
The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 147

On the Verification by Approximation of Duration

Systems
Narjes Berregeb and Riadh Robbana

LIP2 Laboratory, Tunisia

Abstract: We consider the problem of verifying invariance properties for duration systems. Such systems are (extended) timed
graphs with duration variables. They are especially suitable for describing real time schedulers. However, for this kind of
systems, the verification problem of invariance properties is in general undecidable. We propose an over approximation
method based on a particular extension of a given duration system, and we show that our over approximation includes all the
digitization of all the real computations of the duration system. The over-approximated system can then be used to perform an
interesting close analysis of invariance properties of the initial system, while other existing approaches fail.

Keywords: Approximation, digitization, duration systems, formal verification, real-time scheduler.

Received March 1, 2003; accepted October 30, 2003

1. Introduction
Timed graphs constitute a powerful formalism widely
adopted for modelling real-time systems [3, 7, 16, 18,
21]. A timed graph is a finite control locations graph,
supplied with a set of clocks that can be tested and
reset at each transition between locations. Each clock
counts the elapsed time since its last reset; clocks
values range over the positive reals and they are
supposed to increase continuously. So, the clocks of a
timed graph can be seen as continuous (real valued)
linear variables running with rate 1 at every control
location; the tests on these clocks allow one to explain
the elapsed time between transitions executed by the
modelled system.

However, it is often interesting to account for the
accumulated times spent by computations at some
particular locations. This corresponds to the concept of
duration introduced in [12]. In particular, the whole
time spent by some computation is simply the
accumulation of the times spent at each visited
location. For instance, consider a system where several
tasks are executed in parallel. Suppose that we are
interested in constraining the execution time of some
particular task and assume that this task may be
interrupted by other tasks of higher priority. Then, the
constraint on the execution time of the considered task
must be expressed using the accumulated times
corresponding to its execution. Intuitively, to compute
these accumulated times, we must use a clock that can
be stopped (frozen) when the task is interrupted, and
resumed when the task is active. This is typically the
case of real-time schedulers with pre-emption [8].
Thus, a natural and interesting extension of timed
graphs remains consistent considering duration

variables that count accumulated times spent at some
particular control locations.

Actually, duration variables are continuous linear
variables with rates 0 or 1 at each location. Hence, we
use the Duration Variables Timed Graphs (DVTG's)
that have been introduced in [8] which are defined
exactly as timed graphs except that they involve
duration variables instead of clocks. DVTG are
particular cases of the general models of hybrid
systems proposed in [4, 6, 10, 18, 19]. Duration
variables are called integrators or stopwatch in [4, 18].
It is proved in [13] that stopwatch automata [18] have
the same expressivity as linear hybrid automata [5].

The problem we consider in this paper is the
verification of invariance properties for timed systems
modelled by DVTG's. Invariance properties
correspond to safety requirements on the behavior of
these systems, and thus, they constitute the major part
of their specifications [20]. Invariance properties are
the duals of reachability properties. Hence, the
verification of invariance properties is equivalent to
solving reachability problems.

It is well known that the reachability problem for
timed graphs is decidable [3]. The decision procedure
for these systems is based on the construction of a
finite region graph obtained by partitioning the (non-
countable) set of states into a finite set of regions such
that all the states in a same region satisfy the same
reachability properties [1, 2]. However, such a finite
region graph does not exist in general when integrators
are considered. Actually, it has been shown that the
reachability problem is undecidable for timed graphs
extended by one integrator [11].

This paper presents a technique extending a given
DVTG system into another one containing the initial

148 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

computations as well as additional ones. Then we
present a discretisation technique (called also
digitization) allowing the translation from the
continuous case to the discrete one. Using this
digitization, we show that to each real computation in
the initial system corresponds a discrete computation
in the extended system. Thanks to this digitization
technique, we can determine all the computations
leading to locations falsifying the invariant. We show
that our verification method can be used to verify
duration systems represented by DVTG's with a finite
number of integrators while all the known models for
which reachability is decidable [6, 8, 18] or can be
verified by approximation [22, 23] have strong
constraints and have at most one integrator.

The paper is organized as follows. In the next
section, we introduce our computational models,
namely the duration variables timed graphs and their
operational semantics. Section 3 defines the invariance
and reachability properties and sets the verification
problem that this paper deals with. Section 4 presents
an example of the use of DVTG's to model timed
systems and invariance formulas to express safety
requirements on these systems. Then, in section 5, we
present the notion of digitization [15] that we use and
we define our approximation method. In section 6, we
present the verification results. Concluding remarks are
presented in section 7.

2. Duration Variables Timed Graphs
We introduce in this section models for timed systems,
called duration variables timed graphs, which are
extensions of the well-known timed graphs [3]. A
Duration Variables Timed Graph (DVTG) is described
by a finite set of locations and a transition relation
between these locations. In addition, the system has a
set of duration variables that are constant-slope
continuous variables. Each of them changes
continuously with a rate in {0, 1} at each location of
the system (the rates of a same variable at different
locations may be different). The transitions between
locations are conditioned by guards that are
arithmetical constraints on the values of the duration
variables. The execution of any transition may reset
some subset of the duration variables of the system.
Duration variables can be seen as clocks that can be
stopped (frozen) at some locations and then resumed at
some other locations. This allows one to reason about
the durations of some particular locations instead of the
whole elapsed time in some computation. DVTG's are
particular cases of the general models of hybrid
systems proposed in [4, 9, 14, 18, 19]. We give
hereafter their formal definition and their operational
semantics.

