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Abstract: Blind signature and blind multisignature schemes are useful in protocols that guarantee the anonymity of the 

participants. In practice, in some cases the electronic messages are to be signed by several signers and an electronic message 

is first blinded then passed to each of the signers, who then sign it using some special signature scheme such as collective 

signature protocol. In this paper, we propose a new blind signature scheme and two type new blind collective signature 

protocols. Our protocols are based on the difficulty of finding the k
th

 roots modulo a large prime p in the case when k is a 

prime such that k
2p-1. Our proposed protocols produce the signature (E′, S′), where E′ is a 160-bit value and S′ is a 1024-bit 

value. It seems that such primitives are attractive for applications in the electronic money systems in which the electronic 

banknotes are issued by one or several banks. 
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1. Introduction 

The concept of blind signature scheme was introduced 

by Chaum [6]. Based on the RSA cryptosystem, Chaum 

proposed the first blind signature scheme to achieve the 

unlinkability property [6]. A blind signature scheme is 

allowed to realize secure electronic payment systems 

protecting customer’s privacy [4, 7]. Such signatures 

require that a signer is able to sign a document without 

knowing its content. Blind signature protocols are very 

useful for applications, in which anonymity is a big 

issue. Examples include online voting systems and 

electronic cash schemes. 

The first multisignature scheme was introduced by 

Itakura and Nakamura in [10], and has been followed 

by many other research works [1, 2, 3, 8, 9, 13, 19]. In 

practice, a particular type of the multisignature schemes 

provides a possibility to sign a document by some sets 

of signers with a single Digital Signature (DS). DS 

haves a fixed size which is independently with the 

number of signers sharing the DS. Such protocols are 

called Collective Digital Signature protocols (CDS) 

[15]. The CDS protocols are a particular type of the 

multisignature schemes.  

Usually calculating k
th
 roots modulo prime p is 

sufficiently a simple problem, except of a large prime k 

such that k
2
p - 1 [15]. Recently in [15] proposed the 

algorithms called the CDS. The new CDS has fixed size 

and can be generated by arbitrary group of users. The 

collective public key corresponds to each possible 

group of users, which is calculated using the public key 

of each user included in the group. The CDS is 

verified using the collective public key and 

computations modulo prime p = Nk
2
 + 1, where k is a 

large prime and N is an even integer. 

In this paper, we first propose a new cryptographic 

scheme called a blind DS protocol (blind DS). We 

then design using blind DS protocol proposed to 

design on its, the blind CDS protocol (called blind 

CDS1) and the blind CDS protocol with distinguished 

signing authorities (called blind CDS2). These 

cryptoschemes combine the already existing notions 

of the CDS and the blind DS. Our proposed protocols 

are constructed based on the difficulty of finding roots 

modulo a prime. This protocols can be suitable to 

apply in the electronic money systems and in the 

electronic voting systems. 

The rest of the paper is organized as following: in 

section 2, we briefly review the difficult 

computational problem of finding roots modulo a 

prime in special case. In section 3, we construct a new 

blind DS scheme based on the difficulty of finding 

roots modulo a prime. In sections 4 and 5, we propose 

two novel blind CDS schemes that represent a new 

type of cryptographic protocols. Our proposed 

protocols are blind CDS protocols different from the 

known blind multisignature schemes. Section 6 

describes the analysis of our constructions. The last 

section concludes our research work in this paper. 
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2. Related Works 

In this section, we brief review the difficulty of finding 

roots modulo a prime in a special case [15]. 

Difficulty of finding roots modulo a composite 

number is used in some of the known DS schemes: 

RSA and Rabin’s DS algorithm [11, 14, 21]. The main 

difference between the RSA and Rabin’s DS consists in 

the following.  

In RSA we have gcd(e, (n))=1, (gcd(e, p-1)=1 and 

gcd(e, q-1)=1, but in Rabin’s DSS gcd(2, p-1) ≠ 1 and 

gcd(2, q-1)≠1. Actually, the fact that 2p-1 and 2q - 1 

requires to use some special algorithm to calculate the 

square roots. For some random prime p and large prime 

divisor kp-1 with probability very close to 1 the 

complexity of finding k roots mod ,k a p  where a is 

one of the k
th
 power residues modulo p, is sufficiently 

low. Indeed, if prime k is sufficiently large, then with 

high probability k does not divide 
1p

k


 and it is 

easy to find some value  such that k divides 

,
1p

k
 


 i.e., 

1
,

p

k
hk


    where h is an integer 

(note that k does not divide ). 

