suspended. 

• In S3, c is active, a is suspended and b is not active. c 
cannot be suspended. 

• In S5, c is active, b is suspended and a is not active. c 
cannot be suspended. 

• In S4, c is active, a and b are suspended. c cannot be 
suspended. 

In order to implement the timing assumptions given 
above, we use four variables x, y, z and t. The 
variables x serving to count the execution of a and y 
serving to count the execution of b are integrator 
because a and b can be interrupted. z serving to count 
the execution of c is a clock because c is never 
interrupted. t is a clock serving to count the time 
elapsed from the arrival of a, b or c from the initial 
location. x is stopped during the suspensions of a, in 
the locations S3, S4, S7 and S8. y is stopped during the 
suspensions of b that is in locations S4 and S5. 
 

 
 

Figure 1. Real time scheduler. 
 
 We want to check the following property: 

R: The time elapsed between the arrival of a, b or c 
from the initial location S0 (Start event) and the end of 
a session when the initial location is revisited never 
reaches 6 time units. 
 The requirement R is expressed by the invariance 
formula:  

S8 
x 

S0 S2 
S7 
x 

S4 
x, y 

S10 
S5 
y 

S6 
S3 
x 

S1 

S9 0<x<2 

0<y<1 

b / y:=0; t:=0  

a / x:=0; t:=0 

a / x:=0 
a / x:=0 

a / x:=0 

0<y<1

0<z<3 

c / z:=0 
b / y:=0 

0<x<2 
c /z:=0; t:=0 

0<z<3 
0<y<1 

0<y<1 
b / y:=0 

0<z<3

c / z:=0 
a / x:=0 

b / y:=0 

c / z:=0 
0<z<3 

S8 
x 
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(at_S1 ∨ at_S2 ∨ at_S6)⇒ ∀ ¤ (at_S0 ⇒ t<6) 
where at_Si is a proposition true only in the location Si. 
 
5. Approximation 

We consider in this paper the verification problem of 
reachability formulas. To get our detecting procedure, 
we prove that every real computation of a given 
duration system which starts from an integer state, has 
a discretisation which is also a computation of the 
approximate system obtained from the initial one. 
Then, we can do the verification problem of 
reachability formulas on duration system with discrete 
time. 
 
5.1. Digitization 
We present the notion of digitization introduced in [15] 
which is suitable for the systems we are interested in. 
Let us introduce some definitions and notations. Let 

τ∈R +. For every e∈[0, 1[, we define the integer  
[τ]e= if τ≤(τ+e) then 
           τ  
       else 
           τ . 

Now, we recall the definition of digitization 
according to [15]. Given a trail ρ= (l0, τ0); (l1, 
τ1);…(ln, τn) 
and a digitization quantum e∈ [0,1[, the digitization of 
ρ  w. r. t. e  is the integer trail: 
[ρ]e=(l0, [τ0]e); (l1, [τ1]e); …(ln, [τn]e). 

From a trail we can deduce the associated real 
computation by calculating at each step the valuation 
of the variables, this can be done using the following    
definition:   

ν k(y)= ∑
−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆ρ(i) 

where jk denotes the greatest index j such that j≤k, and 
the transition ;j is of the form ;d, with y∈a(d), i.e., y is 
reset by d. We take jk=-1 if such an index does not 
exist, and from a digitizated trail we can deduce the 
associated digitizated computation by calculating at 
each step the valuation of the variables. This can be 
done using the following definition: 

 νe
k(y)= ∑

−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆e
ρ(i) 

 We will use this notion of digitization in our 
approximation method. However in the following 
example we will see that we can have a DVTG with 
only one integrator for which there exists a real 
computation such that all its digitization are not 
computations of the system. Moreover, we can show 
that all the discretisations of this real computation are 
not computations of the system. So we cannot do the 
verification in the discrete model associated to a given 

DVTG M. Just before giving this example, we briefly 
define what we mean by discretisation. 
 

Definition 1: Given a trail  ρ= (l0, τ0); (l1, τ1); …(ln, 
τn)     
a discretisation d(ρ) of ρ is defined as follows:  

d(ρ)= (l0, d(τ0));(l1, d(τ1)); …(ln, d(τn)). 
 where ∀i∈N, d(τi)≤d(τi+1) and 

• τi∈N ⇒ d(τi)=τi  
• u<τi <u+1 ⇒ d(τi)∈ {u, u+1} 

 
Example 2 
Let s be the real computation of the DVTG as given in 
Figure 2. 
 