2.1. Definition

First of all, let us introduce the notion of guard. Given
a set of variables X, a guard on X is a boolean
combination of constraints of the form xpc where
x∈X, c is an integer constant (c ∈ N), and p ∈{<, ≤},
the symbols < and ≤ representing the usual (strict and
non-strict) ordering relations over the reals. Let G(X)
be the set of guards on X. Clearly, we can assume
without loss of generality that a guard is a union of
conjunctions of constraints of the form apx , xpb, x≡nc

or x?nc, where the p's are in {<,≤}, the a's in N, the b's

in N, the c's in N, and the n's in N-{0}. We say that a
guard is closed if all the p's it contains are ≤'s (i.e.,
non-strict inequalities).
 Now, let P be a set of atomic propositions and let
Σ= 2P. Then, a DVTG is a tuple M= (Σ, L, d, ? , X, ? ,
a, θ) where L is a finite set of locations, d is a set of
transitions (edges) between locations, i.e., d⊆ L×L,
? : L? S associates with each location l the set of
atomic propositions that hold at l, X is a finite set of
duration variables, ?: d? G(X) associates with each
transition a guard which should be satisfied by the
duration variables whenever the transition is taken,
a: d? 2X gives for each transition the set of variables
that should be reset when the transition is taken, and
finally, θ: L×X? {0, 1} associates with each location
l∈L and each variable x in X the rate at which x
changes continuously while the computation is at l.
This means that if the computation stays t amount of
time at l, the variation of x is θ (l, x)⋅t.
 We say that a variable x is a timer, if for every
location l∈L, θ(l, x)= 1, otherwise we say that x is an
integrator. Notice that the class of DVTG's such that
all their variables are timers is the class of Timed
Graphs (TG's) introduced in [3].

2.2. State Graph
We now give an operational semantics for the
DVTG's. Consider a DVTG M. A state of the model M
consists of a location and a valuation that assigns to
each variable a real value, i.e., a state is a pair (l, ν)
such that l∈L and ν∈[X→R]. Let SM be the set of
states of the model M. A state (l, ν) is called integer
state if ν∈[X→N]. We denote by N(SM) the set of
integer states of SM.
 We associate with the DVTG M a state graph. For
this, we define two transition relations (→) and (.)
between the states of M. The relation (→) corresponds
to transitions due to time progress at some location
whereas (.) corresponds to moves between locations
using transitions in d. Before giving the formal
definition of these relations, let us first introduce some
notations.

On the Verification by Approximation of Duration Systems 149

 Given a valuation ν: X→R , a variable x∈X and a

real value v∈R , we denote by ν [x←v] the new
valuation which assigns v to x and coincides with ν for

all the other variables. Moreover, for any t∈R +, and
every location l∈L, we denote by [ν+t]l the valuation
ν’ such that for every x∈X, ν’(x)= ν(x) + θ(l, x)⋅t.
Finally, given a valuation ν and a guard g, we denote
by ν ? g the fact that the evaluation of g under the
valuation ν is true.
 Now, we define two families of relations between

states ? t and .d with t∈R + and d∈d. For every t∈R +
and every d∈d, these relations are defined as the
smallest relations included in SM×SM such that:

• (l,ν)? t (l, [ν + t]l),
• If d= (l1, l2) and ν . ? (d) Then
 (l1,ν).d (l2,ν[x←0]x∈ α(d))
 We define →=U

0≥

→
t

t and .= U>
δ∈d

d , and we

consider the relation ? =→ ∪ .. Then, the state graph

associated with M is (SM,?). We denote by ? * the

reflexive-transitive closure of ? .

2.3. Computation Sequences and Trails
We define now the notion of computation sequence of
a DVTG M. These sequences are defined as finite
sequences of configurations. A configuration is a pair

(s, τ) where s is a state in SM and τ∈R + is a time value.
Intuitively, a computation sequence is a finite path in
the state graph of an extension of M by an observation
clock that records the global elapsed time since the
beginning of the computation.
 Formally, we extend the transition relations →t and .d
from states to configurations. We denote these
extensions by (;t) and (;d) respectively. Given two
configurations (s,τ) and (s’,τ’), these relations are
defined by:

• (s, τ);t (s’, τ’) iff s ? ts’ and τ’ = τ +t
• (s, τ);d (s’, τ’) iff s .d s’ and τ’ = τ

Let us denote by (;) the union of all the (;t 's) and the
(;d' s.) Then, a computation sequence of M starting
from a state s is a finite sequence
(s0, τ0); (s1, τ1)… ; (sn, τn) such that s0= s and τ0= 0. We
denote by CS(M, s) the set of computation sequences
of M starting from s.
 Now, let us introduce the notion of complete
computation sequences which is useful for the
digitization issue. We say that a computation sequence
(l0, νO, τ0); (l1, ν1, τ1); …(ln, νn, τn) is complete, if for
each u∈N such that u≤τn, there exists some rank i≥0
such that τi= u.

