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1. Introduction 

It has been a major goal in science to quantify 

observations in order to understand and harness the 

underlying phenomena. In this regard, software 

engineering involves the scientific use of quantitative 

and qualitative data to understand and improve 

software and thus produce software with predictable 

cost and schedule [27]. In a world of constantly 

changing requirements, software systems are subject to 

changes. These changes can be due to a variety of 

maintenance goals, such as adding new features to the 

system, adapting the system to new environments, 

fixing bugs, and/or improving the quality of the source 

code. On the other hand, these changes are perceived 

as important risk elements as they require time and 

effort [21,30]. Moreover, maintenance costs account 

for 90% of the total costs of software systems [11]. 

Focusing on all software parts equally is difficult [21] 

and wasteful of resources, especially when systems get 

larger [21] and more complex [34]. Some parts are 

more prone to change than others and, as implied by 

the 80-20 law, the great majority of changes are 

usually rooted in a small portion of the software 

system. Resources and effort should be assigned 

accordingly. 

Software-change prediction is one of the 

fundamental activities with regards to supporting 

software changes [25]. The process and the 

methodology of supporting software changes are a  

 

 
decisive factor between the sustained high-quality 

evolution and the premature retirement of a software 

system [25]. Therefore, it is pressing to devise 

methodologies to effectively identify change-prone 

classes in object-oriented software. Doing so plays a 

critical role in: reducing the maintenance cost and 

time, targeting the resources more effectively and 

efficiently to the most critical parts of the system, and 

focusing the attention of the developers to those parts 

that are more prone to changes. As object-oriented 

metrics provide important evidence about different 

decision-making activities [7], they can help the 

software engineer identify the change-prone classes in 

object-oriented software. Software metrics can be 

classified into product and evolution-based (process) 

metrics [16, 20]. Product metrics are those that 

describe characteristics of the development life cycle 

processes outputs. They are measures of the software 

at any stage of its development, from requirements to 

installed system. Examples of such metrics are size, 

coupling, and cohesion metrics. Evolution-based 

metrics, on the other hand, are those that can be 

computed using data taken from the change history of 

the software. Age of the class, frequency of changes, 

are examples of such metrics. 

Several approaches have been developed for 

predicting software changes using software metrics as 

predictors. Li and Henry [31] have performed 

statistical analysis of a prediction model incorporating 

ten object-oriented metrics. Their results showed a 
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strong relationship between these metrics and the 

maintenance effort measured as the number of lines 

changed in an object-oriented class. Thwin and Quah 

[37] described the application of two neural network 

models (ward neural network and general regression 

neural network) to predict the number of lines changed 

per object-oriented class as a proxy measure for the 

maintenance effort. They have evaluated and compared 

the application of these two neural network models in 

predicting software maintenance. Their results showed 

that the selected object-oriented metrics are good 

indicators of maintenance effort. Additionally, the 

result showed that the two neural network models gave 

comparable results. 

Aggarwal et al. [4] have presented an application of 

multilayer feed forward networks to predict the 

number of lines changed per object-oriented class as a 

proxy measure for the maintenance effort. The number 

of lines changed per class was used as a dependent 

variable while the independent variables were 8 

product metrics represented by 3 principal 

components. They concluded that the selected object-

oriented metrics are useful indicators of maintenance 

effort. Kaur et al. [26] have investigated the use of 

Adaptive Neuro-Fuzzy Inference System to predict the 

maintenance effort in terms of the number of line 

changed per object-oriented class. They evaluated and 

compared the application of this hybrid soft computing 

technique with other soft computing techniques 

including Artificial Neural Networks and Fuzzy 

Inference Systems to construct models for predicting 

the software maintenance effort. As predictors, they 

used 8 product metrics represented by 6 principal 

components. They concluded that Adaptive Neuro-

Fuzzy Inference System technique gives the most 

accurate prediction. 

