
890 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

The Veracious Counting Bloom Filter

Brindha Palanisamy
1
 and Senthilkumar Athappan

2

1
Research Scholar, Anna University, India

2
Department of Electrical and Electronics Engineering, Anna University, India

Abstract: Counting Bloom Filters (CBFs) are widely employed in many applications for fast membership queries. CBF

works on dynamic sets rather than a static set via item insertions and deletions. CBF allows false positive, but not false

negative. The Bh-Counting Bloom Filter (Bh-CBF) and Variable Increment Counting Bloom Filter (VI-CBF) are

introduced to reduce the False Positive Probability (FPP), but they suffer from memory overhead and hardware

complexity. In this paper, we proposed a multilevel optimization approach named as Veracious Bh-Counting Bloom

Filter (VBh-CBF) and Veracious Variable Increment Counting Bloom Filter (VVI-CBF) by partitioning the counter

vector into multiple levels to reduce the FPP and to limit the memory requirement. The experiment result shows that

the FPP and total memory size are reduced by 65.4%, 67.74% and 20.26%, 41.29% respectively compared to basic Bh-

CBF and VI-CBF.

Key words: Bloom filter, false positive, counting bloom filter, intrusion detection system.

Received August 3, 2014; accepted November 25, 2015

1. Introduction

1.1. Motivation

A significant security problem for networked

systems is hostile or at least unwanted trespass by

users or software. User trespass can take the form of

unauthorized logon to a machine or in the case of an

authorized user, acquisition of privileges or

performance of actions beyond those that have been

authorized. Software trespass can take the form of

virus, worm or Trojan horse. Intrusion Detection

Systems (IDS) have been developed to provide early

warning of an intrusion, so that defensive action can

be taken to prevent or minimize damage.

Early developed IDS are mainly of two types:

1. Host based IDS

2. Network Based IDS. Again, all the IDS use one of

the two detection techniques:

a. Statistical anomaly

b. Signature based IDS.

The software based solution cannot catch up with

the gigabit network. This impediment leads to a

demand of hardware solution to speed up the

process.

1.2. Intuition for Veracious Variable CBF

Bloom [3] introduced a new hash coding method.

This method is suggested for application in which

the great majority of messages to be tested will not

belong to the large set. Firstly, the average time

required for classifying the element as a non-

member of large set is high. Secondly, the

probability of error should be minimized (i.e.,) the

false identification of the member to be in the set

will create a small error [5, 9, 15, 19, 24]. Thirdly,

computation time and space should be efficient to

meet the practical applications.

Counting Bloom Filter (CBF) emerged to

overcome the pitfalls of BF. CBFs have been

contrived for multi-set representation that may be

dynamic due to increment/decrement. This aspect

makes it as a natural virtue in many networking

solicitations [13, 14, 17, 26].

The Bh sequence is now used to improve the

performance of CBF [22]. Basic CBF will

increment the counter by 1, which is constant

throughout the entries. While Bh-CBF have two

counters. First counter will have a constant

increment of one, it counts the number of elements

hashed into the CBF. Second counter will have an

inconstant incremental of weighted sum of the

elements.

The Bh-CBF nearly doubles the counter used in

the design. To overcome this limitation, Variable

Increment Counting Bloom Filter (VI-CBF)

emerged [25], which also uses a variable increment

counter but it relies only on one counter per entry.

It does not rely on the counter that counts the

number of hashed elements into the CBF.

Upon this the VI-CBF also suffers from added

complexity and memory overhead. To counter act

this we proposed two new designs named

Veracious Bh Counting Bloom Filter (VBh-CBF)

and Veracious Variable Increment Counting Bloom

Filter (VVI-CBF). The goal is to reduce the False

Positive Probability (FPP). The VBh -BF and VVI-

CBF is constructed by segmenting the counter

vector into multi levels. The counters are organized

The Veracious Counting Bloom Filter 891

by offset indexing. In VBh-CBF and VVI-CBF the

first level is used to perform membership queries,

while other levels are used for insertions and

deletions. The simulation result shows that the VBh -

CBF and VVI-CBF outperforms Bh-CBF and VI-

CBF in FPP at the same memory consumption.

The rest of this paper is organized as follows.