 It is clear that every computation sequence can be
completed by adding intermediate configurations
corresponding to the missing integer time values.
Indeed, given a computation sequence, for each rank
i≥0 such that τi≠τi+1 (hence, necessarily li=li+1), let
{u1,…,um} be the set of integers between τi and τi+1.
Then, we can insert between the configurations (li, νi,
τi) and (li+1, νi+1, τi+1) the following sequence:
(li, νi, τi);t1(li, νi

1, u1)…;tm(li, νi
m, um);tm+1(li+1, νi+1,

τi+1)
where t1= u1-τi, tm+1= τi+1-um, ∀j∈{2,…,m}, tj= 1, and

∀j∈{1,…,m}, νi
j= [νi+∑

=

j

p

t
1

p]li.

 Now, we introduce the notion of trail which is also
useful for the digitization issue. We define a trail as a
sequence: (l0, τ0); (l1, τ1); …(ln, τn)
where the τ's are positive real such that τ0=0, and for
every i≥0, τi≤τi+1.

Given a computation sequence of M
s= (l0,νO,τ0); (l1,ν1,τ1); …(ln,νn,τn)

the trail corresponding to s is the sequence
ρs= (l0, τ0); (l1,τ1); …(ln,τn).

 Finally, we introduce the notions of integer
computations sequences and integer trails. We say that
a computation sequence (resp. trail) is an integer
computation sequence (resp. integer trail) if all the τi's
in its configurations are integers.

Notation 1: let M be a DVTG, we denote by Comp
(M) the set of all the real computations of M, we
denote by Digit (Comp (M)) the set of all the
digitization of all the real computations of M.

3. Invariance Properties
Invariance properties correspond to safety
requirements on the behaviors (computations) of some
given system (DVTG). These properties are the duals
of reachability properties. We define in this section
formulas expressing invariance and reachability
properties on the variables of DVTG's.
 Let M= (s , L, d, Π, X, ?, a, θ) be a DVTG. Then, an
invariance formula (resp. reachability formula) on M
is written ∀¤φ (resp. ∃◊φ) where φ is a boolean
combination of atomic propositions (p∈P), and
constraints of the form xpc with x∈X, c∈N, and p∈{<,
≤}. The semantics of invariance and reachability
formulas is defined by a satisfaction relation ² between
the states in SM and these formulas. For every state
s= (l, ν), the satisfaction relation ² is inductively
defined by:

s²∀ ¤φ iff ∀s’∈SM , s? s’ implies s’²φ

s²∃◊φ iff ∃s’∈SM, s? s’ and s’²φ

150 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

s²p iff p∈Π(l)
s²¬φ iff s 2 φ

s²φ1∨φ2 iff s²φ1 or s²φ2
s² xpc iff ν ? xpc

Clearly, we have ∀¤φ =¬∃◊¬φ . Then, using
standard laws of the Boolean connectives, together
with the fact that any formula ∃◊(φ1∨φ2) is equivalent
to (∃◊φ1)∨(∃◊φ2), it can be easily shown that every
invariance formula is equivalent to the negation of a
formula of the form

 ∨
=

n

i 1
∃◊ (Πi ∧ ∧

mi

j1

 xi
j p j

i
ci

j) (1)

where the Πi's are boolean combinations of atomic
propositions, the xi

j are in X, the ci
j are integers, and

the p j

i
are in {<, >, ≤, ≥, ≡n, ?n}. In this paper, we

consider the verification of invariance formulas on
DVTG's, i.e., deciding whether some given state s of
some given DVTG satisfies some invariance formula φ
(s²φ). As we have seen, this problem reduces to the
verification of reachability formulas.
 It is well known that this problem is decidable for
timed graphs [3]. However, it has been shown that this
problem is undecidable for DVTG's [11], and even for
DVTG's with one integrator (non timer) [14]. In [4],
the problem is shown to be semi-decidable.

4. A Real-Time Scheduler
In this section, we illustrate our framework through an
example. This example cannot be treated by other
existing formal verification methods given in [6, 8,
18]. Actually in [6, 8, 18] all the models for which
reachability is decidable have strong constraints and
have at most one integrator.

Example 1
We consider a real time scheduler with pre-emption
which handles three (families of) tasks a and b and c
using the following policy: The priority of the tasks
are as follows: apbpc, in other words the tasks c have
the highest priority, the tasks a have the lowest priority
and the tasks b are in the middle.

The timing assumptions are:

• The execution time of a is in the real interval]0, 2[.
• The execution time of b is in the real interval]0, 1[.
• The execution time of c is in the real interval]0, 3[.
The system is modelled in the following manner: we
consider the DVTG represented in Figure 1. The model
has eleven locations with the following interpretations:

• In S0, a, b and c are not active.
• In S1, a is active (b and c are not active). In this

location a can be suspended.

• In S9, a is active (b and c are not active). In this
location a cannot be suspended.

• In S6, b is active (a and c are not active). In this
location b can be suspended.

• In S7, b is active, a is suspended and c is not active.
In this location b can be suspended.

• In S8, b is active, a is suspended and c is not active.
In this location b cannot be suspended.

• In S10, b is active, (a and c are not active). In this
location b cannot be suspended.

• In S2, c is active (a and b are not active). c cannot be
suspended.

• In S3, c is active, a is suspended and b is not active. c
cannot be suspended.