Güneş-Koru and Liu [21] proposed a method for 

identifying and characterizing change-prone classes 

using tree-based models. Romano and Pinzger [36] 

investigated the potential of using a set of source code 

metrics for predicting change-proneness of Java 

interfaces using three different classifiers: Support 

Vector Machine (SVM), Naïve Bayes Network, and 

Artificial Neural Networks. The dependent binary 

variable indicated change-proneness depending on 

whether or not the number of lines changed exceeded 

the median of the lines changed in all classes of the 

system. The independent variables are 4 (out of 6) CK 

metrics [12] as well as the Interface Usage Cohesion 

(IUC) metric. Their cross validation results showed 

that the inclusion of the IUC metric improved the 

classification accuracy of the three classifiers 

compared to models built using only the 4 CK metrics. 

However, this improvement was significant only when 

using SVM as a classifier. The same subset of CK 

metrics, as well as the other four product metrics, were 

used in Eski and Buzluca [18] to predict the change-

prone classes with the objective of identifying the 

critical classes for effective testing. Their approach 

was to rank the classes based on the values of different 

combinations of metrics and then calculate the 

correlation between the top 10% of different ranking 

lists representing the different combinations, and the 

top 10% of another ranked list representing a set of 

classes ranked based on the values of dependent 

variable (measured as the amount of changes between 

two different version of the class). The metrics 

combinations corresponding to the ranking list that 

showed significant correlation were selected as class 

change-proneness indicators. The best accuracy 

reported (in terms of correctly identified change-prone 

classes) over three different case studies was 80%. 

To sum up, the literature suggests that product 

metrics are generally associated with change-

proneness. However, the prediction accuracy is still 

limited. This is due to the fact that relationships 

between software metrics and quality factors, such as 

maintainability or changeability, are often complex and 

sometime nonlinear. Improving the prediction 

accuracy of change-prone classes is very important, as 

it should lead to better decision making on resource 

allocation; save deployment time; and lower 

development and maintenance costs; thus promoting 

better evolution management.  

In a work by Elish and Al-Khiaty [16], the 

prediction accuracy of change prone classes has been 

improved by adding the evolutionary information of 

the system to its structural properties through a 

statistical regression modeling. The basic idea was to 

have a comprehensive view about the system using 

both its evolution history (quantified by a suite of 

evolutionary metrics) and its structural properties 

(quantified by C&K metrics). Towards the same 

objective, and using the same suites of metrics, this 

paper proposes using abductive networks [32] based on 

the Group Method of Data Handling (GMDH) [24] as 

an alternative approach to model and predict change 

proneness of classes in object-oriented software. The 

approach was used previously as a powerful tool in 

several areas including modeling and forecasting 

energy consumption and environmental monitoring [1, 

2, 3], spam detection [14], intrusion detection [6], and 

pattern recognition [15,29]. Inspired by promising 

results obtained in these fields, we explore the use of 

this approach for the prediction of change-prone 

classes in object-oriented software. Compared to 

neural networks, abductive networks offer faster model 

development requiring little user intervention, faster 

convergence during model synthesis, avoiding the 

problem of getting stuck in local minima, and 

automatic configuration of model structure and 

selection of effective input variables [23]. Analytical 

relationships obtained from the resulting polynomial 

models can provide insight into the modeled 

phenomena, highlight contributions of various model 

inputs, and allow comparison with previously used 
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empirical or statistical models. 

2. GMDH-based Abductive Networks  

The Abductory Inductive Mechanism (AIM) tool [5] is 

a modern implementation of the GMDH algorithm 

[24]. The self-organizing modeling tool synthesizes 

input-output models to represent the structure of 

complex and nonlinear relationships, automatically 

selecting the most relevant inputs. The GMDH 

algorithm uses polynomial regression iteratively to 

arrive at a high-degree polynomial model in terms of 

effective predictors. The process is 'evolutionary', 

starting with simple regression relationships to derive 

more accurate representations at later iterations. To 

limit the complexity of the resulting models, only 

regression relationships with good prediction 

performance are kept at each phase. In the classical 

GMDH implementation, such performance is 

evaluated on a dedicated testing subset of the data. 

Iteration is stopped when the new generation of 

regression equations starts to give inferior performance 

compared to that of the previous generation. At this 

point, the model starts to over-fit the training data and 

therefore may not generalize well with new evaluation 

data. A detailed mathematical treatment of the classical 

GMDH algorithm can be found in [19].  

