
The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017 803

Abductive Network Ensembles for Improved

Prediction of Future Change-Prone Classes in

Object-Oriented Software

Mojeeb Al-Khiaty
1
, Radwan Abdel-Aal

2
, and Mahmoud Elish

1,3

1
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Saudi

Arabia
2
Computer Engineering Department, King Fahd University of Petroleum and Minerals, Saudi Arabia

3
Computer Science Department, Gulf University for Science and Technology, Kuwait

Abstract: Software systems are subject to a series of changes due to a variety of maintenance goals. Some parts of the

software system are more prone to changes than others. These change-prone parts need to be identified so that maintenance

resources can be allocated effectively. This paper proposes the use of Group Method of Data Handling (GMDH)-based

abductive networks for modeling and predicting change proneness of classes in object-oriented software using both software

structural properties (quantified by the C&K metrics) and software change history (quantified by a set of evolution-based

metrics) as predictors. The empirical results derived from an experiment conducted on a case study of an open-source system

show that the proposed approach improves the prediction accuracy as compared to statistical-based prediction models.

Keywords: Change-proneness, software metrics, abductive networks, ensemble classifiers.

Received June 2, 2015; accepted September 20, 2015

1. Introduction

It has been a major goal in science to quantify

observations in order to understand and harness the

underlying phenomena. In this regard, software

engineering involves the scientific use of quantitative

and qualitative data to understand and improve

software and thus produce software with predictable

cost and schedule [27]. In a world of constantly

changing requirements, software systems are subject to

changes. These changes can be due to a variety of

maintenance goals, such as adding new features to the

system, adapting the system to new environments,

fixing bugs, and/or improving the quality of the source

code. On the other hand, these changes are perceived

as important risk elements as they require time and

effort [21,30]. Moreover, maintenance costs account

for 90% of the total costs of software systems [11].

Focusing on all software parts equally is difficult [21]

and wasteful of resources, especially when systems get

larger [21] and more complex [34]. Some parts are

more prone to change than others and, as implied by

the 80-20 law, the great majority of changes are

usually rooted in a small portion of the software

system. Resources and effort should be assigned

accordingly.

Software-change prediction is one of the

fundamental activities with regards to supporting

software changes [25]. The process and the

methodology of supporting software changes are a

decisive factor between the sustained high-quality

evolution and the premature retirement of a software

system [25]. Therefore, it is pressing to devise

methodologies to effectively identify change-prone

classes in object-oriented software. Doing so plays a

critical role in: reducing the maintenance cost and

time, targeting the resources more effectively and

efficiently to the most critical parts of the system, and

focusing the attention of the developers to those parts

that are more prone to changes. As object-oriented

metrics provide important evidence about different

decision-making activities [7], they can help the

software engineer identify the change-prone classes in

object-oriented software. Software metrics can be

classified into product and evolution-based (process)

metrics [16, 20]. Product metrics are those that

describe characteristics of the development life cycle

processes outputs. They are measures of the software

at any stage of its development, from requirements to

installed system. Examples of such metrics are size,

coupling, and cohesion metrics. Evolution-based

metrics, on the other hand, are those that can be

computed using data taken from the change history of

the software. Age of the class, frequency of changes,

are examples of such metrics.

Several approaches have been developed for

predicting software changes using software metrics as

predictors. Li and Henry [31] have performed

statistical analysis of a prediction model incorporating

ten object-oriented metrics. Their results showed a

804 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

strong relationship between these metrics and the

maintenance effort measured as the number of lines

changed in an object-oriented class. Thwin and Quah

[37] described the application of two neural network

models (ward neural network and general regression

neural network) to predict the number of lines changed

per object-oriented class as a proxy measure for the

maintenance effort. They have evaluated and compared

the application of these two neural network models in

predicting software maintenance. Their results showed

that the selected object-oriented metrics are good

indicators of maintenance effort. Additionally, the

result showed that the two neural network models gave

comparable results.

Aggarwal et al. [4] have presented an application of

multilayer feed forward networks to predict the

number of lines changed per object-oriented class as a

proxy measure for the maintenance effort. The number

of lines changed per class was used as a dependent

variable while the independent variables were 8

product metrics represented by 3 principal

components. They concluded that the selected object-

oriented metrics are useful indicators of maintenance

effort. Kaur et al. [26] have investigated the use of

Adaptive Neuro-Fuzzy Inference System to predict the

maintenance effort in terms of the number of line

changed per object-oriented class. They evaluated and

compared the application of this hybrid soft computing

technique with other soft computing techniques

including Artificial Neural Networks and Fuzzy

Inference Systems to construct models for predicting

the software maintenance effort. As predictors, they

used 8 product metrics represented by 6 principal

components. They concluded that Adaptive Neuro-

Fuzzy Inference System technique gives the most

accurate prediction.