• In S5, c is active, b is suspended and a is not active. c
cannot be suspended.

• In S4, c is active, a and b are suspended. c cannot be
suspended.

In order to implement the timing assumptions given
above, we use four variables x, y, z and t. The
variables x serving to count the execution of a and y
serving to count the execution of b are integrator
because a and b can be interrupted. z serving to count
the execution of c is a clock because c is never
interrupted. t is a clock serving to count the time
elapsed from the arrival of a, b or c from the initial
location. x is stopped during the suspensions of a, in
the locations S3, S4, S7 and S8. y is stopped during the
suspensions of b that is in locations S4 and S5.

Figure 1. Real time scheduler.

 We want to check the following property:

R: The time elapsed between the arrival of a, b or c
from the initial location S0 (Start event) and the end of
a session when the initial location is revisited never
reaches 6 time units.
 The requirement R is expressed by the invariance
formula:

S8
x

S0 S2
S7
x

S4
x, y

S10
S5
y

S6
S3
x

S1

S9 0<x<2

0<y<1

b / y:=0; t:=0

a / x:=0; t:=0

a / x:=0
a / x:=0

a / x:=0

0<y<1

0<z<3

c / z:=0
b / y:=0

0<x<2
c /z:=0; t:=0

0<z<3
0<y<1

0<y<1
b / y:=0

0<z<3

c / z:=0
a / x:=0

b / y:=0

c / z:=0
0<z<3

S8
x

On the Verification by Approximation of Duration Systems 151

(at_S1 ∨ at_S2 ∨ at_S6)⇒ ∀ ¤ (at_S0 ⇒ t<6)
where at_Si is a proposition true only in the location Si.

5. Approximation

We consider in this paper the verification problem of
reachability formulas. To get our detecting procedure,
we prove that every real computation of a given
duration system which starts from an integer state, has
a discretisation which is also a computation of the
approximate system obtained from the initial one.
Then, we can do the verification problem of
reachability formulas on duration system with discrete
time.

5.1. Digitization
We present the notion of digitization introduced in [15]
which is suitable for the systems we are interested in.
Let us introduce some definitions and notations. Let

τ∈R +. For every e∈[0, 1[, we define the integer
[τ]e= if τ≤(τ+e) then
 τ
 else
 τ .

Now, we recall the definition of digitization
according to [15]. Given a trail ρ= (l0, τ0); (l1,
τ1);…(ln, τn)
and a digitization quantum e∈ [0,1[, the digitization of
ρ w. r. t. e is the integer trail:
[ρ]e=(l0, [τ0]e); (l1, [τ1]e); …(ln, [τn]e).

From a trail we can deduce the associated real
computation by calculating at each step the valuation
of the variables, this can be done using the following
definition:

ν k(y)= ∑
−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆ρ(i)

where jk denotes the greatest index j such that j≤k, and
the transition ;j is of the form ;d, with y∈a(d), i.e., y is
reset by d. We take jk=-1 if such an index does not
exist, and from a digitizated trail we can deduce the
associated digitizated computation by calculating at
each step the valuation of the variables. This can be
done using the following definition:

 νe
k(y)= ∑

−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆e
ρ(i)

 We will use this notion of digitization in our
approximation method. However in the following
example we will see that we can have a DVTG with
only one integrator for which there exists a real
computation such that all its digitization are not
computations of the system. Moreover, we can show
that all the discretisations of this real computation are
not computations of the system. So we cannot do the
verification in the discrete model associated to a given

DVTG M. Just before giving this example, we briefly
define what we mean by discretisation.

Definition 1: Given a trail ρ= (l0, τ0); (l1, τ1); …(ln,
τn)
a discretisation d(ρ) of ρ is defined as follows:

d(ρ)= (l0, d(τ0));(l1, d(τ1)); …(ln, d(τn)).
 where ∀i∈N, d(τi)≤d(τi+1) and

• τi∈N ⇒ d(τi)=τi
• u<τi <u+1 ⇒ d(τi)∈ {u, u+1}

Example 2
Let s be the real computation of the DVTG as given in
Figure 2.

Figure 2. Example.

s = {<S0, (0, 0, 0)>, <S1, (0.5, 0, 0.5)>, <S2, (1, 0.5,
0.5)>, <S3, (1.5, 1, 1)>, <S4, (2, 1.5, 1)>, …}

where the first component of the valuation is the
global time, the second is the clock x and the third is
the integrator z.
 There are four discretisations of ρ, two of them
correspond to a uniform digitizations:
d1(s)= {<S0,(0, 0, 0)>, <S1,(0, 0, 0)>, <S2,(1,1, 0)>,
 <S3,(1, 1, 0)>, <S4,(2, 2, 0)>, …}= [s]e with
 0.5<e<1
d2(s)= {<S0,(0, 0, 0)>, <S1,(1, 0, 1)>, <S2,(1, 0, 1)>,
 <S3,(2, 1, 2)>, <S4,(2, 1, 2)>, …}= [s]e with
 0≤e≤0.5
d3(s)= {<S0,(0, 0, 0)>,<S1,(0, 0, 0)>,<S2,(1, 1, 0)>,
 <S3,(2, 2, 1)>, <S4,(2, 2, 1)>,…}
d4(s)= {<S0,(0, 0, 0)>, <S1,(1,0,1)>, <S2,(1,0,1)>,
 <S3,(1,0,1)>, <S4,(2,1,1)>, …}

5.2. Approximation Method
As we have seen in Example 2 (see Figure 2), some
computations of a given DVTG M don't have any
discretisation in M. Then we cannot do the verification
of reachability in the discrete. Our idea consists of
over-approximating the system M by a system M’
such that Digit (Comp(M))⊆Comp (M’). In other
words the discrete system associated to M contains all
the digitization of all the computations of the initial
system M.