Then we have: 
1 1

'1mod mod mod ,
p p

hk dk ka p a a p a a p
 


     

where d = gcd (, p-1). Let ˝= ΄
-1

 mod p-1. Then we 

have: 

                
'' ''

1/ 1/ 1/mod
k

h h
d k da a p a a

 

    

With high probability the value d is sufficiently small 

and the d
th
 root can be easily found, for example, using 

the method described in [15]. 

If k
2
|p-1then the method described above does not 

work, i.e., in the case of the prime p=Nk
s
+1, where N is 

an even number and s2, computing the k
th
 roots is 

difficult [15]. 

3. New Blind DS Scheme 

New hard computational problem described in section 2 

is used in the blind signature scheme described below.  

In the paper [15] there is proposed a DS scheme 

based on difficulty of finding the kth roots modulo 

large prime p such that k
2
|p-1, where k and p are 

primes. Using the general design of the DS scheme [15] 

in this section there is designed the blind DS scheme, 

which produces a 1184-bit blind signature. Our blind 

DS scheme consists of three phases and two parties (the 

user A and the signer B).  

New blind DS scheme works as follows:  

3.1. Key Generation  

Our scheme uses the prime modulus having the 

structure p=Nk
2
+1, where k is a large prime (|k|≥160) 

and N is even integer such that |p|≥1024 bits. 

 The signer B selects a random value x as a private 

key.  

 The public key y is computed using the formula 

y=x
k
 mod p.  

3.2. Blind DS Generation  

There are four rounds in the blind DS scheme. The 

signer signs an unknown message M blindly.    

 Signer B Round 1. Selects a random value t < p - 1 

and computes R=t
k
 mod p. Then he sends R to the 

user A. 

 User A Round 2. Generates a random value , such 

that  < Nk and k does not divide , and a random 

value  < p and computes R = Ry
 k

 mod p. Then 

user A computes E = h(MR ), where h() is a 

specified hash function, for example SHA-1 [14], 

and E =E + mod N, where N =Nk. Then he sends 

E to the signer B.  

 Signer B Round 3. Using his individual value t and 

his secret key x computes S = x
E
t mod p. Then he 

sends S to the user A. 

 User A Round 4. Computes the second parameter 

of the blind DS S = S  mod p.  

The pair (R, S) is a blind DS to the message M and 

the signature length is 2 2048S R p    bit. 

3.3. Blind DS Verification   

 Step 1. Using the blind DS (R', S') compute values 

E=h(MR ), S* = y
 E

 R' mod p and Sk = S'
 k
 mod p. 

 Step 2. Compare values S* and Sk.  

If S*=Sk, then the signature is valid. Otherwise, the 

signature is false. 

It is possible to reduce the signature length using 

the value E=h(MR ) as signature element instead of 

the R' element. A variant of the modified blind DS is 

presented by the following verification procedure: 

 Step 1. Using the blind DS (E', S') compute value 

R*:R*=S ky- E
 mod p. 

 Step 2. Compute E*= h(MR*) and ccompare 

values E* and E'.  

If E*=E' then the signature is valid. Otherwise, the 

signature is false. 

The pair (E, S) is a blind DS to the message M and 

the length of signature is |S |+|E |≈1186 bit. 

 

 

(1) 
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4. New Blind CDS1 Protocol 

The blind DS scheme proposed in section 3 can be used 

to design on its base the blind CDS protocol.  

In this section, we propose blind CDS protocol 

(called blind CDS1) for broadcasting structure. The 

protocol consists of three phases: the key generation 

phase, the blind CDS1 generation phase and blind 

CDS1 verification phase.  

Suppose that the signing group {B1, B2, …, Bn} 

wants to generate the blind CDS1 for the message M 

proposed for blind signing by some user A. 