Section II introduces the background and related work

of BF. Section III enumerates the algorithms of Bh-CBF

and VI-CBF. We described the construction of VBh-

CBF and VVI-CBF in Section IV. Finally, the

experimental results are shown in Section V to validate

the construction of VBh-CBF and VVI-CBF. Section VI

deals with inferences of the work discussed in the

earlier sections.

2. Background and Related Works

A Bloom Filter (BF) is a compact space efficient

data structure, which consists of an array of m-bits

whose values are initially set to zero. The array is

constructed using D-Flip Flop a 1-bit memory

element as discussed in [8]. It is used to represent a

set S={X1,….,Xn} of n elements. For each element

that is added to the set S, k different hash functions

h1,…..hk with the range {1,…..,m} are engaged to

manipulate k different hash values

h1(Xi),…….,hk(Xi). Based on these values that are

mapped the bits hj(xi) are set to 1 over j=1,2,…..,k.

To check if a certain element Y is present in our BF,

similar procedure is followed as used in insertion

process [3, 9, 15, 19, 24] If the bits hj(Y) equal to 1,

then the element is probably in the set. If it is zero,

then certainly it is not in the set. Sometime BF

suffers from false positive error and will not support

deletion of an element. The test bits were set to 1

due to insertion of different elements. The false

positive can be hacked by simply making trade-off

between size of the BF and FPP.

A best way is provided to support deletion

without recreating the filter anew named as CBF

[13, 21]. In CBF a single bit registers are replaced

with n-bit counter. The insertion and deletion is

established by simply incrementing and

decrementing the counter [13, 14, 17, 26]. As

discussed in [26] the SRAM is not compatible with

the high speed data matching. A new memory based

on CAM introduced [1] to overcome the drawback

of SRAM but still as network speed increases in

Gbps, CBF are more preferred for intrusion

detection. A-CBF by Brindha and SenthilKumar [6]

proposed to improve the complexity in the CBF by

introducing a tri-state logic. Still, CBF faces

obstacles while the narrowness they impose on

scalability and arithmetic overflow.

Further Mitzenmacher made a research to

compress the BF to make it more optimal. By

compressing the size of the bit array (z), the length

of the uncompressed and compressed BF has found

no gain. So the value of z is kept constant to

minimize the FPP [23]. The compressed BF also

suffers from few limitations like memory overhead,

computation cost and the size of the filter cannot be

calculated since it is compressed and uncompressed

every time.

A spectral BF is related to CBF, which is

adapted for encoding multi-set. The filtering of

elements is based on the multiplicities that are in

specific range. The value of the multiplicity should

satisfy 𝑓𝑞 = 𝑓𝑞 otherwise error occurs. This error

can be minimized by two ways proposed by Cohen

and Matias as Minimal increase and recurring

minimum methods [11].

Chazelle et al. [10] proposed the Bloomier filter,

which can associate values with the key stored in

the BF and have one of the color values associated

with each object. By querying the objects, the

corresponding color is returned. Like BF, this

structure also suffers from small FPP but not false

negative.

Bonomi et al. [4] introduced an enhanced

structure named d-left hashing which demands only

half as much as space as CBF. The above

drawbacks of CBF are overcome by this d-left

hashing.

Stable Bloom Filter (SBF) by Deng and Rafiei is

designed to continuously expel the information to

make space for the most recent elements. In this

filter, there is no way to store the entire data.

Unlike BF, the SBF introduces false negative, since

they expel the trite information. This technique

works better than standard BD in terms of time

efficiency and FPP when a small space and

acceptable false positive rate is given [12].

Almeida et al. [2] introduced a variant of BF that

can acclimate dynamically to the number of

elements stored named as Scalable Bloom Filter.

This method guaranteed for minimum FPP. The

scalable BF is built by arranging the BF

sequentially with increasing capacity and tighter

FPP, so as to ensure that a maximum FPP can be

set beforehand, regardless of the number of

elements to be inserted. In this paper, VBH-CBF

and VVI-CBF are designed to improve the FPP by

using multilevel optimization to avoid the previous

limitations.

3. Concise Representation of Counting

Bloom Filter, Bh-CBF and VI-CBF

3.1. Counting Bloom Filter

The CBF suggested by Fan et al. [13] as discussed

in section II is a generalized BF, in which the

single bit bloom filter is replaced by a n-bit BF.