Güneş-Koru and Liu [21] proposed a method for

identifying and characterizing change-prone classes

using tree-based models. Romano and Pinzger [36]

investigated the potential of using a set of source code

metrics for predicting change-proneness of Java

interfaces using three different classifiers: Support

Vector Machine (SVM), Naïve Bayes Network, and

Artificial Neural Networks. The dependent binary

variable indicated change-proneness depending on

whether or not the number of lines changed exceeded

the median of the lines changed in all classes of the

system. The independent variables are 4 (out of 6) CK

metrics [12] as well as the Interface Usage Cohesion

(IUC) metric. Their cross validation results showed

that the inclusion of the IUC metric improved the

classification accuracy of the three classifiers

compared to models built using only the 4 CK metrics.

However, this improvement was significant only when

using SVM as a classifier. The same subset of CK

metrics, as well as the other four product metrics, were

used in Eski and Buzluca [18] to predict the change-

prone classes with the objective of identifying the

critical classes for effective testing. Their approach

was to rank the classes based on the values of different

combinations of metrics and then calculate the

correlation between the top 10% of different ranking

lists representing the different combinations, and the

top 10% of another ranked list representing a set of

classes ranked based on the values of dependent

variable (measured as the amount of changes between

two different version of the class). The metrics

combinations corresponding to the ranking list that

showed significant correlation were selected as class

change-proneness indicators. The best accuracy

reported (in terms of correctly identified change-prone

classes) over three different case studies was 80%.

To sum up, the literature suggests that product

metrics are generally associated with change-

proneness. However, the prediction accuracy is still

limited. This is due to the fact that relationships

between software metrics and quality factors, such as

maintainability or changeability, are often complex and

sometime nonlinear. Improving the prediction

accuracy of change-prone classes is very important, as

it should lead to better decision making on resource

allocation; save deployment time; and lower

development and maintenance costs; thus promoting

better evolution management.

In a work by Elish and Al-Khiaty [16], the

prediction accuracy of change prone classes has been

improved by adding the evolutionary information of

the system to its structural properties through a

statistical regression modeling. The basic idea was to

have a comprehensive view about the system using

both its evolution history (quantified by a suite of

evolutionary metrics) and its structural properties

(quantified by C&K metrics). Towards the same

objective, and using the same suites of metrics, this

paper proposes using abductive networks [32] based on

the Group Method of Data Handling (GMDH) [24] as

an alternative approach to model and predict change

proneness of classes in object-oriented software. The

approach was used previously as a powerful tool in

several areas including modeling and forecasting

energy consumption and environmental monitoring [1,

2, 3], spam detection [14], intrusion detection [6], and

pattern recognition [15,29]. Inspired by promising

results obtained in these fields, we explore the use of

this approach for the prediction of change-prone

classes in object-oriented software. Compared to

neural networks, abductive networks offer faster model

development requiring little user intervention, faster

convergence during model synthesis, avoiding the

problem of getting stuck in local minima, and

automatic configuration of model structure and

selection of effective input variables [23]. Analytical

relationships obtained from the resulting polynomial

models can provide insight into the modeled

phenomena, highlight contributions of various model

inputs, and allow comparison with previously used

Abductive Network Ensembles for Improved Prediction of Future Change-Prone Classes ... 805

empirical or statistical models.

2. GMDH-based Abductive Networks

The Abductory Inductive Mechanism (AIM) tool [5] is

a modern implementation of the GMDH algorithm

[24]. The self-organizing modeling tool synthesizes

input-output models to represent the structure of

complex and nonlinear relationships, automatically

selecting the most relevant inputs. The GMDH

algorithm uses polynomial regression iteratively to

arrive at a high-degree polynomial model in terms of

effective predictors. The process is 'evolutionary',

starting with simple regression relationships to derive

more accurate representations at later iterations. To

limit the complexity of the resulting models, only

regression relationships with good prediction

performance are kept at each phase. In the classical

GMDH implementation, such performance is

evaluated on a dedicated testing subset of the data.

Iteration is stopped when the new generation of

regression equations starts to give inferior performance

compared to that of the previous generation. At this

point, the model starts to over-fit the training data and

therefore may not generalize well with new evaluation

data. A detailed mathematical treatment of the classical

GMDH algorithm can be found in [19].

Several implementations of the GMDH approach

have later been proposed which operate on the full

training dataset, thus avoiding the need for a dedicated

testing subset. One such method is the Adaptive

Learning Network (ALN), implemented by AIM. The

method uses the Predicted Squared Error (PSE)

criterion [19] for selecting promising regression

relationships and for stopping the training to avoid

over-fitting. This criterion minimizes the squared error

expected when using the network to predict new data.