4.1. Key Generation 

In this protocol, individual public key is computed as 

the k
th
 power of the private key x: y=x

k
 mod p.  

 x1, x2 , …, xn: Group members’ secret keys such that 

1 < xi < p, xi (i = 1, 2, ..., n) is selected randomly and 

known only for the member Bi.  

 y1, y2 , …, yn: Group members’ public keys such that 

yi=xi
k
 mod p is computed and published by the group 

members Bi. 

 The collective public key Y is computed as a 

convolution of the set of individual public keys yi of 

all signers: 
1

mod .



n

y i
i

i

Y y  p  

4.2. Blind CDS1 Generation   

There are four rounds in the blind CDS1 protocol in 

which each signer signs an unknown message M 

blindly.  

 Signers Round 1. Each signer generates a random 

value ti< p and computes ri=ti
k
 mod p, then sends ri 

to all signers. It is computed the common 

randomization parameter as the product 

1

mod


 
n

i
i

R r p and the value R is send to the user A. 

 User A Round 2. Generates a random value , such 

that < Nk and k does not divide , and a random 

value  < p and computes R = RY
 k

 mod p. Then 

user A computes E = h(MR ) that is the first 

parameter of the blind CDS1 and E = E +  mod N, 

where N =Nk. Then he sends E to all signers. 

 Signers Round 3. Each signer using his individual 

value ti and his secret key xi computes 

mod .iEy

i i its x p  It is computed the common 

randomization parameter as the product 

1

mod


 
n

i
i

S s p  and the value S is send to the user A. 

 User A Round 4. Computes the second parameter of 

the blind CDS1 S = S  mod p.  

The pair (E, S) is a blind CDS1 of the message M. 

4.3. Blind CDS1 Verification   

The blind CDS1 verification procedure uses the 

collective public key Y. 

 Step 1. Using the blind CDS1 (E', S') compute 

value R*: R* = S kY - E
 mod p. 

 Step 2. Compute E*= h(MR*) and compare values 

E* and E'.  

If E*=E' then the signature is valid. Otherwise, the 

signature is false. 

5. New Blind CDS2 Protocol 

In this section, we propose blind CDS protocol (called 

blind CDS2) with distinguished signing authorities for 

broadcasting structure. 

Suppose that the signing group {B1, B2, …, Bn} 

wants to generate the blind CDS for the message M = 

m1||m2|| … ||mn. The member Bi is only responsible for 

the partial content mi, for i = 1, 2, …, n. 

5.1. Key Generation 

 x1, x2 , …, xn: group members’ secret keys such that 

1 < xi < p, xi is selected randomly and known only 

by the member Bi .  

 y1, y2 , …, yn: group members’ public keys such that 

yi=xi
k
 mod p is computed and published by the 

group member Bi. 

 The collective public key Y is computed as a 

convolution of the set of individual public keys yi 

of all signers: 
1

mod .



n

y i
i

i

Y y  p  

5.2. Blind CDS2 Generation   

There are five rounds in the blind CDS2 protocol. The 

each of the signer signs an unknown message mi 

blindly, respectively.  

 User A Round 1. Computes h(mi), then sends h(mi) 

to each of the signers, respectively.   

 Signers Round 2. Each signer generates a random 

value ti < p and computes 
( )

mod ,ih m k

i ir t p  then 

sends ri to all signers. It is computed the common 

randomization parameter as the product 

1

mod
n

i
i

R r p


  and the value R is send to the user A. 

 User A Round 3. Generates a random value , such 

that  < Nk and k does not divide , and a random 

value  < p and computes R = RY
 k

 mod p. Then 

user A computes E =h(MR ) that is the first 

parameter of the blind CDS2 and 

E = E +  mod N, where N = Nk. Then he sends E 

to all signers. 

 Signers Round 4. Each signer using his individual 

value ti and his secret key xi computes 
( )

mod .i iEy h m

i i is x t p  It is computed the common 
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randomization parameter as the product 

1

mod


 
n

i
i

S s p and the value S is send to the user A. 

 User A Round 5. Computes the second parameter of 

the blind CDS2 S = S mod p.  