The insertion and deletion are done by simply

892 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

incrementing and decrementing the counter. The low

power Linear Feedback Shift Register (LFSR) are

employed for this design [26]. The operations are

shown as Algorithm 1 steps as follows:

Algorithm 1: Insertion In CBF

Insert(Element x);

for(i=1;i<=q;i++) do

for(j=1;j<=k;j++)do

 p=hj(xi);

Cj(p)++;

 end for;

 end for;

The element x is inserted into the BF using k

independent hash functions. The corresponding bit

array is incremented by 1, rest are retained as zero as

shown in Algorithm 1. The reverse process is carried

out to delete an element from the array.

Algorithm 2: Query Operation In CBF

Query(Element x);

for(i=1;i<=q;i++) do

for(j=1;j<=k;j++)do

p=hj(xi);

if Cj(p)==0 then

return FALSE;

else

return TRUE;

end if;

end for;

end for;

To query an element in the CBF the hash function is

performed and the corresponding location in the bit

array is checked for its presents [26]. If it equals 0

then definitely the element is not present, else it is

present in the array as given by the Algorithm 2. The

CBF also suffers from false positive error, so a new

idea based on Sidon sequence is proposed [22, 25].

3.2. SIDON Sequence

The Sidon Sequence is commonly known as Bh-set

or Bh sequence [22]. We start with the basic

Scenarios of Bh sequences. B2 sequences are also

called Sidon sequences.

 Rule 1. Let (X) be an Abelian group. Let G =

{U1,U2….Un} be a sequence of elements of X.

Then G is a Bh sequence over X if all the sums
Ui1+Ui2+….Uin with 1≤i1≤i2≤…..≤in are distinct

[13].

 Example 1. Let G = Z and

 G = { U1,U2, U3,U4}= {1,4,11,13} G.

We can see that all the 10 sums of 2 elements of G

and20 sums of 3 elements are distinct. Therefore, G

is a B2 and B3 sequence. However, the two sums of

4 elements, hence G is not a B4 sequence.

3.3. Functionality of Bh Sequence

The Bh sequence is used to improve the performance

of CBF [12, 14]. Basic CBF will increment the

counter by 1, which is constant throughout the entries.

While in Bh sequence based CBF there will be two

counters [7].
First counter will have a constant increment of

one, it counts the number of elements hashed into

the CBF. Second counter will have an inconstant

incremental of weighted sum of the elements as

shown in Table.1.

There are three basic operations performed by

each of these counters.

 Insertion or update phase.

 Deletion or removal phase.

 Query or test phase.

3.3.1. Element insertion

Algorithm 3, Shows that element „A‟ is inserted

whose G={1,4,11,13} and k=3. In this,

{h1(A),h2(A),h3(A)} = {1,4,8} and

{g1(A),g2(A),g3(A)}={2,1,4}. The element „A‟ is

hashed to 1,4,8 locations in the array using h1, h2

and h3. It increment the counter C1 by one and it

increments the second counter by hashing {Ug1(A),U

Ug2(A), Ug3(A)} {U2, U1, U4} {4,1,13}

respectively.

Algorithm 3: Insertion Operation In Bh-CBF

Insert(Element A);

#To add the element in C1

for(i=1;i<=q;i++) do

 for(j=1;j<=4;j++)do

 p=hj(Ai);

 C1j(p)++;

To add the element in C2

Get the value for U={1,4,11,13}

Ugj(A)=gj(A);

C2j(p)= C2j(p)+Ugj(A);

 end for;

end for;

3.3.2. Element Querying

To query whether an element „B‟ is present in the

set S, both the counters are checked for its

presence. If C1(i) 0, then the constant increment

counter determines that „AB‟ S.

The C2(i) is checked for exact sum of the a value

based on G as shown in Algorithm 4.

3.3.3. Element Deletion

The deletion of an element says „AB‟ is performed

similar to element insertion. First counter of hi(a) is

decremented by one and second counter is

decremented by Ugi(a). The element „AB‟ is removed

by decrementing the first counter C1 using h1 (AB), h2

The Veracious Counting Bloom Filter 893

(AB) and h3 (AB) by 1 and their second counter C2 by

13, 1 and 4 respectively [25].