So, let us first introduce some technical notions. Let
e be a digitization quantum. Now, for a each trail ρ, for
every k≥0, we define

t=1 x=1
t=2 Λ
 z=1 S1

Z

S3

Z

S2
S4 S0

0≤t ≤ 1
/x:=0

152 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

∆ρ(k)= τk+1-τk and ∆e
ρ(k)= [τk+1]e-[τk]e

Intuitively, ∆ρ(k) is the time taken by the
transition ;k in the real trail ρ (i.e., the time spent at
location lk) whereas ∆e

ρ(k) is the time taken by the
same transition in the integer trail [ρ]e.

Given k∈N, we define Ee
k(y) to be the difference

between the values of a variable y in [ρ]e and ρ at
position k, i.e., just after the transition ;k-1 (if it exists).
Let us give the formal definition.
Let jk denote the greatest index j such that j≤ k, and
the transition ;j is of the form ;t, with y∈ a(d), i.e., y is
reset by d. We take jk=-1 if such an index does not
exist. Then, we recall

ν k (y)= ∑
−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆ρ(i)

and

νe
k (y)= ∑

−

+=

1

1

k

ji k

θ(li,y) ⋅ ∆e
ρ(i)

 Intuitively, νk(y) (resp. νe
k(y)) is the value of y at

position k in ρ (resp. in [ρ]e). Then, we have
Ee

k(y)= νe
k(y)-νe

k(y)

Definition 2: We define a function β: X×d? N that
calculates for each variable x∈X and each transition
e= (s, s’) the maximum of restarts of x from the last
reset of x until the location s in each way.
β(x, e)= Maximum {number of restarts(x) from the last
reset of x until the location s in each way}.

A restart of a variable x is the change of its rate
from 0 to 1. And after a reset of a variable x, if the rate
of a variable x in the current location is 1 then the
access to this location is considered as a restart of x.
For example if in the first location x has a rate equal 1
then the access to the initial state is considered as a
restart. That is why for the clocks the function β is
equal to 1 for each transition.

Remark 1: In the example given in the previous section
(see Figure 1), for the integrators x and y we have β(x,
e)∈{1, 2} and β(y, e)∈ {1, 2} depending on the
transition e. Actually, for x we have β(x, (S9, S0))= 2
and β(x, e)= 1 for each e≠(S9, S0), and for y we have
β(y, (S9, S0))= β(y, (S8, S9))= 2 and β(x, e)= 1 for each
e∉{(S9, S0), (S8, S9)}

Definition 3: A finite preemption DVTG (FP-DVTG
for short) is a DVTG that obeys to the following rule:

For every variable x∈X and for every transition e,
β(x, e) is bounded.

Remark 2: The example given in Figure 1 is an FP-
DVTG. Actually, the DVTGs that obey to the
following rule are FP-DVTGs:
For every variable x∈X and for every loop, if the rate
of x changes in this loop then x must be reset in this
loop.

This rule is verified in Example 1.

Proposition 1: For every computation ρ of an FP-
DVTG M, every digitization quantum e , every
variable y∈ X, every transition e∈ d and every k∈N,
we have

β(y, e)= 0 ⇒ Ee
k(y)= 0

 β(y, e)> 0 ⇒|Ee
k(y)|<β(y, e)

Proof: For every computation ρ and every variable
y∈X we have

Ee
k(y)=∑

−

=

1

0

k

i

θ(li,y) ⋅ (∆e
ρ(i)- ∆ρ(i))

For a given index k, a given transition e= (lk-1, lk) and
a given variable y, if β(y, e)= 0 then the rate of y is 0
in the locations visited from the last reset of y. So
νe

k(y)= νk(y)= 0, thus Ee
k(y)= 0.

 Now, for a given index k, a given transition e= (lk-1,
lk) and a given variable y, if β(y, e)>0 then the
sequence ρ has a unique decomposition into a finite
number of sets of indices {0,…, j0-1}, {j0,…, j1},
{j1+1,…, j2-1}, {j2,…, j3},…{jp,…, k}, where:
• j0 is the first index i where θ (li, y)= 1 after the last

reset of y.
• θ (l, y)= 1 in the following sets : {j0,…, j1},{j2,…,

j3},…{j2n,…, j2n+1} and θ (l, y)= 0 in the other sets.