The pair (E, S) is a blind CDS2 of the message M = 

m1||m2|| … ||mn. 

5.3. Blind CDS2 Verification  

The blind CDS2 verification procedure uses the 

collective public key Y. 

 Step 1. Using the blind CDS2 (E', S') compute value 

R*: R* = S kY - E
 mod p. 

 Step 2. Compute E*= h(MR*) and compare values 

E* and E'.  

If E*=E' then the signature is valid. Otherwise, the 

signature is false. 

The partial contents of the message m1||m2|| … ||mn 

can be verified without revealing the whole document. 

If the verifier is only allowed to read the partial content 

mi, then he will receive h(m1)||h(m2)||…||h(mi-

1)||mi||h(mi+1)||…||h(mn) to verify the blind CDS2 (E', S'). 

6. Analysis of Our Protocols 

In this section, we give our results in terms of security 

analysis and efficiency performance of our proposed 

blind signature protocols. 

6.1. Correctness  

 Theorem 1. (blind DS): The signature (R, S) is a 

valid DS corresponding to the message M. 

 Proof. Indeed, we get:   

           S* = Y
E

R mod p = Y
E-

R mod p =  

        Y
E
 RY- -k k

 mod p = Y
E
Rk

 mod p =  

 = (x
E
t)

 kk
 mod p = (S)

k
 mod p = S k mod p= Sk 

                                            
  S* = Sk 

Thus, the protocol works correctly and the described 

procedure results in the DS (R, S) that is known for 

user B and unknown for signer A. 

 Theorem 2. (blind CDS1): The signature (E, S) is a 

valid CDS1 corresponding to the message M. 

 Proof. Indeed, using the collective public key 

1

mod



n

y i
i

i

Y y p we get:  

        R* = S kY - E
 mod p = S

 k k
Y

 -(E - )
 mod p 

       = (S
 k
Y

- E
) k

Y

 mod p = RY

 k
 mod p = R. 

                        E* = h(MR*Y) = E 

Thus, the protocol works correctly and the described 

procedure results in the CDS1 (E, S) that is known for 

user A and unknown for each of the signers.  

 Theorem 3. (blind CDS2): The signature (E, S) is a 

valid CDS2 corresponding to the message M= 

m1||m2|| … ||mn. 

 Proof. Indeed, using the collective public key 

1

mod



n

y i

i
i

Y y p  we get:  

        R* = S kY - E
 mod p = S

 k k
Y

 -(E - )
 mod p 

        = (S
 k
Y

- E
) k

Y

 mod p = RY

k
 mod p = R. 

                      E* = h(MR*Y) = E 

Thus, the protocol works correctly and the described 

procedure results in the CDS2 (E, S) that is known 

for user A and unknown for each of the signers.  

6.2. Unlinkability  

 Unlinkability: In a blind signature scheme, the 

unlinkability property makes it impossible for the 

signer to derive the link between a given signature 

and the instance of the signing protocol which 

produces the blinded form of that signature. 

 Theorem 4. (blind DS): The protocol provides 

unlinkability property in the case when the message 

M and signature (R, S) will be presented to the 

signer.  

 Proof. Let (R1, E1, S1) and (R2, E2, S2), two different 

signatures, produced blindly and stored by some 

signer B. 

In accordance with the equation of the signature 

verification procedure, we get following relations: 

                         Sk = y
E

R mod p 

And:  

                         S1
k
 =y

E1
R1 mod p 

Dividing Equation 5 by Equation 6 we have: 

1 1
1 1

1 1

mod mod .

k

E E kR S
y p R R y p

R S




  
   

 
 

Where 1 = E1 - E mod N and 1 = S/S1. 

The last relation shows that the signature (R, S) 

could be produced after producing R1 (in this case the 

supposed user A1 had used the values 1 and 1). The 

same signature can be also produced by the user A2 

with some signer B from the triple (R2, E2, S2), if the 

values 2 = E2 - E mod N and 2 = S/S2 were selected 

as random choice at round 2 of the protocol. Since the 

values  and  are selected at random, the signature 

could be produced from each of two considered triples 

as well as from each of the triple in the database, i.e., 

the unlinkability property (or blindness property) is 

provided by the protocol.  