Algorithm 4: Query Operation In Bh-CBF

Query(Element A)

#To query the element in C1

 for(i=1;i<=q;i++) do

 for(j=1;j<=4;j++)do

 p=hj(Ai);

If C1j(p)==0 then

 return FALSE;

else

 return TRUE;

end if;

To query the element in C2

Get the value forU={1,4,11,13}

Ugj(A)=gj(A);

if C2j(P) contains the Value

of D hashed by gj(A) then

 return TRUE;

else

 return FALSE;

end if;

end for;

end for;

3.4. Variable Increment Counting Bloom Filter

The Bh-CBF illustrated above has two counters

which will certainly doubles the hardware

complexity and memory utilization. The C1 and C2

counters are replaced with single counter that keeps

track of the elements in the array. The Bh-CBF and

VI-CBF shows 22.2% and 34% improvement in the

total memory size. The hardware‟s complexity is

reduced by a factor of two approximately. The

Simulation results in the previous works [25] shows

that the Bh-CBF and VI-CBF also suffers from small

false positive rate.

4. Veracious Counting Bloom Filter

In this section, we present a multilevel optimization

technique to Bh-CBF and VI-CBF and we name it as

Veracious Bh-CBF and VI-CBF. We described the

basic construction of VBh-CBF and VVI-CBF to reduce

the FPP. Next, the proposed and standard techniques

are compared to designate the improvement in the FPP.

4.1. VBh-CBF Construction

The basic idea of VBh-CBF is to partition the

counter array into multilevel. Further, we segregate

the insertion/deletion operations and query

operations. Veracious Bh-CBF has a ranked structure

which is composed of h-levels b1,…..,br and an idle

array bi. The VBh-CBF uses k hash functions

h1,…..,hk to hash an element x into k bits in the first

controlled by the parameter m for a given n and k

[16]. In the ranked structure, b1 is employed to

substantiate membership query, b2,…..br is used to

manipulate the element insertion, b i is utilized for

further insertion of new elements [18]. The first

level b1 has the same size as Bh-CBF. Since m is

10, the size of b1=10. The remaining 21 bits are

used for idle array bi. The VBh-CBF uses k hash

functions h1,…..,hk to hash an element x into k bits

in the first level b1 and l1 is the bit size of b1. The

query operation is carried to check the array b1 as

shown in Algorithm 1.

Algorithm 5, Shows that if all bits are set to 1,

then the element x is said to be in VBh-CBF. We

presume |bj|=l1j, where j is in the range [1,2…,r]. .

To traverse through the counter an offset index in b j

by using the function popcount(bj,j). This function

returns the number of ones counted while

transverse through the position j. Fig. 1,shows the

insertion of three elements x,y,z. The C1 is 10-bit

array, position 8 in C1 and C2 are hashed by both y

and z. So the first counter is incremented by one

and the second counter is arranged in a ranked

structure where its value traverses through two

levels b3 and b4. As bit 8 in C1 is set to 1, the

corresponding bit in b2 is set to 1 based on the Bh

concept. Next we call the popcount to index the

position in b2. It returns the value 3, so this helps to

address the b3. Similarly b3 returns 1 which is used

for b4. The sum of all the traverse path values gives

the total counter value.

Algorithm 5: Query Operation In VBh-CBF

Query(Element x);

#To query an element in C1 and C2

 for(i=1;i<=k,i++)do

q=hi(x);

p=Ugi(x) mod li;

If(b1(p)==0 and C1(q)==0)then

return FALSE;

end if;

end for;

In order to insert or to delete an element the

corresponding counter is incremented or decremented.

When an element is inserted in to VBh-CBF, we need

to traverse through the b1,…..,br series. To insert an

element we expand the next level bj+1, by adding

variable value from the set U indexed by the second

hash function [20]. Similarly, perform deletion by

shrinking the last level bj by shifting backward all the

bits and decrementing bj by the variable value from set

U as in algorithm 6.

Figure 1. Vbh-CBF with ranking structure.