Several implementations of the GMDH approach 

have later been proposed which operate on the full 

training dataset, thus avoiding the need for a dedicated 

testing subset. One such method is the Adaptive 

Learning Network (ALN), implemented by AIM. The 

method uses the Predicted Squared Error (PSE) 

criterion [19] for selecting promising regression 

relationships and for stopping the training to avoid 

over-fitting. This criterion minimizes the squared error 

expected when using the network to predict new data. 

AIM expresses the PSE as [19]: 

          
2

)2( pNKCPMFSEPSE                (1) 

where FSE is the fitting squared error on the training 

data, CPM is a complexity penalty multiplier set by the 

user, K is the number of model coefficients, N is the 

number of training samples, and 
2

p  is a prior 

estimate of the error variance. With increased model 

complexity relative to the training set size, the first 

term in Equation (1) decreases while the second term 

increases linearly. PSE exhibits a minimum at the 

optimum model size that balances accuracy with 

simplicity (exactness with generality). By selecting the 

CPM parameter, the user can control this trade-off: 

CPM values above the default value of 1 give simpler 

models which are less accurate but may generalize well 

with new evaluation data, while lower values give 

more complex models that could over-fit the training 

data and performs poorly on evaluation data previously 

unseen during training.  

 

Figure 1. A typical AIM abductive network model showing various 

types of functional elements. 

The AIM tool synthesizes networks of several types 

of polynomial functional elements. The network size, 

element types, connectivity, and coefficients for the 

optimum model are all determined automatically, 

which reduces required user intervention compared to 

neural networks. This simplifies model development 

and considerably reduces the learning/development 

time and effort. The models take the form of layered 

feed-forward abductive networks of functional 

elements (nodes) [5], as shown in Figure 1 [14]. 

Elements in the first layer operate on various 

combinations of the input variables (x's) and the 

element in the final layer generates the estimated 

output. In addition to the main layers of the network, 

an input layer of normalizers transform the input 

variables into an internal representation as Z scores 

with zero mean and unity variance. Similarly, a 

unitizer restores the output to the original problem 

space. The tool supports the following functional 

elements:  

1. A white element consisting of a constant plus the 

linear weighted sum of all outputs of the previous 

layer, i.e., “White”. 
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2. Single, doublet, and triplet elements which 

implement a third-degree polynomial with all 

possible cross-terms for one, two, and three inputs 

respectively; e.g., “Doublet”. 
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3. The dataset 

The dataset consists of two suites of metrics, 

structural-based [12] and evolution-based metrics [16], 

extracted from a Java-base object-oriented open source 

software system, VSSPLUGIN [8]. The first suite of 

metrics (referred to here as C&K) is a well-defined 

suite of object-oriented metrics in literature. C&K 

metrics have been theoretically validated [13]. They 

have also been empirically investigated and found to 

be associated with various quality aspects [16,18,22]. 
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Additionally, they measure and quantify several 

structural properties of the system such as size, 

coupling, cohesion, and inheritance. They have been 

collected from the open source system using the 

Understand tool [9], the analyst edition. The second 

suite of metrics (referred to here as evolutionary) 

measures and quantifies the change history of the 

software system. They have been theoretically and 

empirically validated [16]. They introduce another 

complementary dimension to understand the evolution 

and changes in a software system [16]. Both structural-

based and evolution-based metrics were found to be 

associated with several software quality aspects, such 

as maintainability [30], reliability [28, 33], fault-

proneness [36], and change-proneness [16]. Table 1 

provides a brief description of each metric. The open 

source system from which the dataset was collected is 

a long-lived system, of reasonable size, relatively 

mature, and of multiple releases (13 releases). Working 

on a long-lived system prevents results from being 

biased by the potential data fluctuations experienced 

during a short period of time [21]. Investigating a 

reasonable-size system provides a large number of data 

points, a desirable feature when doing statistical 

analysis [10], and allows better training and improved 

performance evaluation [17]. Table 2 shows more 

quantitative information about the VSSPLUGIN 

software.

Table 1. Metrics description. 