 Theorem 5. (blind CDS1 and blind CDS2): The 

protocol provides unlinkability property in the case 

when the message M and signature (E, S) will be 

presented to all or to one of the signers.  

(2) 

(3) 

(4) 

(5) 

(6) 
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 Proof. We suppose that many different users present 

electronic messages to some given set of signers for 

blind signing. Suppose the signers have saved in a 

database all triples (E, S, R) appeared in the blind 

CDS procedures. Let (E1, R1, S1) and (E2, R2, S2) are 

two of such triples. Accordingly to the blind CDS 

protocol construction, the elements of the first triple 

satisfy the expression: 

                        R1 = S1

k

Y
- E1

 mod p 

The signature (E, S) satisfy the expression:  

                       R = S
 k 

Y
 - E

 mod p 

Dividing Equation 8 by Equation 7 we have:  

R/R1 = Y
 E1- E

 (S/S1) mod p, 

Therefore R =R1 Y
 11

k
 mod p, where 1= E1 -

 E mod N  and 1 = S/S1.  

Analogously, the signature (E, S) could be 

produced from the triple (E2, R2, S2), if the values 

1 = E1-E mod N and 1 = S/S1 are selected at round 2 

of the protocol. Since the values  and  are selected at 

random, the signature could be produced from each of 

two considered triples as well as from each of the triple 

in the database, i.e., the unlinkability property (or 

blindness property) is provided by the protocol.  

6.3. Randomization  

 Randomization: in a secure randomized blind 

signature scheme a user can not remove signer’s 

randomizing factor. 

 Theorem 6. (blind DS): the protocol provides 

randomization property.   

 Proof. In the proposed protocol, attackers are 

infeasible to generate a valid signature (R, S) on 

behalf of the original signer. The signer selects a 

random value t<p-1 and computes R=t
k
 mod p and 

sends R to the user A. To get a random value t from 

R is computationally infeasible, since finding k
th
 

roots modulo p for sufficiently large prime k (such 

that k
2
 divides p-1) is a computationally difficult 

problem. Therefore, in the proposed protocol, 

attackers cannot remove the random t from the 

corresponding signature (R, S) to the message M. 

 Theorem 7. (blind CDS1 and blind CDS2): The 

protocols provide randomization property.   

The proof is similar to the proof in the blind DS. 

6.4. Unforgeability  

 Unforgeability: it means that only the signer(s) can 

generate the valid signatures. 

 Attack 1. (Outsider attack): intruder tries to derive 

the signature (E, S), where E = h(MR ) and 

S k= RY h(MR )
 mod p, for a given message M by 

letting one of the values R and S fixed and finding 

the other one. For example, intruder selects R and 

tries to figure out the value of S satisfying 

R = SkY - E
 mod p and vise versa. The intruder first 

chooses at random the value R′ and then computes 

the values E  and S = (RY E
 )

1/k
 mod p only if 

difficult computational problem of finding roots 

modulo a prime in special case is breakable. The 

intruder first chooses at random value S′ and then 

computes R from the equation 

S k= RY h(MR )
 mod p only if the hash function h() 

is insecure (i.e., h() is breakable). 

 Attack 2. (User attack): user can know individual 

signatures but this doesn’t endamage the security of 

the protocols. If he can’t compute the blind CDS 

correctly from the individual signatures the 

verification equation of the blind CDS is not 

satisfied and thus this kind of attack can be detected 

by the verifier.     

 Attack 3. (Signer(s) attack): suppose that n-1 

signers that share some multisignatue (R, S) with 

the nth signer are attackers trying to calculate the 

secret key of the nth signer. The attackers know the 

values rn and sn generated by the n
th
 signer. This 

values satisfy the equation 

mod ,nEyk

n n nr s y p


 where the value E is out of the 

attackers control. It is supposed that a secure hash 

function is used in the protocol, therefore the 

attackers are not able to select the value R 

producing some specially chosen value E. This 

means that, computing the secret key requires 

solving the finding roots modulo a prime in special 

case problem. If attackers determine the value of tn 

(or xn).    