 
 

Figure 2. Example. 
 
 

s = {<S0, (0, 0, 0)>, <S1, (0.5, 0, 0.5)>, <S2, (1, 0.5, 
0.5)>, <S3, (1.5, 1, 1)>, <S4, (2, 1.5, 1)>, …} 
 
where the first component of the valuation is the 
global time, the second is the clock x and the third is 
the integrator z.  
 There are four discretisations of ρ, two of them 
correspond to a uniform digitizations: 
d1(s)= {<S0,(0, 0, 0)>, <S1,(0, 0, 0)>, <S2,(1,1, 0)>,    
           <S3,(1, 1, 0)>, <S4,(2, 2, 0)>, …}= [s]e with    
           0.5<e<1 
d2(s)= {<S0,(0, 0, 0)>, <S1,(1, 0, 1)>, <S2,(1, 0, 1)>,    
           <S3,(2, 1, 2)>, <S4,(2, 1, 2)>, …}= [s]e with    
           0≤e≤0.5 
d3(s)= {<S0,(0, 0, 0)>,<S1,(0, 0, 0)>,<S2,(1, 1, 0)>,    
            <S3,(2, 2, 1)>, <S4,(2, 2, 1)>,…} 
d4(s)= {<S0,(0, 0, 0)>, <S1,(1,0,1)>, <S2,(1,0,1)>,    
            <S3,(1,0,1)>, <S4,(2,1,1)>, …} 
 
5.2. Approximation Method 
As we have seen in Example 2 (see Figure 2), some 
computations of a given DVTG M don't have any 
discretisation in M. Then we cannot do the verification 
of reachability in the discrete. Our idea consists of 
over-approximating the system M by a system M’ 
such that Digit (Comp(M))⊆Comp (M’). In other 
words the discrete system associated to M contains all 
the digitization of all the computations of the initial 
system M. 

So, let us first introduce some technical notions. Let 
e be a digitization quantum. Now, for a each trail ρ, for 
every k≥0, we define  

 
 

t=1 x=1 
t=2 Λ 
 z=1 S1 

Z

 

S3 

Z 

 

S2
S4 S0 

0≤t  ≤ 1 
/x:=0 
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∆ρ(k)= τk+1-τk and ∆e
ρ(k)= [τk+1]e-[τk]e 

Intuitively, ∆ρ(k) is the time taken by the 
transition ;k  in the real trail ρ (i.e., the time spent at 
location lk) whereas ∆e

ρ(k) is the time taken by the 
same transition in the integer trail [ρ]e. 

Given k∈N, we define Ee
k(y) to be the difference 

between the values of a variable y in [ρ]e and ρ at 
position k, i.e., just after the transition ;k-1 (if it exists). 
Let us give the formal definition.  
Let jk denote the greatest index j such that j≤ k, and 
the transition ;j is of the form ;t, with y∈ a(d), i.e., y is 
reset by d. We take jk=-1 if such an index does not 
exist. Then, we recall  

ν k (y)= ∑
−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆ρ(i) 

and 

νe
k (y)= ∑

−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆e
ρ(i) 

 Intuitively, νk(y) (resp. νe
k(y)) is the value of y at 

position k in ρ  (resp. in [ρ ]e ). Then, we have  
Ee

k(y)= νe
k(y)-νe

k(y) 
 

Definition 2: We define a function β: X×d? N that 
calculates for each variable x∈X and each transition  
e= (s, s’) the maximum of restarts of x from the last 
reset of x until the location s in each way.  
β(x, e)= Maximum {number of restarts(x) from the last 
reset of x until the location s in each way}.  

A restart of a variable x is the change of its rate 
from 0 to 1. And after a reset of a variable x, if the rate 
of a variable x in the current location is 1 then the 
access to this location is considered as a restart of x. 
For example if in the first location x has a rate equal 1 
then the access to the initial state is considered as a 
restart. That is why for the clocks the function β  is 
equal to 1 for each transition. 