AIM expresses the PSE as [19]:

2

)2(pNKCPMFSEPSE  (1)

where FSE is the fitting squared error on the training

data, CPM is a complexity penalty multiplier set by the

user, K is the number of model coefficients, N is the

number of training samples, and
2

p is a prior

estimate of the error variance. With increased model

complexity relative to the training set size, the first

term in Equation (1) decreases while the second term

increases linearly. PSE exhibits a minimum at the

optimum model size that balances accuracy with

simplicity (exactness with generality). By selecting the

CPM parameter, the user can control this trade-off:

CPM values above the default value of 1 give simpler

models which are less accurate but may generalize well

with new evaluation data, while lower values give

more complex models that could over-fit the training

data and performs poorly on evaluation data previously

unseen during training.

Figure 1. A typical AIM abductive network model showing various

types of functional elements.

The AIM tool synthesizes networks of several types

of polynomial functional elements. The network size,

element types, connectivity, and coefficients for the

optimum model are all determined automatically,

which reduces required user intervention compared to

neural networks. This simplifies model development

and considerably reduces the learning/development

time and effort. The models take the form of layered

feed-forward abductive networks of functional

elements (nodes) [5], as shown in Figure 1 [14].

Elements in the first layer operate on various

combinations of the input variables (x's) and the

element in the final layer generates the estimated

output. In addition to the main layers of the network,

an input layer of normalizers transform the input

variables into an internal representation as Z scores

with zero mean and unity variance. Similarly, a

unitizer restores the output to the original problem

space. The tool supports the following functional

elements:

1. A white element consisting of a constant plus the

linear weighted sum of all outputs of the previous

layer, i.e., “White”.

 Output=w
0 + w

1
x

1
 + w

2
x

2
 + w

3
x

3 + ... + w
n
x

n (2)

 where x
1
, x

2
, ..., x

n
 are the inputs to the element and w

0
,

w
1
, ..., w

n
 are the element weights.

2. Single, doublet, and triplet elements which

implement a third-degree polynomial with all

possible cross-terms for one, two, and three inputs

respectively; e.g., “Doublet”.

 Output=w
0
+w

1
x

1
+w

2
x

2
+w

3
x

1
2+w

4
x

2
2+w

5
x

1
x

2
+w

6
x

1
3+w

7
x

2
3 (3)

3. The dataset

The dataset consists of two suites of metrics,

structural-based [12] and evolution-based metrics [16],

extracted from a Java-base object-oriented open source

software system, VSSPLUGIN [8]. The first suite of

metrics (referred to here as C&K) is a well-defined

suite of object-oriented metrics in literature. C&K

metrics have been theoretically validated [13]. They

have also been empirically investigated and found to

be associated with various quality aspects [16,18,22].

806 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Additionally, they measure and quantify several

structural properties of the system such as size,

coupling, cohesion, and inheritance. They have been

collected from the open source system using the

Understand tool [9], the analyst edition. The second

suite of metrics (referred to here as evolutionary)

measures and quantifies the change history of the

software system. They have been theoretically and

empirically validated [16]. They introduce another

complementary dimension to understand the evolution

and changes in a software system [16]. Both structural-

based and evolution-based metrics were found to be

associated with several software quality aspects, such

as maintainability [30], reliability [28, 33], fault-

proneness [36], and change-proneness [16]. Table 1

provides a brief description of each metric. The open

source system from which the dataset was collected is

a long-lived system, of reasonable size, relatively

mature, and of multiple releases (13 releases). Working

on a long-lived system prevents results from being

biased by the potential data fluctuations experienced

during a short period of time [21]. Investigating a

reasonable-size system provides a large number of data

points, a desirable feature when doing statistical

analysis [10], and allows better training and improved

performance evaluation [17]. Table 2 shows more

quantitative information about the VSSPLUGIN

software.

Table 1. Metrics description.

Metric Name Definition Scale

BOC Birth of the class The ordinal release number of the release at which the class was introduced. Ordinal

TACH Change size The sum of added lines, deleted lines, and twice changed lines between release n-1 and release n. Ratio

FCH First time changes The ordinal release number at which changes have been introduced to the class for the first time. Ordinal

LCH Last time change The ordinal release number at which most recent changes have been applied to the class. Ordinal

CHO Change occurred A binary metric that indicates whether or not the class has been exposed to changes from release n-1 to n
Nominal
(Binary)

FRCH Frequency of change The number of times (in term of releases) the class has been changed. Ratio

WCH Weighted changes

The aggregated weighted amount of changes in lines of code (added + deleted + twice changed) between
each two consecutive releases r-1 and r, from its first release j through release n, giving more weight for

the latest changes by applying weighting function 2r-n that decreases the importance of a change at the

release r, which is more distant from the current release n.