Metric Name Definition Scale 

BOC Birth of the class The ordinal release number of the release at which the class was introduced. Ordinal 

TACH Change size The sum of added lines, deleted lines, and twice changed lines between release n-1 and release n. Ratio 

FCH First time changes The ordinal release number at which changes have been introduced to the class for the first time. Ordinal 

LCH Last time change The ordinal release number at which most recent changes have been applied to the class. Ordinal 

CHO Change occurred A binary metric that indicates whether or not the class has been exposed to changes from release n-1 to n 
Nominal 
(Binary) 

FRCH Frequency of change The number of times (in term of releases) the class has been changed. Ratio 

WCH Weighted changes 

The aggregated weighted amount of changes in lines of code (added + deleted + twice changed) between 
each two consecutive releases r-1 and r, from its first release j through release n, giving more weight for 

the latest changes by applying weighting function 2r-n that decreases the importance of a change at the 

release r, which is more distant from the current release n. 

Ratio 

CHD Change density The change size (TACH) of the class normalized by the size of the class (its total Lines Of Code (LOC)). Ratio 

WCD Weighted change density 
This metric is similar to the WCH metric, but here, weight is applied to the CHD, instead of the change 

size (TACH). 
Ratio 

WFR 
Weighted frequency of 

changes 
Aggregated weighted occurrence of changes, favoring the latest occurrence of changes over the old ones. Ratio 

ATAF 
Aggregated change size 

normalized 
Aggregated change size of the class over the past releases normalized by frequency of change. Ratio 

LCA Last change amount The last change size of the class when moving from release i-1 to release i. Ratio 

LCD Last change density The last change size of the class (LCA) normalized by the size of the class. Ratio 

CSB Changes since the birth The change size between first version of the class and its current version. Ratio 

CSBS 
Changes since the birth 

normalized 
The CSB normalized by the size of the first version of the class. Ratio 

ACDF 
Aggregated change density 

normalized 
The aggregated change density of the class over the past releases normalized by frequency of changes. Ratio 

WMC Weighted methods per class 
The static complexity of an individual class. With the assumption that all methods of a class are equally 

complex, then WMC is the number of local methods. 
Ratio 

DIT 
Depth of inheritance tree of 

a class 
The position of the class in the inheritance hierarchy.  

NOC Number of children The number of classes that inherit directly from a class.  

CBO Coupling between objects The number of other classes that are coupled to a class either as a client or as a supplier. Ratio 

RFC Response for a class 
The cardinality of the response set of the class. The response set of the class is a set of methods that can 

potentially be executed in response to a message received by an object of that class. 
Ratio 

LCOM Lack of cohesion in methods A measure of not connected method pairs in a class.  

 

Because the evolution-based metrics are extracted 

from the change history of the system, no evolution-

based metrics are generated for the first release. Thus, 

we started the analysis from the second release. In 

other words, the first release to predict the change-

proneness of its classes is release R2. For each release 

r, the evolution-based metrics of each class C are 

calculated from the change history till release r, 

whereas the C&K metrics are extracted from release r. 

ExamDiff Pro tool was used to compare classes from 

one release with the next. Comment and blank lines 

were excluded in class comparison. In this paper, we 

focus on top-level classes. Only one top-level class is 

defined in each Java source file. Inner classes were 

treated as contents of the enclosing top-level classes. 

 

Table 3 lists the data type (integer, real, binary) and 

the primary statistics (minimum, maximum, and 

average) for the 22 input metrics for the two classes of 

cases in the dataset, namely positive cases 

(proneness=1) and negative cases (proneness=0). 

Metrics exhibiting larger disparity between the two 

classes, relative to natural variance, should make good 

predictors for discriminating between the two classes.  

 

 

 

 



Abductive Network Ensembles for Improved Prediction of Future Change-Prone Classes ...                                                   807 

 

Table 2. Descriptive statistics for VSSPLUGIN software system. 