894 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Algorithm 6: Insertion Operation In Vbh-CBF

Insert(Element A)

#To insert the element in C1

for(i=1;i<=k;i++) do

 q=hi(A);

 C1i(p)++;

#To insert the element in C2

Get the value forU={1,4,11,13}

Ugj(x)=gj(x);

 for(j=1;j<=r;j++)do

if(j==)then

p=gi(x)mod li;

end if;

 if (b1(p)=Ugj(x)) then

Offset=popcount(bj,p);

P=offset;

#Expand bj by one position bj+1

 Else

bj(p)=Ugj(x);

offset=popcount(bj,p);

expand(bj+1,offset);

p=offset;

bj+1[p]=0;

exit();

 end if; end for;

The VBh-CBF, has two hash functions and their range

varies from {1,….,m} and for second hash function

{1,2,…..l1}. The FPR for VBh-CBF, is

k

h

j

jnk

m

j

ml

l

j

nk
FPR























































0

1
1

2

1
1

1

4.2. VVI-CBF Construction

The VBh-CBF suggested above uses two counters

per entry. This nearly doubles the hardware

utilization. Moreover, the elements in the sum of C2

will not be unique when there are h elements. So

we introduce VVI-CBF (Veracious Counting Bloom

Filter) that uses only a single counter instead of two

counters. As previously enumerated in Figure 1, we

again use the array to store the elements. Like the

second counter in VBh-CBF, a single variable

counter is updated based on the values selected in

the set U. Upon insertion, the counter is incremented

by gi(x) in the set G positioned by hi(x). Similarly,

deletion is accomplished by deleting the counter by

gi(x) in the set G positioned by hi(x). Another

problem with VI-CBF scheme as discussed in

previous works [7, 25], it cannot directly use the bh

scheme as there is no small counter to store the

number of elements hashed into the counter [7].

To solve this [25] D=DL that does not need a small

lookup table. We adopted this scheme to design VVI-

CBF.

The FPR of the VI-CBF scheme is shown in

Equation (2),

  

2

2
1

1

2
1

226

11

1
1

1
1

1

11
11



















































































nk

mm

nk

L

LL

nk

mm

nk

L

L
nk

m
FPR

The FPR of the VVI-CBF scheme is given by

Equation (3).

  

2

2

1
2

1

11
1

1

26

11

1
1

1

1

11
11
































































































nk

nk
nk

l

nk

L

LL

ll

nk

L

L

lFPR

Where L is the size of DL, is the bit size of first

level in bj, n is the maximum number of elements

and k is the number of hash functions. Definitely

this will improve the false positive rate to a great

extend for a CBF when it is chosen as m≥10.

5. Experiment Result

The experiment is conducted to analyze the

performance of the VBh-CBF and VVI-CBF. 50

signatures each of 8 bits per cycle are loaded in the

database. The false positive rate is analyzed based on

the test bench designed using Hardware Description

Language (HDL). The simulation is conducted for 100

intrusion patterns. The functional blocks are

implemented using Virtex4 (XC4VS25) Field

Programmable Gate Array(FPGA).The false positive

rate for Bh-CBF,VI-CBF, VBh-CBF and VVI-CBF

with D=DL are 0.00089, 0.00031, 0.00028 and

0.00010 respectively. The false positive rate improves

by 65.4% and 67.74% respectively. As the number of

entries increases the improvement would be seen over

the order of magnitude.

The memory requirement comparison is shown in

Table 1 where the previous works are shown on the

left hand side and proposed two techniques are shown

the right hand side. The performance results of the

previous approaches are taken from [14, 26]. We

presented the five existing approaches and two new

techniques VBh-CBF and VVI-CBF.

We used the letter U instead of D in the previous

works and their results are summarized in Table 1.

The Bh-CBF and VBh-CBF requires an addition table

as explained in VVI-CBF Construction.

As the counter array is partitioned into Multi-

levels the total memory requirement reduces and

further, the segregation of insertion/deletion

operations and query operations brings a better

false positive rate. In VBh-CBF, the memory size

requires is 9.17 whereas in the VVI-CBF it drops to

6.13. A total memory size of 20.26% and 41.29%

improvement are accomplished compared to Bh -

CBF and VI-CBF.

 (1)

(2)

 (3)

The Veracious Counting Bloom Filter 895

Table 1. Memory requirements comparison.