Ratio

CHD Change density The change size (TACH) of the class normalized by the size of the class (its total Lines Of Code (LOC)). Ratio

WCD Weighted change density
This metric is similar to the WCH metric, but here, weight is applied to the CHD, instead of the change

size (TACH).
Ratio

WFR
Weighted frequency of

changes
Aggregated weighted occurrence of changes, favoring the latest occurrence of changes over the old ones. Ratio

ATAF
Aggregated change size

normalized
Aggregated change size of the class over the past releases normalized by frequency of change. Ratio

LCA Last change amount The last change size of the class when moving from release i-1 to release i. Ratio

LCD Last change density The last change size of the class (LCA) normalized by the size of the class. Ratio

CSB Changes since the birth The change size between first version of the class and its current version. Ratio

CSBS
Changes since the birth

normalized
The CSB normalized by the size of the first version of the class. Ratio

ACDF
Aggregated change density

normalized
The aggregated change density of the class over the past releases normalized by frequency of changes. Ratio

WMC Weighted methods per class
The static complexity of an individual class. With the assumption that all methods of a class are equally

complex, then WMC is the number of local methods.
Ratio

DIT
Depth of inheritance tree of

a class
The position of the class in the inheritance hierarchy.

NOC Number of children The number of classes that inherit directly from a class.

CBO Coupling between objects The number of other classes that are coupled to a class either as a client or as a supplier. Ratio

RFC Response for a class
The cardinality of the response set of the class. The response set of the class is a set of methods that can

potentially be executed in response to a message received by an object of that class.
Ratio

LCOM Lack of cohesion in methods A measure of not connected method pairs in a class.

Because the evolution-based metrics are extracted

from the change history of the system, no evolution-

based metrics are generated for the first release. Thus,

we started the analysis from the second release. In

other words, the first release to predict the change-

proneness of its classes is release R2. For each release

r, the evolution-based metrics of each class C are

calculated from the change history till release r,

whereas the C&K metrics are extracted from release r.

ExamDiff Pro tool was used to compare classes from

one release with the next. Comment and blank lines

were excluded in class comparison. In this paper, we

focus on top-level classes. Only one top-level class is

defined in each Java source file. Inner classes were

treated as contents of the enclosing top-level classes.

Table 3 lists the data type (integer, real, binary) and

the primary statistics (minimum, maximum, and

average) for the 22 input metrics for the two classes of

cases in the dataset, namely positive cases

(proneness=1) and negative cases (proneness=0).

Metrics exhibiting larger disparity between the two

classes, relative to natural variance, should make good

predictors for discriminating between the two classes.

Abductive Network Ensembles for Improved Prediction of Future Change-Prone Classes ... 807

Table 2. Descriptive statistics for VSSPLUGIN software system.

Actual

release

number

Ordinal

release

number

Release

date

Number of

classes in the

release

Percentage of changed

classes from the previous

release to this release

(%)

0.8 R1 15-07-2002 36

0.9 R2 19-07-2002 47 67

0.9.1 R3 30-07-2002 47 4

0.9.2 R4 08-08-2002 56 57

1.0 R5 22-09-2002 68 77

1.2 R6 15-01-2003 95 78

1.2.1 R7 18-01-2003 104 20

1.3.0 R8 08-02-2003 118 51

1.4.0 R9 14-03-2003 140 52

1.4.1 R10 17-04-2003 141 7

1.5.0 R11 21-07-2003 152 33

1.6.1 R12 20-06-2005 170 68

1.6.2 R13 09-09-2007 170 15

Max 170 78

Min 36 4

Average 103.38 44

The 1138 cases of the dataset included 696 negative

cases and 442 positive cases (amounting to 38.84% of

the total dataset population). The dataset was

randomized and then split into a training set and an

evaluation set using the 70:30 rule, respectively.

Therefore, the training set consisted of 797 cases of

which 488 cases were negative and 309 cases were

positive (38.77% of the total training dataset). The

evaluation set consisted of 341 cases of which 208

cases were negative and 133 cases were positive

(39.00% of the total evaluation dataset). The random

split ensured nearly identical distribution for the

Proneness output parameter in the training and

evaluation datasets.

Table 3. Data types and primary statistics for the 22 input metrics in the complete dataset for each of the two proneness categories (696

negative cases; proneness=0 and 442 positive cases; proneness=1).

Metric

Category

Metric
Data Type

Minimum Maximum Average

Symbol Proneness =0 Proneness =1 Proneness =0 Proneness =1 Proneness =0 Proneness =1

Evolutionary

1 BOC Integer 1 1 12 12 5.11 4.22

2 FCH Integer 0 0 12 12 2.99 3.17

3 FRCH Integer 0 0 10 10 1.15 2.11

4 LCH Integer 0 0 12 12 3.96 5.14

5 WCH Real 0 0 1059.98 991.00 22.28 52.64

6 WCD Real 0 0 12.79 6.81 0.31 0.50

7 WFR Integer 0 0 10 10 0.99 1.94

8 TACH Integer 0 0 905 990 15.80 30.57

9 ATAF Real 0 0 306.50 496.00 18.03 40.57

10 CHD Real 0 0 12.71 5.93 0.19 0.29

11 LCA Integer 0 0 905 990 21.75 42.55

12 LCD Real 0 0 12.71 12.71 0.39 0.47

13 CSB Integer 0 0 2919 2425 56.79 130.70

14 CSBS Real 0 0 13.89 13.89 0.96 1.44

15 ACDF Real 0 0 8.44 8.44 0.36 0.49

16 CHO Binary 0 0 1 1 0.28 0.47

C&K

17 LCOM Integer 0 0 100 100 33.64 50.44

18 DIT Integer 0 0 4 4 1.74 1.85

19 CBO Integer 0 0 32 31 2.67 4.49

20 NOC Integer 0 0 24 24 0.62 0.60

21 RFC Integer 0 0 82 81 13.91 17.10

22 WMC Integer 0 0 82 81 6.71 10.45

4. Single Abductive Classifiers for

Predicting Proneness

We developed three single classification models to

predict proneness through training on the training set

using three categories of the input metrics. These

categories are:

1. The evolutionary set of metrics (first 16 in Table 1).

2. The C&K set of metrics (last 6 in Table 1).

3. All 22 metrics of the two sets combined.

Each of the three models was optimized to minimize

the Mean Squared Error (MSE) between the true

binary proneness and the continuous predicted

proneness value by trying five levels of model

complexity corresponding to the following values of

AIM’s Complexity Penalty Multiplier (CPM): 0.2, 0.5,

1.0, 2.0, and 5.0. The continuous (0-1) Proneness

output for each of the optimum models was converted

to a binary output through simple rounding at the

threshold value of 0.5. Table 4 shows the optimal CPM

value, the structure of the synthesized optimal model, a

list of the selected input metrics, and the overall

classification accuracy when the model was evaluated

on the evaluation set. The table shows the significant

data reduction achieved by the automatic selection of

relevant input metrics during training. A classification

accuracy of 72.73% was obtained by both models

using the evolutionary metrics and the C&K metrics,

which suggests superior quality of the 6 metrics. Best

performance (73.02%) was obtained with the model

using all 22 metrics, which is consistent with the

findings obtained in [16]. This model selects only 5 of

the input metrics, namely BOC, FCH, LCOM, LCH,

and CHO, thus ignoring 77.3% of the available input

metrics. This leads to simpler and more transparent

models and highlights the most effective proneness

predictors. Only LCOM belongs to the group of the

C&K metrics. In light of the Principal Component

Analysis (PCA) provided in [16], the 5 selected

metrics cover three different dimensions. These

dimensions, as categorized in [16], are: class age and

change frequency dimensions (covered by BOC);

change occurrence dimension (covered by FCH, LCH,

and CHO metrics); and size, coupling, and cohesion

dimension (covered by LCOM). Unlike [16], the

808 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

classification models here are not built on a release-by-

release basis. Instead, we used all the data collected

over the different releases as a combined input to the

abductive network to build the classifier. The selected

metrics here are compared against the metrics obtained

in [16]. Except for CHO, the selected metrics by the

abductive network model here are also among the

frequently selected metrics by the regression models

built on release-by-release basis. As for the 7 metrics

selected out of the evolutionary metrics, they cover all

the four evolutionary-based dimensions used in [16]

based on the PCA analysis. In the model based on the

C&K metrics, only one metric (WMC) is not selected.

This unselected metric falls in the same dimension

covered by LCOM, CBO, and RFC according to the

PCA analysis in [16].

5. Ensemble Abductive Classifiers for

Predicting Proneness

In an attempt to improve proneness prediction beyond

that achieved by the single models described in Section

4, we have investigated combining these models by

fusing their outputs to form an ensemble or a

committee as shown in Figure 2. Two fusion

approaches were investigated for combining the three

outputs:

a. Simple averaging of the linear outputs followed by

rounding at the threshold of 0.5. This achieved a

classification accuracy of 74.49% over the

evaluation set, an improvement of 1.47 percentage

points over the best single model trained using all

22 metrics.

b. Majority voting of the binary outputs of the three

models. This approach proved to be more effective

than simple averaging of the linear outputs, leading

to 83.58% accuracy. This surpasses the accuracy of

the best member of the ensemble by 10.85

percentage points. The improvement highlights the

significant advantage of fusing multiple models at

the decision level compared to fusion at the metric

level as performed by the model employing all 22

metrics.

Figure 2. Schematic diagram of the 3-member network ensemble.

Table 4. Optimal structures of the proneness models obtained using
the three groups of input metrics.

M
e
tr

ic

s
U

se
d

CPM Model

Metrics

Selected

by the

Model

Classification

Accuracy (%)

E
v
o

lu
ti

o
n

a
ry

0.5

BOC,

FCH,
LCH,

WFR,
ATAF,

LCA,

WCD

72.73

C
&

K

1.0

DIT, CBO,
RFC,

LCOM,

NOC

72.73

C
o

m
b

in
e
d

(A
ll

 2
2

)

5.0

BOC,
FCH,

LCOM,

LCH,
CHO

73.02

6. Performance Evaluation

Performance of the proneness classifiers on the

evaluation set was measured using the following five

metrics:

 Classification accuracy (%), defined as the portion

of the total size of the evaluation set (N=341 cases)

that was correctly classified. Let TP be the number

of true positives (cases in the evaluation set having

proneness=1 which were classified as positive, i.e.,

predicted proneness=1) and TN be the number of

true negatives (cases in the evaluation set having

proneness=0 which were classified as negative, i.e.,

predicted proneness=0). The classification accuracy

is given by:

N

TNTP)(
100Accuracy




 Precision (%), defined as the portion of actual

positives (proneness=1) in the evaluation dataset

(Np=133 cases) that was correctly classified as

predicted proneness=1.

 pN

TP
100Precision 

 Recall (%), defined as the portion of all evaluation

set cases classified as positive (predicted

proneness=1) which are true positives

(proneness=1).