 

Remark 1: In the example given in the previous section 
(see  Figure 1), for the integrators x and y we have β(x, 
e)∈{1, 2} and β(y, e)∈ {1, 2} depending on the 
transition e. Actually, for x we have β(x, (S9, S0))= 2 
and β(x, e)= 1 for each e≠(S9, S0), and for y we have 
β(y, (S9, S0))= β(y, (S8, S9))= 2 and β(x, e)= 1 for each 
e∉{(S9, S0), (S8, S9)} 
 

Definition 3: A finite preemption DVTG (FP-DVTG 
for short) is a DVTG that obeys to the following rule: 

For every variable x∈X and for every transition e, 
β(x, e) is bounded. 

 
Remark 2: The example given in Figure 1 is an FP-
DVTG. Actually, the DVTGs that obey to the 
following rule are FP-DVTGs: 
For every variable x∈X and for every loop, if the rate 
of x changes in this loop then x must be reset in this 
loop.  

This rule is verified in Example 1. 
 

Proposition 1: For every computation ρ of an FP-
DVTG M, every digitization quantum e , every 
variable y∈ X, every transition e∈ d  and every k∈N,  
we have 

β(y, e)= 0 ⇒ Ee
k(y)= 0 

       β(y, e)> 0 ⇒|Ee
k(y)|<β(y, e) 

 

Proof: For every computation ρ  and every variable 
y∈X we have  

Ee
k(y)=∑

−

=

1

0

k

i

θ(li,y) ⋅ (∆e
ρ(i)- ∆ρ(i)) 

For a given index k, a given transition e= (lk-1, lk) and 
a given variable y, if β(y, e)= 0 then the rate of y is 0 
in the locations visited from the last reset of y. So 
νe

k(y)= νk(y)= 0, thus Ee
k(y)= 0. 

 Now, for a given index k, a given transition e= (lk-1, 
lk) and a given variable y, if β(y, e)>0 then the 
sequence ρ  has a unique decomposition into a finite 
number of sets of indices {0,…, j0-1}, {j0,…, j1}, 
{j1+1,…, j2-1}, {j2,…, j3},…{jp,…, k}, where: 
• j0 is the first index i where θ (li, y)= 1 after the last 

reset of y. 
• θ (l, y)= 1 in the following sets : {j0,…, j1},{j2,…, 

j3},…{j2n,…, j2n+1} and θ (l, y)= 0 in the other sets. 
 
 We have n+1= β(y, e) by definition of β, because the 
number of restarts of y is equal to the number of 
subsets of indices on which θ(l,y)= 1. Then, 

Ee
k(y)= ∑

−

=

11

0

j

ji

(∆e
ρ(i)- ∆ρ(i)) +  ∑

−

=

13

2

j

ji

(∆e
ρ(i)- ∆ρ(i))+…      

           + ∑
−

=

+ 112

2

n

n

j

ji

(∆e
ρ(i)- ∆ρ(i)) 

Where j0 is the first index i where θ(li,y)= 1 after the 
last reset of y. Besides, for each m∈{0, 1,…, n}, we 

have  -1< ∑
−

=

+ 112

2

m

m

j

ji

(∆e
ρ(i)-∆ρ(i))<1. Thus,       

              -β(y, e)<Ee
k(y)<β(y, e) 

 
Definition 4: The approximate model M’= App(M) is 
obtained from M by transforming each guard of a 
transition e of the form up yp w by the guard 
                    If  u-β(y, e)≥ 0 then  
                        u-β(y, e)≤ y≤ w+β(y, e) 
                    else 
                        0≤ y≤ w+β(y, e) 
where u, w ∈N, x∈X and p∈{<,≤}. 
 
6. Verification of FP-DVTG 
We consider in this section the verification problem of 
reachability formulas for FP-DVTG's. To get our 
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detecting procedure, we prove that every real 
computation of a FP-DVTG which starts from an 
integer state, has a digitization (according to our 
definition given in the previous section) which is also a 
computation of the approximate system obtained from 
the initial one. Then, we show that the verification 
problem of reachability formulas on FP-DVTG's with 
discrete time, reduces to the reachability problem in 
finite state graphs. 
 
6.1. Digitization Result 

Let M be a FP-DVTG. Along this subsection, we refer 
to the following trail  

ρ= (l0, τ0);(l1,τ1); …(ln,τn) 
 

To simplify some definitions given later, we assume 
that the value of the variables are initially 0. The 
consideration of any other integer values does not 
present any difficulty. Under these assumptions, we 
prove that ρ  has a digitization which also corresponds 
to a computation sequence of the extending model M’= 
App(M). We can see that any digitization preserves the 
satisfaction of the transition guards of the extending 
model M’= App(M), since the absolute value of the 
difference between the values of a variable y in ρ  in 
the moment where the transition e is taken and its 
digitization [ρ]e is strictly less than β(x, e) (Proposition 
1). This ensures that [ρ]e corresponds actually to a 
computation in M’. 