 Attack 4. (Signer(s) attack): suppose that n - 1 

signers attempts to create a multisignatue (R, S) 

corresponding to n signers owning the public 

key mod ,ny

nY Y y p where 
1

1

' mod ,




 
n

y i
i

i

Y y p  i.e., n -

1 users unite their efforts to generate a pair of 

numbers (R, S) such that 

mod ( ) mod .nyk E k E

nR S Y p S Y y p    Suppose that 

they are able to do this. Thus, under our assumption 

the group forger (i.e., the considered n-1 users) is 

able to calculate a multisignatue (R
*
, S

*
) 

corresponding to public key mod ,ny

nY Y y p
  where 

y'n is some hypothetic public key having the value 
1( ) mod .n ny y

n ny y Y p
    It is an extremely difficult 

problem to find y'n [9].  

6.5. Performance  

The security of Moldovyan’s signature scheme had 

been proven to be computationally equivalent to the 

finding roots modulo a prime in special case problem 

[15]. In this paper, we construct protocols in the case 

of minimum security level that can be estimated at 

(7) 

(8) 
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present as 2
80 

modulo exponentiation operations [14]. 

Taking into account that methods the O(2
80

) difficulty 

of finding the k
th
 roots mod p is provided, if the primes 

k and p have the length |k| ≥ 160 bits and |p| ≥ 1024 bits. 

Sufficiently large size of the modulus p defines 

sufficiently large size of the signature in our protocols 

based on the mentioned difficult problem. In the best 

case the signature size is equal to 1184 bits. 

For convenience, the following notation is used to 

facilitate the performance evaluation.  

TE denotes one modular exponentiation operation 

modular p.  

TM denotes one modular multiplication operation 

modular p.  

TH denotes the computation cost of the hash function 

h.  

TI denotes time for performing a modular inverse 

computation 

Note that the time for computing modular addition 

and subtraction are ignored, since it is much smaller 

than TE, TM and TH. 

The comparisons of the numbers of computations 

performed by a user between the proposed blind DS 

and the schemes of [5, 16, 18, 20, 22] are summarized 

in Table 1. 

Table 1. Computations required for a user to obtain and verify a 
signature. 

 Blind DS [5] [20] [16] [22] [18] 

Numbers of Exponentiations 4TE 4TE 6TE 3TE 11TE 6TE 

Numbers of Inverses 0 2TI 0 3TI 4TI 1TI 

Numbers of Hashings 1TH 0 2TH 1TH 4TH 2TH 

Numbers of Multiplications 4TM 6TM 5TM 8TM 13TM 6TM 

The comparisons of the numbers of computations 

performed by a user between the proposed blind CDS1, 

blind CDS2 and the schemes of [17] are summarized in 

Table 2. 

Table 2. Computations required for a user to obtain and verify a 
signature. 

 Blind CDS1 Blind CDS2 [17] 

Numbers of Exponentiations 4TE 4TE 4TE 

Numbers of Inverses 0 0 0 

Numbers of Hashings 2TH (n+2)TH 2TH 

Numbers of Multiplications 4TM 4TM 4TM 

In most of the applications based on blind signatures, 

the signer(s) usually possesses much more computation 

capabilities than a user, while the computation 

capabilities of the users are limited in some situations 

such as mobile clients. Hence, to guarantee the quality 

of these ever-growing popular communication services 

based on blind signatures, it is more urgent to reduce 

the computation load for the users than that for the 

signer(s). 

In our blind CDS protocols the user performs the 

same computation operations as in the prototype blind 

DS scheme, i.e., in the scheme put into its base. 

 

7. Conclusions 

In this paper, a new blind DS and two novel blind 

CDS protocols has been designed using the 

computational difficulty of finding roots modulo a 

prime in special case. The protocol uses the procedure 

of blind generation of the DS by a signer or set of the 

signers. Independent of the number of the signers it is 

produced a single signature having the fixed size, 

namely 1184 bits in the case of 80-bit security  

The proposed protocols provide parallel process for 

generating the blind collective signature. It seems that 

such primitives are attractive for applications in the 

electronic money systems in which the electronic 

banknotes are issued by one or several banks. 
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