 FNTP

TP


100Recall

 where FN is the number of positive cases

(proneness=1) classified wrongly as Negative

(predicted proneness=0).

 F1-measure (%), defined as the harmonic mean of

precision and recall.

 RecallPrecison

)Recall)(Precison(2
F1




y1

y2

y3

Input Metrics:

Evolutionary

C&K

Combined

(All 22)

Model 1

Model 2

Model 3

Fusion

Module Proneness

Abductive Network Ensembles for Improved Prediction of Future Change-Prone Classes ... 809

 The Receiver Operating Characteristics (ROC) is a

plot of the true positive rate versus the false positive

rate as the rounding threshold used with the

continuous classifier output is varied in increments

over the interval 0 to 1. The closer this curve gets to

the point at which false positive rate is 0 and the

true positive rate is 1 the better the classifier

performance becomes. Another related parameter is

the Area Under the ROC Curve (AUC) (0≤AUC≤1).

Larger AUC values indicate better classifier

performance.

Figure 3. ROC curves and the AUC values for the three single

abductive models and the ensemble model that employs simple

averaging of the linear outputs of these single models.

Table 5. Performance metrics for the three optimal single models
and the two ensemble models when evaluated on the evaluation set.

Metric

Optimal Single Models Ensemble Models

Evolutionary C&K Combined Averaging
Majority

Voting

Precision,

%
48.87 62.41 54.89 57.14 68.42

Recall, % 72.22 65.87 69.52 71.70 86.67

F1-

Measure,

%

58.30 64.09 61.34 63.60 76.47

Accuracy,

%
72.73 72.73 73.02 74.49 83.58

Table 5 lists the first four performance metrics for

the 3 single and 2 ensemble models described in

Sections 4 and 5. The majority voting ensemble model

surpasses all other models in all performance aspects,

achieving a recall of 86.67%. This means that

approximately 86.7% of the predictions of positive

proneness made by this model will be correct, which,

in turn, means that 86.7% of the maintenance effort

will be correctly directed to the change-prone classes -

usually a small portion of the overall classes of the

system [21, 35]. Comparing the accuracy obtained by

the best abductive ensemble classifier here to the

accuracy obtained by the regression based classifier in

[16], the abductive classifier, as shown in Table 5,

achieved a correct classification rate of 83.58%, which

is 3.08% higher than the classification accuracy

obtained in [16].

Figure 3 plots the ROC curves for the 3 single

models and the simple averaging ensemble model

described in Section 5. The ROC plots for the 4 models

plotted match expectations based on their relative

performance, with the curve for the ensemble model

being generally the top-most curve. The figure also

gives the AUC values for the 4 models, the 95%

Confidence Interval (CI), and the Standard Error (SE).

The ensemble classifier with averaging has an AUC of

0.803, compare to 1.0 for the ideal classifier.

Generating the ROC plot requires the availability of

the continuous classifier output to be able to change

the threshold at small intervals from 0 to 1 and

calculate the corresponding values of the false positive

and true positive rates at each threshold value. Since

such linear output is not available for the majority

voting ensemble model, it is not included in the plot.

7. Conclusions

In this work, we investigated the use of the GMDH-

based abductive networks to improve the prediction

accuracy of change proneness of classes in object-

oriented software. Several prediction models were built

using 3 different types of metrics as predictors: (1)

evolution-based metrics; (2) C&K metrics; and (3) a

combination of these two metrics types. The prediction

accuracy has been reported for each single model as

well as the fusion of the outputs of the three models to

form an ensemble prediction model. The major

findings of the conducted empirical investigation are as

follows. First, the two set of metrics (evolutionary set,

and C&K) are competitive predictors of change

proneness. Second, combining the two sets of metrics

as inputs to a GMDH-based abductive classifier

improves classification accuracy compared to that

obtained with a single set of predictors. Third, the best

performance (83.58% classification accuracy) was

obtained when fusing the outputs of the three single

models using majority voting to form an ensemble

GMDH abductive classifier. This highlights an

accuracy improvement of 10.85% over the accuracy of

the best member of the ensemble, and an accuracy

improvement of 3.08% as compared to the regression-

based classifier presented in [16] using the same

dataset.