Actual 

release 

number 

Ordinal 

release 

number 

Release 

date 

Number of 

classes in the 

release 

Percentage of changed 

classes from the previous 

release to this release 

(%) 

0.8 R1 15-07-2002 36  

0.9 R2 19-07-2002 47 67 

0.9.1 R3 30-07-2002 47 4 

0.9.2 R4 08-08-2002 56 57 

1.0 R5 22-09-2002 68 77 

1.2 R6 15-01-2003 95 78 

1.2.1 R7 18-01-2003 104 20 

1.3.0 R8 08-02-2003 118 51 

1.4.0 R9 14-03-2003 140 52 

1.4.1 R10 17-04-2003 141 7 

1.5.0 R11 21-07-2003 152 33 

1.6.1 R12 20-06-2005 170 68 

1.6.2 R13 09-09-2007 170 15 

Max 170 78 

Min 36 4 

Average 103.38 44 

The 1138 cases of the dataset included 696 negative 

cases and 442 positive cases (amounting to 38.84% of 

the total dataset population). The dataset was 

randomized and then split into a training set and an 

evaluation set using the 70:30 rule, respectively. 

Therefore, the training set consisted of 797 cases of 

which 488 cases were negative and 309 cases were 

positive (38.77% of the total training dataset). The 

evaluation set consisted of 341 cases of which 208 

cases were negative and 133 cases were positive 

(39.00% of the total evaluation dataset). The random 

split ensured nearly identical distribution for the 

Proneness output parameter in the training and 

evaluation datasets. 

 

Table 3. Data types and primary statistics for the 22 input metrics in the complete dataset for each of the two proneness categories (696 

negative cases; proneness=0 and 442 positive cases; proneness=1). 

Metric 

Category 

Metric 
Data Type 

Minimum Maximum Average 

# Symbol Proneness =0 Proneness =1 Proneness =0 Proneness =1 Proneness =0 Proneness =1 

Evolutionary 

1 BOC Integer 1 1 12 12 5.11 4.22 

2 FCH Integer 0 0 12 12 2.99 3.17 

3 FRCH Integer 0 0 10 10 1.15 2.11 

4 LCH Integer 0 0 12 12 3.96 5.14 

5 WCH Real 0 0 1059.98 991.00 22.28 52.64 

6 WCD Real 0 0 12.79 6.81 0.31 0.50 

7 WFR Integer 0 0 10 10 0.99 1.94 

8 TACH Integer 0 0 905 990 15.80 30.57 

9 ATAF Real 0 0 306.50 496.00 18.03 40.57 

10 CHD Real 0 0 12.71 5.93 0.19 0.29 

11 LCA Integer 0 0 905 990 21.75 42.55 

12 LCD Real 0 0 12.71 12.71 0.39 0.47 

13 CSB Integer 0 0 2919 2425 56.79 130.70 

14 CSBS Real 0 0 13.89 13.89 0.96 1.44 

15 ACDF Real 0 0 8.44 8.44 0.36 0.49 

16 CHO Binary 0 0 1 1 0.28 0.47 

C&K 

17 LCOM Integer 0 0 100 100 33.64 50.44 

18 DIT Integer 0 0 4 4 1.74 1.85 

19 CBO Integer 0 0 32 31 2.67 4.49 

20 NOC Integer 0 0 24 24 0.62 0.60 

21 RFC Integer 0 0 82 81 13.91 17.10 

22 WMC Integer 0 0 82 81 6.71 10.45 

4. Single Abductive Classifiers for 

Predicting Proneness  

We developed three single classification models to 

predict proneness through training on the training set 

using three categories of the input metrics. These 

categories are:  

1. The evolutionary set of metrics (first 16 in Table 1).  

2. The C&K set of metrics (last 6 in Table 1).  

3. All 22 metrics of the two sets combined. 

Each of the three models was optimized to minimize 

the Mean Squared Error (MSE) between the true 

binary proneness and the continuous predicted 

proneness value by trying five levels of model 

complexity corresponding to the following values of 

AIM’s Complexity Penalty Multiplier (CPM): 0.2, 0.5, 

1.0, 2.0, and 5.0. The continuous (0-1) Proneness 

output for each of the optimum models was converted 

to a binary output through simple rounding at the 

threshold value of 0.5. Table 4 shows the optimal CPM 

value, the structure of the synthesized optimal model, a 

list of the selected input metrics, and the overall  

 