 

Lemma 1: Let k<n such that the transition e ;k is of the 
form ;d, i.e., a discrete move between locations. Then, 
|Ee

k(y)|<β(y, e) implies that for every l∈N and u∈N,      
lpνk(y)pu with p∈{<,≤} implies that               
νe

k(y)∈{l-β(y, e),… , u+β(y, e)} 
 Lemma 1 ensures that under the assumption that ρ 
corresponds to a computation of M, which means in 
particular that the guard of d is satisfied in ρ, if 
|Ee

k(y)|<β(y, e), then the guard of d in the approximate 
system is also satisfied in [ρ]e. This is due to the fact 
that the guard of d in M’= App(M) is relaxed by β(y, 
e). 
 

Proof: We have by hypothesis 
 

                    |Ee
k(y)|=|νe

k(y)- νk(y)|<β(y, e)                 (2) 
 

 We consider that lpνe
k(y)pu+β(y, e). Since (2) holds 

by hypothesis, and since νe
k(y) is an integer, we have 

necessarily l-β(y, e)≤νe
k(y)≤u+β(y, e) then         

νe
k(y)∈{l-β(y, e),…, u+β(y, e)} . 

 
Proposition 2: Let ρ be a computation of a FP-DVTG 
M, then for each e∈[0, 1[, [ρ]∈ is a computation of 
M’= App(M). 
 
 

Proof: Proposition 1 ensures that for a given FP-
DVTG M), for each transition e, for each variable y, 
for each e and for each computation ρ of M we have 
|Ee

k(y)|<β(y, e). The lemma ensures that if |Ee
k(y)|<β(y, 

e) and a guard of e is satisfied in ρ  then the relaxed 
guard by β(y, e) is also satisfied in [ρ]e so [ρ]e a 
computation of  M’= App(M). 
 
6.2. Solving the Reachability Problem 
In this subsection we show how we can solve the 
verification problem of reachability formulas for FP-
DVTG's. Let M’= (Σ , L, d, Π, X, ?, a, θ) be an 
extending FP-DVTG obtained from a FP-DVTG 
model M, the verification problem we consider is s0²φ  
where s0= (l0, ν0) is an integer state and is a closed 
reachability formula given by  

φ=∃◊ (π∧∧
=

m

j 1

ξj) 

The consideration of disjunctive reachability formulas 
of the form (1) (see section 3) is then straightforward. 

Our result is based on a reduction of the problem 
s0²φ   to the reachability problem in a finite state graph. 
This reduction is made in two steps: The first step 
remains consistent in considering a relaxed FP-DVTG 
M’φ obtained by adding to M’ a target location # 
which is reachable from s0 if and only if s0²φ  holds. 
Then, using the digitization result given in the 
previous subsection, we show that this reachability 
problem can be solved by reasoning on a finite graph 
deduced from                 (N(S M’φ),? 1∪.). 

So, let us define the model M’φ. As we said, we 
construct M’φ as an extension of M’ such that the set 
of locations of  M’φ is the set L augmented by a new 
location # satisfying a special new atomic proposition 
at_#, and every location in L that satisfies the state 
formula π  has a transition to #  which is guarded by        

∧
=

m

j 1

ξj.   

 Formally, M’φ= (Σ∪{at_#}, L∪{#}, d1,Π1, X, ?1, a1, 
θ1) where  
• d1= d ∪ {(l,#)|l∈L and Π(l)² π} 
• Π1(l )= Π(l) for every l∈L and Π1(# )= {at_# } 

• ?1(d)= ?(d) for every d∈d  and ?1(d)=     ξj  for every       
         d∈ d1\d   

• a1(d)= a(d) for every d∈d  and a1(d)= ∅  for every       
        d∈d1\d, 

• θ1(l, x)= θ(l, x) for every l ∈ L and x∈ X, and    
            θ1(#, x)= 1 for every x∈ X.  