Existing Techniques[13,14]
Proposed

Techniques

C
B

F

S
p

e
c
tr

a
l

B
F

d
l-

C
B

F

B
h
-

 C
B

F

V
I-

C
B

F

D
=

D
L

V
B

h
-

C
B

F

V
V

I-
C

B
F

D
=

D
L

Main

Structure

(KB)

14.1 8.12 5.2 12.07 10.97 9.17 6.13

Secondary

Structures

(KB)

- - - - - 0.44 0.31

Additional

Tables(KB)
- 4 - 0.02 - 0.03 -

Total Size

(KB)
14.1 12.12 5.2 12.09 10.97 9.64 6.44

Total Memory

Size in %

-

-

-

-

-

20.26

41.29

False Positive

Rate

10-3

10-3

1.5x1

0-3

10-3

10-3

10-3

10-3

Computation

Time(ns)
0.447 0.389 0.224 0.410 0.35 0.27 0.21

The computation time required for all the methods

are addressed to show that there are improvement of

34.14% and 40% compared to Bh-CBF and VICBF.

This improvement makes the design more significant

for intrusion detection application where high speed

detection exists.

6. Conclusions

The target of this paper is to propose an efficient

technique to reduce the false positive rate and

memory utilization with low computation time. We

have also demonstrated that these two methods

achieve a low false positive rate. Simulation result

shows that the FPP is reduced by 65.4% and 67.74%

compared to standard Bh-CBF and VI-CBF

respectively. The proposed work suffers from little

hardware overhead due to increase in Bh blocks. The

proposed work is suited well for intrusion detection

system since it accomplishes only low memory

space.

References

[1] Ali Q., “A Flexible Design of Network Devices

Using Reconfigurable Content Addressable

memory,” The international Arab Journal of

Information technology, vol. 8, no. 3, pp. 235-

243, 2011.

[2] Almeida P., Baquero C., Preguica N., and

Hutchison D., “Scalable Bloom Filters,”

Information Processing Letters, vol. 101, no. 6,

pp. 255-261, 2007.

[3] Bloom B., “Space/Time Trade-Offs in Hash

Coding with Allowable Errors,”

Communications of the ACM, vol. 13, no. 7,

pp. 422-426, 1970.

[4] Bonomi F., Mitzenmacher M., Panigrahy R.,

Sushil S., and Varghese G., “An Improved

Construction for Counting Bloom Filters,” in

Proceeding of 14
th

 conference on Annual

European Symposium, Zurich, pp. 684-695,

2006.

[5] Bose P., Guo H., Kranakis E., Maheshwari A.,

Morin P., Morrison J., Smid M., and Tang Y.,

“On the False-Positive Rate of Bloom

Filters,” Information Processing Letters, vol.

108, no. 4, pp. 210-213, 2008.

[6] Brindha P. and SenthilKumar A., “Area Efficient

Counting Bloom Filter (A-CBF) Design for

NIDS,” International Journal of Computer

Applications, vol. 70, no. 4, pp.17-21, 2013.

[7] Brindha P. and SenthilKumar A., “Network

Intrusion Detection System: An Improved

Architecture to Reduce False Positive Rate,”

Journal of Theoretical and Applied Information

Technology, vol. 66, no. 2, pp.618-626, 2014.

[8] Brindha P., SenthilKumar A., and Mohanapriyaa

V., “Survey and Evaluation of D Flipflop for

Low Power Counter Design Using Sub-Micron

Technology,” International Journal of

Electronics Communication and Computer

Engineering, vol. 4, no. 2, pp. 339-343, 2012.

[9] Broder A. and Mitzenmacher M., “Network

Application of Bloom Filter: A Survey,”

Internet Mathematics, vol. 1, no. 4, pp. 484-

509, 2004.

[10] Chazelle B., Kilian J., Rubinfeld R., and Tal

A., “The Bloomier Filter: an Efficient Data

Structure for Static Support Lookup Tables,”

in Proceeding of 15
th

 Annual ACM-SIAM

Symp, On Discrete Algorithms, Philadelphia,

pp. 30-39, 2004.

[11] Cohen S. and Matias Y., “Spectral Bloom

Filters,” in Proceeding of the 2003 ACM

SIGMOD international conference on

Management of data, New York, pp.241-252,

2003.

[12] Deng F. and Rafiei D., “Approximately

Detecting Duplicates for Streaming Data

Using Stable Bloom Filters,” in Proceeding of

the ACM SIGMOD Conference, New York,

pp. 25-36, 2006.

[13] Fan L., Cao P., Almeida J., and Broder A.,

“Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol,” IEEE/ACM

Transactions on Networking, vol. 8, no.3, pp.

281-293, 2000.