 We have n+1= β(y, e) by definition of β, because the
number of restarts of y is equal to the number of
subsets of indices on which θ(l,y)= 1. Then,

Ee
k(y)= ∑

−

=

11

0

j

ji

(∆e
ρ(i)- ∆ρ(i)) + ∑

−

=

13

2

j

ji

(∆e
ρ(i)- ∆ρ(i))+…

 + ∑
−

=

+ 112

2

n

n

j

ji

(∆e
ρ(i)- ∆ρ(i))

Where j0 is the first index i where θ(li,y)= 1 after the
last reset of y. Besides, for each m∈{0, 1,…, n}, we

have -1< ∑
−

=

+ 112

2

m

m

j

ji

(∆e
ρ(i)-∆ρ(i))<1. Thus,

 -β(y, e)<Ee
k(y)<β(y, e)

Definition 4: The approximate model M’= App(M) is
obtained from M by transforming each guard of a
transition e of the form up yp w by the guard
 If u-β(y, e)≥ 0 then
 u-β(y, e)≤ y≤ w+β(y, e)
 else
 0≤ y≤ w+β(y, e)
where u, w ∈N, x∈X and p∈{<,≤}.

6. Verification of FP-DVTG
We consider in this section the verification problem of
reachability formulas for FP-DVTG's. To get our

On the Verification by Approximation of Duration Systems 153

detecting procedure, we prove that every real
computation of a FP-DVTG which starts from an
integer state, has a digitization (according to our
definition given in the previous section) which is also a
computation of the approximate system obtained from
the initial one. Then, we show that the verification
problem of reachability formulas on FP-DVTG's with
discrete time, reduces to the reachability problem in
finite state graphs.

6.1. Digitization Result

Let M be a FP-DVTG. Along this subsection, we refer
to the following trail

ρ= (l0, τ0);(l1,τ1); …(ln,τn)

To simplify some definitions given later, we assume
that the value of the variables are initially 0. The
consideration of any other integer values does not
present any difficulty. Under these assumptions, we
prove that ρ has a digitization which also corresponds
to a computation sequence of the extending model M’=
App(M). We can see that any digitization preserves the
satisfaction of the transition guards of the extending
model M’= App(M), since the absolute value of the
difference between the values of a variable y in ρ in
the moment where the transition e is taken and its
digitization [ρ]e is strictly less than β(x, e) (Proposition
1). This ensures that [ρ]e corresponds actually to a
computation in M’.

Lemma 1: Let k<n such that the transition e ;k is of the
form ;d, i.e., a discrete move between locations. Then,
|Ee

k(y)|<β(y, e) implies that for every l∈N and u∈N,
lpνk(y)pu with p∈{<,≤} implies that
νe

k(y)∈{l-β(y, e),… , u+β(y, e)}
 Lemma 1 ensures that under the assumption that ρ
corresponds to a computation of M, which means in
particular that the guard of d is satisfied in ρ, if
|Ee

k(y)|<β(y, e), then the guard of d in the approximate
system is also satisfied in [ρ]e. This is due to the fact
that the guard of d in M’= App(M) is relaxed by β(y,
e).

Proof: We have by hypothesis

 |Ee
k(y)|=|νe

k(y)- νk(y)|<β(y, e) (2)

 We consider that lpνe
k(y)pu+β(y, e). Since (2) holds

by hypothesis, and since νe
k(y) is an integer, we have

necessarily l-β(y, e)≤νe
k(y)≤u+β(y, e) then

νe
k(y)∈{l-β(y, e),…, u+β(y, e)} .

Proposition 2: Let ρ be a computation of a FP-DVTG
M, then for each e∈[0, 1[, [ρ]∈ is a computation of
M’= App(M).

Proof: Proposition 1 ensures that for a given FP-
DVTG M), for each transition e, for each variable y,
for each e and for each computation ρ of M we have
|Ee

k(y)|<β(y, e). The lemma ensures that if |Ee
k(y)|<β(y,

e) and a guard of e is satisfied in ρ then the relaxed
guard by β(y, e) is also satisfied in [ρ]e so [ρ]e a
computation of M’= App(M).

6.2. Solving the Reachability Problem
In this subsection we show how we can solve the
verification problem of reachability formulas for FP-
DVTG's. Let M’= (Σ , L, d, Π, X, ?, a, θ) be an
extending FP-DVTG obtained from a FP-DVTG
model M, the verification problem we consider is s0²φ
where s0= (l0, ν0) is an integer state and is a closed
reachability formula given by

φ=∃◊ (π∧∧
=

m

j 1

ξj)

The consideration of disjunctive reachability formulas
of the form (1) (see section 3) is then straightforward.

Our result is based on a reduction of the problem
s0²φ to the reachability problem in a finite state graph.
This reduction is made in two steps: The first step
remains consistent in considering a relaxed FP-DVTG
M’φ obtained by adding to M’ a target location #
which is reachable from s0 if and only if s0²φ holds.
Then, using the digitization result given in the
previous subsection, we show that this reachability
problem can be solved by reasoning on a finite graph
deduced from (N(S M’φ),? 1∪.).

So, let us define the model M’φ. As we said, we
construct M’φ as an extension of M’ such that the set
of locations of M’φ is the set L augmented by a new
location # satisfying a special new atomic proposition
at_#, and every location in L that satisfies the state
formula π has a transition to # which is guarded by

∧
=

m

j 1

ξj.