Then, it is clear that s0² φ   holds if and only if some 
state of the form (#,ν) is reachable from s0 in Mφ; i.e.     
                   s0²φ  holds in M’ if and only if  
                         s0²∃◊at_# holds in   M’                       (3) 

∧
=

m

j 1
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 Now, let us consider the problem s0² ∃◊at_# in M’φ. 
We recall that s0² ∃◊at_# holds if and only if there 
exists in M’φ some computation sequence starting    
from s0   

s= (l0,ν0,τ0); … ; (ln,νn,τn) 
such that ln= # . Let  

ρs= (l0, 0); … ; (ln,νn) 
 
 

be the trail corresponding to s. Then, by Proposition 2, 
for each value e in [0, 1[, we have [ρs ]e corresponds to 
a computation of M’φ. Hence, there exists some integer 
computation sequence  
 

s’=(l0,ν0,0); (l1,ν’1,τ’1); … ; (ln,ν’n,τ’n) 
 

in the model M’φ such that ln= # . So, we can solve the 
problem s0²∃◊at_# by considering only integer 
computations of M’φ which means that we can restrict 
our attention to integer states of M’φ  and consider only 
the countable state graph G= (N(SM’φ),? 1∪.). 
However, this state graph is infinite. We show that 
nevertheless, we can solve the problem s0² ∃◊at_# by 
considering a finite graph G’ derived from G. 

Let us first introduce some notations. For every 
variable x, we define two constants cx and nx. Let cx be 
the maximal constant which is compared with x in M’φ, 
i.e., cx= max({c | x≤ c or x≥ c is a guard of M’φ}); and 
let nx be the lcm (lowest common multiple) of the set 

{n | ∃c, x≡nc or x?nc is a guard of M’φ. We also 
introduce two functions ϑ  and λ  defined as follows: 
ϑ(a, n)= c iff a≡ nc holds and λ(a, n)= if ϑ(a, n)= 0 then 
n else ϑ(a, n). Let ν  be an integer valuation, we denote 
by λ(ν) the integer valuation defined by 

λ(ν)(x)= if ν(x) ≤ cx+nx then 
            ν(x) 
    else 

                   cx+λ(ν(x)-cx, nx). 
 

In order to construct the graph G’, we observe first 
that all the variables of M’φ are monotonic (never 
decrease). Thus, for every variable x, it is clear that 
beyond cx, the exact value of x is not relevant for the 
guards of the form x≤ c or x≥ c. Moreover, for the 

guards of the form ≡n or ?n, we can find a finite 
amount of values of x beyond cx that represent all the 
possible behaviors of valuations of x w. r. t the guards 
of M’φ. Indeed, for every guard x≡ nici of M’φ, it is easy 
to see that if ν (x) ≥ cx+nx+1, then ν(x)≡ nici holds iff 
cx+λ(ν(x)-cx, nx)≡ nici holds too. Thus, we have the 
following fact. 

 

Lemma 2: For every integer valuation ν ∈ [X?  N], and 
for every guard g in M’φ, ν ? g iff λ (ν)? g.  
  By Lemma  2,  we  can  consider  a  finite  graph   
G’= (Q,? 1

≡ ∪ .) induced by G and defined by: 
• Q= {(l,ν) ∈ N(SM’φ): ∀ x∈ X, 0≤ ν (x) ≤ cx+nx}, 

• (l,ν)? 1
≡  (l, λ ([ν +1]l ))  

Then, we have the following result. 
 

Lemma 3: (l0, ν0) ² ∃◊at_# holds in M’φ if and only if 
there exists some state (#,ν) which is reachable from 
the state (l0, λ(ν0)) in the graph G’. 
Finally, from (3) and Lemma 3, we get the following 
result. 
 

Theorem: Let M be a relaxed FP-DVTG, M’ its 
extension, s0 an integer state in N(SM), and  φ   a closed 
reachability formula. Then, if s0² φ  is true in M then s0² 
φ   is true in the finite graph (N (SM’φ), ? 1∪ .). 
 
7. Conclusion 
We proposed an approximation method for verifying 
reachability properties over duration systems, while 
other existing formal verification approaches in 
general fail. We believe that our approximation allows 
a good analysis of duration systems. Besides, we can 
combine this result and the results described in [15] 
about the verification of MTL logic over timed graphs, 
in order to verify a large fragment of MTL logic over 
duration systems. 

In a future work, we plan to combine our results 
with those described in [13] showing that every Linear 
Hybrid Automata can be transformed into a stopwatch 
automata recognizing the same language, and the 
results in [15] to develop a tool dedicated for the 
verification of a large fragment of MTL over linear 
hybrid automata. 
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