[14] Ficara D., DI Pietro A., Giordano S., Procissi

G., and Vitucci F., “Enhancing Counting

Bloom Filters Through Huffman-Coded

Multilayer Structures,” IEEE/ACM

Transactions on Networking, vol. 18, no. 6,

pp. 1977-1987, 2010.

896 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

[15] Geravand S. and Ahmadi M., “Bloom Filter

Applications in Network Security: A State-of-

the-Art Survey,” Computer Networks, vol. 57,

no. 18, pp. 4047-4064, 2013.

[16] Graham S., “Bh Sequences,” Progress in

mathematics, vol. 138, pp. 431-449, 1996.

[17] Guo D., Liu Y., Li X., and Yang P., “False

Negative Problem of Counting Bloom Filter,”

IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no. 5, pp. 651-664, 2010.

[18] Huang K., Zhang J., Zhang D., Xie G.,

Salamatian K., Liu A., and Li W., “A Multi-

Partitioning Approach to Building Fast and

Accurate Counting Bloom Filters,” in

Proceeding of 27
th

 International Symposium on

Parallel and Distributed Processing, Boston,

pp. 1159-1170, 2013.

[19] Laufer R., Velloso P., and Duarte O., “A

Generalized Bloom Filter to Secure Distributed

Network Applications,” Computer Networks,

vol. 55, no. 8, pp. 1804-1819, 2011.

[20] Li W., Huang K., Zhang D., and Qin Z.,

“Accurate Counting Bloom Filter For Large

Scale Data Processing,” Mathematical

Problems in Engineering, vol. 2013, pp. 1-11,

2013.

[21] Manjula G. and Brindha P., “A Survey on

Architectural Design of Bloom Filter for

Signature Detection,” International Journal of

Engineering Research and Technology, vol. 2,

no. 3, pp. 1-6, 2013.

[22] Martin G. and O‟Bryant K., “Constructions of

Generalized Sidon Sets,” Journal of

Combinatorial Theory, Series A, vol. 113, no.

4, pp. 591-607, 2006.

[23] Mitzenmacher M., “Compressed Bloom

Filters,” IEEE/ACM Transactions on

Networking, vol. 10, no. 5, pp. 604-612, 2002.

[24] Paynter M. and Kocak T., “Fully Pipelined

Bloom Filter Architecture,” IEEE

Communications Letters, vol. 12, no. 11, pp.

855-857, 2008.

[25] Rottenstreich O., Keslassy I., and Keslassy I.,

“The Variable Increment Counting Bloom

Filter,” in Proceeding of IEEE INFOCOM,

Orlando, pp. 1880-1888, 2012.

[26] Safi E., Moshovos A., and Veneris A., “L-

CBF: A Low-Power, Fast Counting Bloom

Filter Architecture,” IEEE Transactions on

Very Large Scale Integration Systems, vol. 16,

no. 6, pp. 628-638, 2008.

Brindha Palanisamy has received

her B.E. Degree in Electronics and

Communication Engineering Anna

University, Chennai in 2006 and

M.E. Degree in VLSI DESIGN from

Anna University, Coimbatore in

2009. She is currently doing her

research under Anna University, Chennai. Her current

research is on Network Intrusion Detection System.

Currently she is working as Assistant Professor

(Sr.Gr.) at Velalar College of Engineering and

Technology, Erode, India. She has published 5

research papers in various international journals. Area

of interest includes low power VLSI design, VLSI

signal processing and Network Security. She is the life

member of ISTE and IETE.

SenthilKumar Athappan has

received his B.E. Degree in

Electrical and Electronics

Engineering from PSG College of

Technology in 1995 and M.E.

Degree in VLSI Systems from

Regional Engineering College

(NIT), Trichy, in 2001. He completed Ph.D in the area

of VLSI Signal Processing from Anna University,

Chennai in 2009. Currently, he is the Professor and

Head, Department of EIE, Dr. Mahalingam College of

Engineering and Technology, Pollachi, India. He

presented more than 30 papers in various national and

international conferences. He published 13 papers in

International Journals in the area of Low power VLSI

design. His area of interest includes Embedded

System, VLSI Signal Processing, and Industrial

Automation.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kun%20Huang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jie%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dafang%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gaogang%20Xie.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Salamatian,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Liu,%20A.X..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6569024
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6569024