 Formally, M’φ= (Σ∪{at_#}, L∪{#}, d1,Π1, X, ?1, a1,
θ1) where
• d1= d ∪ {(l,#)|l∈L and Π(l)² π}
• Π1(l)= Π(l) for every l∈L and Π1(#)= {at_# }

• ?1(d)= ?(d) for every d∈d and ?1(d)= ξj for every
 d∈ d1\d

• a1(d)= a(d) for every d∈d and a1(d)= ∅ for every
 d∈d1\d,

• θ1(l, x)= θ(l, x) for every l ∈ L and x∈ X, and
 θ1(#, x)= 1 for every x∈ X.

Then, it is clear that s0² φ holds if and only if some
state of the form (#,ν) is reachable from s0 in Mφ; i.e.
 s0²φ holds in M’ if and only if
 s0²∃◊at_# holds in M’ (3)

∧
=

m

j 1

154 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

 Now, let us consider the problem s0² ∃◊at_# in M’φ.
We recall that s0² ∃◊at_# holds if and only if there
exists in M’φ some computation sequence starting
from s0

s= (l0,ν0,τ0); … ; (ln,νn,τn)
such that ln= # . Let

ρs= (l0, 0); … ; (ln,νn)

be the trail corresponding to s. Then, by Proposition 2,
for each value e in [0, 1[, we have [ρs]e corresponds to
a computation of M’φ. Hence, there exists some integer
computation sequence

s’=(l0,ν0,0); (l1,ν’1,τ’1); … ; (ln,ν’n,τ’n)

in the model M’φ such that ln= # . So, we can solve the
problem s0²∃◊at_# by considering only integer
computations of M’φ which means that we can restrict
our attention to integer states of M’φ and consider only
the countable state graph G= (N(SM’φ),? 1∪.).
However, this state graph is infinite. We show that
nevertheless, we can solve the problem s0² ∃◊at_# by
considering a finite graph G’ derived from G.

Let us first introduce some notations. For every
variable x, we define two constants cx and nx. Let cx be
the maximal constant which is compared with x in M’φ,
i.e., cx= max({c | x≤ c or x≥ c is a guard of M’φ}); and
let nx be the lcm (lowest common multiple) of the set

{n | ∃c, x≡nc or x?nc is a guard of M’φ. We also
introduce two functions ϑ and λ defined as follows:
ϑ(a, n)= c iff a≡ nc holds and λ(a, n)= if ϑ(a, n)= 0 then
n else ϑ(a, n). Let ν be an integer valuation, we denote
by λ(ν) the integer valuation defined by

λ(ν)(x)= if ν(x) ≤ cx+nx then
 ν(x)
 else

 cx+λ(ν(x)-cx, nx).

In order to construct the graph G’, we observe first
that all the variables of M’φ are monotonic (never
decrease). Thus, for every variable x, it is clear that
beyond cx, the exact value of x is not relevant for the
guards of the form x≤ c or x≥ c. Moreover, for the

guards of the form ≡n or ?n, we can find a finite
amount of values of x beyond cx that represent all the
possible behaviors of valuations of x w. r. t the guards
of M’φ. Indeed, for every guard x≡ nici of M’φ, it is easy
to see that if ν (x) ≥ cx+nx+1, then ν(x)≡ nici holds iff
cx+λ(ν(x)-cx, nx)≡ nici holds too. Thus, we have the
following fact.

Lemma 2: For every integer valuation ν ∈ [X? N], and
for every guard g in M’φ, ν ? g iff λ (ν)? g.
 By Lemma 2, we can consider a finite graph
G’= (Q,? 1

≡ ∪ .) induced by G and defined by:
• Q= {(l,ν) ∈ N(SM’φ): ∀ x∈ X, 0≤ ν (x) ≤ cx+nx},

• (l,ν)? 1
≡ (l, λ ([ν +1]l))

Then, we have the following result.

Lemma 3: (l0, ν0) ² ∃◊at_# holds in M’φ if and only if
there exists some state (#,ν) which is reachable from
the state (l0, λ(ν0)) in the graph G’.
Finally, from (3) and Lemma 3, we get the following
result.

Theorem: Let M be a relaxed FP-DVTG, M’ its
extension, s0 an integer state in N(SM), and φ a closed
reachability formula. Then, if s0² φ is true in M then s0²
φ is true in the finite graph (N (SM’φ), ? 1∪ .).

7. Conclusion
We proposed an approximation method for verifying
reachability properties over duration systems, while
other existing formal verification approaches in
general fail. We believe that our approximation allows
a good analysis of duration systems. Besides, we can
combine this result and the results described in [15]
about the verification of MTL logic over timed graphs,
in order to verify a large fragment of MTL logic over
duration systems.

In a future work, we plan to combine our results
with those described in [13] showing that every Linear
Hybrid Automata can be transformed into a stopwatch
automata recognizing the same language, and the
results in [15] to develop a tool dedicated for the
verification of a large fragment of MTL over linear
hybrid automata.

References
[1] Alur R. and Dill D., “A Theory of Timed

Automata,” Theoretical Computer Science, vol.
126, no. 2, pp. 183-235, 1994.

[2] Alur R. and Dill D., “Automata for Modeling
Real Time Systems,” in Proceedings of
International Colloquium on Automata and
Programming (ICALP'90), Warwick, 1990.

[3] Alur R., Courcoubetis C., and Dill D., “Model
Checking for Real-Time Systems,” in
Proceedings of 5th Symposium on Logic in
Computer Science (LICS'90), Philadelphia, USA,
1990.