Future work would explore the potential for using

GMDH abductive networks for predicting other

software quality aspects such as change size and fault-

proneness.

References

[1] Abdel-Aal R., “Hourly temperature forecasting

using abductive networks,” Engineering

Applications of Artificial Intelligence, vol. 17, no.

5, pp 543-556, 2004.

[2] Abdel-Aal R., Al-Garni A., and Al-Nassar Y.,

“Modelling and Forecasting Monthly Electric

Energy Consumption in Eastern Saudi Arabia

using Abductive Networks,” Energy, vol. 22, no.

9, pp. 911-921, 1997.

810 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

[3] Abdel-Aal R., Elhadidy M., and Shaahid S.,

“Modeling and Forecasting the Mean Hourly

Wind Speed Time Series using GMDH-Based

Abductive Networks,” Renewable Energy, vol.

34, no. 7, pp. 1686-1699, 2009.

[4] Aggarwal K., Singh Y., Kaur A., and Malhotra

R., “Application of Artificial Neural Network for

Predicting Maintainability using Object-Oriented

Metrics,” Transactions on Engineering,

Computing and Technology, vol. 15, pp. 285-

289, 2006.

[5] AIM Software User's Manual, AbTech

Corporation, AIM Software User's Manual,

Charlottesville, 1990.

[6] Baig Z., Sait S., and Shaheen A., “GMDH-Based

Networks for Intelligent Intrusion Detection,”

Engineering Applications of Artificial

Intelligence, vol. 26, no. 7, pp. 1731-1740, 2013.

[7] Basili V., Briand L., and Melo W., “A Validation

of Object-Oriented Design Metrics as Quality

Indicators,” IEEE Transactions on Software

Engineering, vol. 22, no. 10, pp. 751-761, 1996.

[8] Bayer J., Girard J., Wurthner M., DeBaud J., and

Apel M., “Transitioning Legacy Assets to a

Product Line Architecture,” in Proceeding of the

7
th
 European software engineering conference

held jointly with the 7
th
 ACM SIGSOFT

international symposium on Foundations of

software engineering, Toulouse, pp. 446-463,

1999.

[9] Bernstein P., Halevy H., and Pottinger R., “A

Vision for Management of Complex Models,”

ACM Sigmod Record, vol. 29, no. 4, pp. 55-63,

2000.

[10] Boslaugh S. and Watters P., Statistics in a

Nutshell: A Desktop Quick Reference, O’Reilly

Media, 2008.

[11] Brooks F., The Mythical Man-Month, Addison

Wesley, 1995.

[12] Chidamber S. and Kemerer C., “Towards a

Metrics Suite for Object Oriented Design,” in

Proceeding of Object-oriented programming

systems, languages, and applications, phoenix,

pp. 197-211, 1991.

[13] Chidamber S. and Kemerer C., “A Metrics Suite

for Object Oriented Design,” IEEE Transactions

on Software Engineering, vol. 20, no. 6, pp. 476-

493, 1994.

[14] El-Alfy E. and Abdel-Aal R, “Using GMDH-

Based Networks for Improved Spam Detection

and Email Feature Analysis,” Applied Soft

Computing, vol. 11, no. 1, pp. 477-488, 2011.

[15] El-Alfy E. and Abdel-Aal R., “Abductive

Learning Ensembles for Hand Shape

Identification,” Cognitive Computation, vol. 6,

no. 3, pp. 321-330, 2014.

[16] Elish M. and Al-Khiaty M., “A Suite of Metrics

for Quantifying Historical Changes to Predict

Future Change-Prone Classes in Object-Oriented

Software,” Journal of Software: Evolution and

Process, vol. 25, no 5, pp. 407-437, 2012.

[17] Ellis D. and Morgan N., “Size Matters: An

Empirical Study of Neural Network Training for

Large Vocabulary Continuous Speech

Recognition,” in Proceeding of IEEE

International Conference on Acoustics, Speech,

and Signal Processing, Phoenix , pp. 1013-1016,

1999.

[18] Eski S. and Buzluca F., “An Empirical Study on

Object-Oriented Metrics and Software Evolution

in Order to Reduce Testing Costs by Predicting

Change-Prone Classes,” in Proceeding of

Software Testing, Verification and Validation

Workshops, honolulu, pp. 566-571, 2011.

[19] Farlow S., The GMDH algorithm. Self-

organizing methods in modeling: GMDH Type

Algorithms, Marcel Dekker, 1984.

[20] Fenton N. and Pfleeger S., Software Metrics: A

Rigorous and Practical Approach, PWS

Publishing Co., 1998.

[21] Güneş-Koru A. and Liu H., “Identifying and

Characterizing Change-Prone Classes in Two

Large-Scale Open-Source Products,” Journal of

Systems and Software, vol. 80, no. 1, pp. 63-73,

2007.

[22] Gyimothy T., Ferenc R., and Siket I., “Empirical

Validation of Object-Oriented Metrics on Open

Source Software for Fault Prediction,” IEEE

Transactions on Software Engineering, vol 31,

no. 10, pp. 897-910, 2005.