classification accuracy when the model was evaluated 

on the evaluation set. The table shows the significant 

data reduction achieved by the automatic selection of 

relevant input metrics during training. A classification 

accuracy of 72.73% was obtained by both models 

using the evolutionary metrics and the C&K metrics, 

which suggests superior quality of the 6 metrics. Best 

performance (73.02%) was obtained with the model 

using all 22 metrics, which is consistent with the 

findings obtained in [16]. This model selects only 5 of 

the input metrics, namely BOC, FCH, LCOM, LCH, 

and CHO, thus ignoring 77.3% of the available input 

metrics. This leads to simpler and more transparent 

models and highlights the most effective proneness 

predictors. Only LCOM belongs to the group of the 

C&K metrics. In light of the Principal Component 

Analysis (PCA) provided in [16], the 5 selected 

metrics cover three different dimensions. These 

dimensions, as categorized in [16], are: class age and 

change frequency dimensions (covered by BOC); 

change occurrence dimension (covered by FCH, LCH, 

and CHO metrics); and size, coupling, and cohesion 

dimension (covered by LCOM). Unlike [16], the 
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classification models here are not built on a release-by-

release basis. Instead, we used all the data collected 

over the different releases as a combined input to the 

abductive network to build the classifier. The selected 

metrics here are compared against the metrics obtained 

in [16]. Except for CHO, the selected metrics by the 

abductive network model here are also among the 

frequently selected metrics by the regression models 

built on release-by-release basis. As for the 7 metrics 

selected out of the evolutionary metrics, they cover all 

the four evolutionary-based dimensions used in [16] 

based on the PCA analysis. In the model based on the 

C&K metrics, only one metric (WMC) is not selected. 

This unselected metric falls in the same dimension 

covered by LCOM, CBO, and RFC according to the 

PCA analysis in [16].  

5. Ensemble Abductive Classifiers for 

Predicting Proneness 

In an attempt to improve proneness prediction beyond 

that achieved by the single models described in Section 

4, we have investigated combining these models by 

fusing their outputs to form an ensemble or a 

committee as shown in Figure 2. Two fusion 

approaches were investigated for combining the three 

outputs: 

a. Simple averaging of the linear outputs followed by 

rounding at the threshold of 0.5. This achieved a 

classification accuracy of 74.49% over the 

evaluation set, an improvement of 1.47 percentage 

points over the best single model trained using all 

22 metrics. 

b. Majority voting of the binary outputs of the three 

models. This approach proved to be more effective 

than simple averaging of the linear outputs, leading 

to 83.58% accuracy. This surpasses the accuracy of 

the best member of the ensemble by 10.85 

percentage points. The improvement highlights the 

significant advantage of fusing multiple models at 

the decision level compared to fusion at the metric 

level as performed by the model employing all 22 

metrics. 

 

Figure 2. Schematic diagram of the 3-member network ensemble. 

 

 

 

Table 4. Optimal structures of the proneness models obtained using 
the three groups of input metrics. 
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6. Performance Evaluation 

Performance of the proneness classifiers on the 

evaluation set was measured using the following five 

metrics: 

 Classification accuracy (%), defined as the portion 

of the total size of the evaluation set (N=341 cases) 

that was correctly classified. Let TP be the number 

of true positives (cases in the evaluation set having 

proneness=1 which were classified as positive, i.e., 

predicted proneness=1) and TN be the number of 

true negatives (cases in the evaluation set having 

proneness=0 which were classified as negative, i.e., 

predicted proneness=0). The classification accuracy 

is given by: 
    

N

TNTP )(
100Accuracy




 

 Precision (%), defined as the portion of actual 

positives (proneness=1) in the evaluation dataset 

(Np=133 cases) that was correctly classified as 

predicted proneness=1.  

    pN

TP
100Precision   

 Recall (%), defined as the portion of all evaluation 

set cases classified as positive (predicted 

proneness=1) which are true positives 

(proneness=1).  

    FNTP

TP


100Recall  

    where FN is the number of positive cases 

(proneness=1) classified wrongly as Negative 

(predicted proneness=0).  

 F1-measure (%), defined as the harmonic mean of 

precision and recall. 