[4] Alur R., Courcoubetis C., Henzinger T., and Ho
P. H., “Hybrid Automata: An Algorithmic
Approach to the Specification and Verification
of Hybrid Systems,” in Proceedings of Hybrid
Systems, Springer-Verlag, 1993.

[5] Alur R., Courcoubetis C., Halbwatchs N.,
Henzinger T. A., Ho P. H., Nicollin X.,
Olivero A., Sifakis J., and Yovine S., “The
Algorithmic Analysis of Hybrid Systems,”
Theoretical Computer Science, vol. 138, pp. 3-
34, 1995.

On the Verification by Approximation of Duration Systems 155

[6] Bouajjani A. and Robbana R., “Verifying ω-
Regular Properties for Subclasses of Linear
Hybrid Systems,” in Proceedings of Computer-
Aided Verification (CAV'95), Belgium, 1995.

[7] Bouajjani A., Echahed R., and Robbana R., “On
the Automatic Verification of Systems with
Continuous Variables and Unbounded Discrete
Data Structures,” in Proceedings of Hybrid
Systems and Autonomous Control, New York,
USA, 1995.

[8] Bouajjani A., Enchahed R., and Robbana R.,
“Verifying Invariance Properties of Timed
Systems with Duration Variables,” in
Proceedings of Formal Techniques in Real Time
and Fault Tolerant Systems (FTRTFTS'94), 1994.

[9] Bouajjani A., Echahed R., and Robbana R.,
“Verification of Context-Free Timed Systems
Using Linear Hybrid Observers,” in Proceedings
of Computer-Aided Verification (CAV'94), USA,
1994.

[10] Bouajjani A., Lakhnech Y., and Robbana R.,
“From Duration Calculus to Linear Hybrid
Systems,” in Proceedings of Computer-Aided
Verification (CAV'95), Belgium, 1995.

[11] Cerans K., “Decidability of Bisimulation
Equivalence for Parallel Timer Processes,” in
Proceedings of Computer-Aided Verification
(CAV'92), Montreal, Canada, 1992.

[12] Chaochen Z., Hoare R., and Ravn P., “A
Calculus of Durations,” Information Processing
Letters, vol. 40, pp. 269-276, 1991.

[13] Frank C. and Kim L., “The Impressive Power of
Stopwatches,” in Proceedings of Conference on
Concurrency Theory (CONCUR'00),
Pennsylvania, USA, 2000.

[14] Henzinger A., Kopke W., Puri A., and Varaiya
P., “What's Decidable about Hybrid Automata?,”
Journal of Computer and System Science, vol.
57, pp. 94-124, 1998.

[15] Henzinger A., Manna Z., and Pnuelli A., “What
Good are Digital Clocks?,” in Proceedings of
International Colloquium on Automata
Languages and Programming, 1992.

[16] Henzinger A., Nicollin X., Sifakis J., and Yovine
S., “Symbolic Model-Checking for Real Time
Systems,” in Proceedings of 7 th Symposium on
Logic in Computer Science (LICS'92), Santa
Cruz, USA, 1992.

[17] Kesten Y., Pnueli A., Sifakis J., and Yovine S.,
“Decidable Integration Graphs,” Information and
Computation, vol. 150, no. 2, pp. 209-243, 1999.

[18] Kesten Y., Pnueli A., Sifakis J., and Yovine S.,
“Integration Graphs: A Class of Durable Hybrid
Systems,” in Proceedings of Hybrid Systems,
Springer Verlag, 1993.

[19] Nicollin X., Olivero A., Sifakis J., and Yovine S.,
“An Approach to the Description and Analysis of

Hybrid Systems,” in Proceedings of Hybrid
Systems, Springer-Verlag, 1993.

[20] Pnueli A. and Shahar E., “Liveness and
Acceleration in Parameterized Verification,” in
Proceedings of Computer-Aided Verification
(CAV'00), Chicago, USA, 2000.

[21] Robbana R., “Réduction et Vérification de
Systèmes Temps-Réel Distribués,” in Colloque
Francophone de l'Ingénierie des Protocoles
(CFIP'99), Nancy, France, 1999.

[22] Robbana R., “Verification of Duration Systems
Using an Approximation Approach,” Journal of
Computer Science and Technology, vol. 18, no.
2, pp.153-162, 2003

[23] Robbana R., “Verification of Integrated Timed
Systems,” in Proceedings of Maghrebian
Conference on Software Engineering
(MCSEA'98) and Artificial Intelligence, Tunis,
1998.

Narjes Berregeb received an
engineering degree in computer
science from the Faculty of
Sciences of Tunis in 1992, and a
PhD degree in computer science on
automatic proofs by induction in
associative commutative and

observational theories from Henri Poincaré University
at Nancy. Currently, she is a lecturer at the Institut
National des Sciences Appliquées et de Technologie at
Tunis. Her research interests include theorem proving
techniques and formal methods for specification and
verification.

Riadh Robbana received an
engineering degree in computer
science from the Faculty of Sciences
of Tunis in 1991, and a PhD degree
in computer science on hybrid
systems verification from Joseph
Fourier University at Grenoble.

Currently, he is a lecturer and head of the Department
of Applied Mathematics and Computer Science at
Ecole Polytechnique of Tunisia. His research interests
include formal verification of real-time systems.