[23] Hippert H., Pedreira C., and Souza R., “Neural

Networks for Short-Term Load Forecasting: A

Review and Evaluation,” IEEE Transactions on

Power Systems, vol. 16, no. 1, pp. 44-55, 2001.

[24] Ivakhnenko A., “Polynomial Theory of Complex

Systems,” IEEE Transactions on Systems, Man

and Cybernetics, vol. SMC-1, no. 4, pp. 64-378,

1971.

[25] Kagdi H. and Maletic J., “Software-Change

Prediction:Estimated+Actual,” in Proceeding of

Second International IEEE Workshop on

Software Evolvability, Philadelphia, pp. 38-43,

2006.

[26] Kaur A., Kaur K., and Malhotra R., “Soft

Computing Approaches for Prediction of

Software Maintenance Effort,” International

Journal of Computer Applications, vol. 1, no. 16,

pp. 69-75, 2010.

[27] Kemerer C. and Slaughter S., “An Empirical

Approach To Studying Software Evolution,”

IEEE Transactions on Software Engineering, vol.

25, no. 4, pp. 493-509, 1999.

[28] Khoshgoftaar T., Allen E., Halstead R., Trio G.,

and Flass R., “Process Measures for Predicting

Software Quality,” in Proceeding of High-

Abductive Network Ensembles for Improved Prediction of Future Change-Prone Classes ... 811

Assurance Systems Engineering Workshop,

Washington, pp. 155-160, 1997.

[29] Lawal I., Abdel-Aal R., and Mahmoud S.,

“Recognition of Handwritten Arabic (Indian)

Numerals Using Freeman's Chain Codes and

Abductive Network Classifiers,” in Proceeding

of 20
th
 International Conference on Pattern

Recognition, Istanbul, pp. 1884-1887, 2010.

[30] Lehman M., Perry D., and Ramil J.,

“Implications of Evolution Metrics on Software

Maintenance,” in Proceeding of International

Conference on Software Maintenance, Bethesda,

pp. 208-217, 1998.

[31] Li W. and Henry S., “Object-Oriented Metrics

that Predict Maintainability,” Journal of Systems

and Software, vol. 23, no. 2, pp. 111-122, 1993.

[32] Montgomery G. and Drake K., “Abductive

Reasoning Networks,” Neurocomputing, vol. 2,

no. 3, pp. 97-104, 1991.

[33] Nagappan N. and Ball T., “Use of Relative Code

Churn Measures to Predict System Defect

Density,” in Proceeding of 27
th
 International

Conference on Software Engineering, Louis, pp.

284-292, 2005.

[34] Parnas D., “Software Aging,” in Proceeding of

16
th
 International Conference on Software

Engineering, Sorrento, pp. 279-287, 1994.

[35] Porter A. and Selby R., “Empirically Guided

Software Development using Metric-Based

Classification Trees,” IEEE Software, vol. 7, no.

2, pp. 46-54, 1990.

[36] Romano D. and Pinzger M., “Using Source Code

Metrics to Predict Change-Prone Java

Interfaces,” in Proceeding of 27
th
 IEEE

International Conference on Software

Maintenance, Williamsburg, pp. 303-312, 2011.

[37] Thwin M. and Quah T., “Application of Neural

Networks for Estimating Software

Maintainability Using Object-Oriented Metrics,”

in Proceeding of International Conference on

Software Engineering and Knowledge

Engineering, San Francisco, pp. 69-73, 2003.

Mojeeb AL-Khiaty received his BS

degree in Mathematics and

Computer from Sana’a University,

Yemen, in 1999, his MS degree in

Computer Science from King Fahd

University of Petroleum and

Minerals (KFUPM), Saudi Arabia,

in 2009, and his PhD degree in

Computer Science and Engineering from KFUPM,

Saudi Arabia, in 2015. His research interests include

software engineering, software metrics, software reuse,

and soft computing.

Radwan Abdel-Aal received his

BS in electrical engineering from

Cairo University, Egypt, in 1972,

his MS in aviation electronics from

Cranfield University, UK in 1974,

and his PhD from Strathclyde

University, UK in 1983. Between

1985 and 2005 he was a research scientist at the

Research Institute of King Fahd University of

Petroleum and Minerals (KFUPM), Dhahran, Saudi

Arabia. In 2005 he joined the Computer Engineering

Department at KFUPM where he is currently a

Professor. His research interests include nuclear

physics instrumentation and machine learning and data

mining applications.

Mahmoud Elish is an Associate

Professor in the Computer Science

Department at Gulf University for

Science and Technology (GUST),

Kuwait. He has been an Associate

Professor in the Information and

Computer Science Department at

King Fahd University of Petroleum

and Minerals (KFUPM), Saudi Arabia. He received his

PhD from George Mason University. His research

interests include software metrics, design, quality and

maintenance.

http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212