    RecallPrecison

)Recall)(Precison(2
F1


  

y1 

y2 

y3 
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Evolutionary 

 

C&K 
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Fusion 

Module Proneness 
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 The Receiver Operating Characteristics (ROC) is a 

plot of the true positive rate versus the false positive 

rate as the rounding threshold used with the 

continuous classifier output is varied in increments 

over the interval 0 to 1. The closer this curve gets to 

the point at which false positive rate is 0 and the 

true positive rate is 1 the better the classifier 

performance becomes. Another related parameter is 

the Area Under the ROC Curve (AUC) (0≤AUC≤1). 

Larger AUC values indicate better classifier 

performance.  

 
Figure 3. ROC curves and the AUC values for the three single 

abductive models and the ensemble model that employs simple 

averaging of the linear outputs of these single models. 

Table 5. Performance metrics for the three optimal single models 
and the two ensemble models when evaluated on the evaluation set. 

Metric 

Optimal Single Models Ensemble Models 

Evolutionary C&K Combined Averaging 
Majority 

Voting 

Precision, 

% 
48.87 62.41 54.89 57.14 68.42 

Recall, % 72.22 65.87 69.52 71.70 86.67 

F1- 

Measure, 

% 

58.30 64.09 61.34 63.60 76.47 

Accuracy, 

% 
72.73 72.73 73.02 74.49 83.58 

Table 5 lists the first four performance metrics for 

the 3 single and 2 ensemble models described in 

Sections 4 and 5. The majority voting ensemble model 

surpasses all other models in all performance aspects, 

achieving a recall of 86.67%. This means that 

approximately 86.7% of the predictions of positive 

proneness made by this model will be correct, which, 

in turn, means that 86.7% of the maintenance effort 

will be correctly directed to the change-prone classes - 

usually a small portion of the overall classes of the 

system [21, 35]. Comparing the accuracy obtained by 

the best abductive ensemble classifier here to the 

accuracy obtained by the regression based classifier in 

[16], the abductive classifier, as shown in Table 5, 

achieved a correct classification rate of 83.58%, which 

is 3.08% higher than the classification accuracy 

obtained in [16]. 

Figure 3 plots the ROC curves for the 3 single 

models and the simple averaging ensemble model 

described in Section 5. The ROC plots for the 4 models 

plotted match expectations based on their relative 

performance, with the curve for the ensemble model 

being generally the top-most curve. The figure also 

gives the AUC values for the 4 models, the 95% 

Confidence Interval (CI), and the Standard Error (SE). 

The ensemble classifier with averaging has an AUC of 

0.803, compare to 1.0 for the ideal classifier. 

Generating the ROC plot requires the availability of 

the continuous classifier output to be able to change 

the threshold at small intervals from 0 to 1 and 

calculate the corresponding values of the false positive 

and true positive rates at each threshold value. Since 

such linear output is not available for the majority 

voting ensemble model, it is not included in the plot. 

7. Conclusions 

In this work, we investigated the use of the GMDH-

based abductive networks to improve the prediction 

accuracy of change proneness of classes in object-

oriented software. Several prediction models were built 

using 3 different types of metrics as predictors: (1) 

evolution-based metrics; (2) C&K metrics; and (3) a 

combination of these two metrics types. The prediction 

accuracy has been reported for each single model as 

well as the fusion of the outputs of the three models to 

form an ensemble prediction model. The major 

findings of the conducted empirical investigation are as 

follows. First, the two set of metrics (evolutionary set, 

and C&K) are competitive predictors of change 

proneness. Second, combining the two sets of metrics 

as inputs to a GMDH-based abductive classifier 

improves classification accuracy compared to that 

obtained with a single set of predictors. Third, the best 

performance (83.58% classification accuracy) was 

obtained when fusing the outputs of the three single 

models using majority voting to form an ensemble 

GMDH abductive classifier. This highlights an 

accuracy improvement of 10.85% over the accuracy of 

the best member of the ensemble, and an accuracy 

improvement of 3.08% as compared to the regression-

based classifier presented in [16] using the same 

dataset.  

Future work would explore the potential for using 

GMDH abductive networks for predicting other 

software quality aspects such as change size and fault-

proneness. 
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