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Abstract: Effective and concise feature representation is crucial for time series mining. However, traditional time series feature 

representation approaches are inadequate for Financial Time Series (FTS) due to FTS' complex, highly noisy, dynamic and non-

linear characteristics. Thus, we proposed an improved linear segmentation method named MS-BU-GA in this work. The critical 

data points that can represent financial time series are added to the feature representation result. Specifically, firstly, we propose 

a division criterion based on the quantile segmentation points. On the basis of this criterion, we perform segmentation of the 

time series under the constraint of the maximum segment fitting error. Then, a bottom-up mechanism is adopted to merge the 

above segmentation results under the maximum segment fitting error. Next, we apply Genetic Algorithm (GA) to the merged 

results for further optimization, which reduced the overall segment representation fitting error and the integrated factor of 

segment representation error and number of segments. The experimental result shows that the MS-BU-GA has outperformed 

existing methods in segment number and representation error. The overall average representation error is decreased by 21.73% 

and the integrated factor of the number of segments and the segment representation error is reduced by 23.14%. 
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1. Introduction 

With the rapid development of Internet technology and 

network communication technology, we have come to 

the 4G/5G era. Nowadays, the term Big Data has 

become increasingly familiar to people. People use this 

term to describe and define the huge amount of data 

produced in the age of information explosion. As of 

2012, the data volume has jumped from the TB level to 

the PB, EB, and ZB level. According to the research 

results of the International Data Corporation, the data 

volume in 2020 has increased by 44 times compared to 

the 0.49ZB of data generated globally in 2008. Among 

the massive data, one type of data is a set of random 

variables sorted by time. This situation is the result of 

observing a certain potential process at a given sampling 

rate at equal intervals. Accordingly, the use of time 

series data mining technology to find potential 

information and value in time series databases has 

attracted increasingly attention in the research. The 

research results have been successfully used in various 

fields, such as finance [7, 22] education, economics, and 

 
electronic information, Aerospace meteorology [18], 

and industry and medical [1, 3]. 

In the era of big data, how to efficiently represent a 

time series is necessary, especially in the face of current 

streaming data, which has strong real-time performance 

during the collection. We have difficulty operating on 

the original time series data. We need to retain the 

inherent important data features while reducing the time 

series dimension. Researchers have proposed many 

methods to reduce the dimensionality of the data, 

thereby reducing the cost of processing massive data. 

This type of method is called Piecewise Linear 

Representation (PLR), which is a simple and intuitive 

time series feature representation method, and has 

received the attention and adoption of many researchers. 

Such as the Discrete Fourier Transform (DFT) proposed 

by Pavlidis [13], discrete wavelet transform [3, 14, 15], 

and other methods can perform corresponding the 

feature representations to the original time series to a 

certain extent, and retain the primary data of the original 

time series feature. The segmented aggregation 

approximation method Piecewise Aggregate 
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Approximation (PAA) was proposed in [20]. Keogh’s 

[9] experiment shows that PAA is simple, intuitive, fast, 

and has a huge breakthrough compared with the DFT 

proposed by Pavlidis [13]. Hu et al. [6] also regarded 

inflection points, step points, and other related timing 

points that can reflect the trend of time series as turning 

points. Zhu et al. [24] used feature points as 

segmentation points for time series feature 

representation. Zhan et al. [23] proposed a new online 

segmentation algorithm based on the important turning 

points. The adding of these turning points can not only 

indicate the beginning and end of key transactions in 

related financial activities, but also reflect the important 

data characteristics of the original time series. To obtain 

a comprehensive measurement, this work will not only 

express the error from the segment feature but also 

evaluate the integrated factor from the number of 

segments and the error. 

In business intelligence applications, banking and 

financial industries, and industrial engineering, the data 

we face have the characteristics of continuous growth 

over time. The high-dimensional, dynamic, and 

uncertain characteristics of data hinder the development 

of time series data mining effectiveness. Therefore, the 

feature representation method has become an important 

means to improve the current time series data mining 

algorithm and the time series data preprocessing. We 

consider the complex, highly noisy, dynamic and non-

linear characteristics of Financial Time Series (FTS). 

Reducing the dimensionality of the data while retaining 

its inherent important trend characteristics and retaining 

some critical turning points is quite challenging. Finally, 

the financial time series processed by the representation 

method can be applied by the subsequent data mining 

method, and its rules and knowledge can be mined. 

Therefore, FTS feature representation is a critical data 

preprocessing tool and the basis for subsequent research 

on FTS data mining [5]. To solve these challenges, the 

linear representation method based on the median 

feature proposed in this work reflects the trend 

characteristics of FTS points. We combined the bottom-

up algorithm [9] to merge the above preliminary 

segmentation results and reduce the segmentation 

number satisfying the user-defined segmentation error. 

Moreover, we used the biological evolvability of the 

Genetic Algorithm (GA) [11] to select the segmentation 

results obtained from the previous merging operation as 

the current population to obtain better segmentation 

results. Furthermore, in the selection operator of the GA 

algorithm, we consider some critical data points of the 

FTS to retain some practical turning points in the final 

feature representation results, such as Turning-Points 

Important (TBP) and Turning-Points Based (TIP) in the 

paper [22]. Thus, making the representation results 

more realistic and laying a good foundation for 

subsequent data mining work. 

We summarize our contributions as follows: 

1. We propose a division criterion based on the quantile 

segmentation points. Based on this segmentation 

criterion, we can efficiently segment FTS. Moreover, 

it can reflect a dividing point of the current trading 

volume and indicate the critical time points in the 

related financial trading activities to provide users 

accurate guidance at the critical time. 

2. We use GA to optimize the segmentation 

representation of FTS. In the selection operator of the 

GA algorithm, essential data points that can represent 

FTS are added to the feature representation result. 

Thus, it makes the final feature representation results 

to be more realistic. 

The remainder of this paper is organized as follows: 

Section 2 describes the related works. Section 3 presents 

the problem description. Section 4 provides the details 

of our proposed algorithm. Section 5 presents the 

detailed comparative experiments. Section 6 draws the 

conclusion. 

2. Related Work 

The related research of time series data includes many 

types of research, such as time series feature 

representation [2], time series similarity search [4], time 

series classification, time series clustering, time series 

forecasting, and time series visualization [5, 19]. With 

such a huge database, researchers continue to propose 

new methods to reduce the dimensionality of the data, 

thereby reducing the cost of processing massive data. 

The approximate representation of the time series is a 

solution. Many scholars have proposed the method of 

the large segment representation PLR. The PLR 

methods can be divided into three categories according 

to different segmentation strategies as follows: 

a) Piecewise Linear Representation based on Top-

Down strategy (PLR-TD). For example, Keogh et al. 

[9] proposed the PLR-TP method based on a top-

down linear piecewise strategy. For the original 

(unsegmented) sequence, this method will stand in 

the “global” perspective, introduce a segmenting 

point to the current time series at a time, and repeat 

this process until the current segmented linear 

representation result has been satisfied up to the pre-

specified RS condition. Later, Ji et al. [8] combined 

the self-item-down segmentation strategy with 

finding Important Data Points (IDPs) in the time 

series to reduce the segmentation error while 

reducing the error of a single important point, which 

improves representation accuracy. 

b) Piecewise Linear Representation based on Sliding 

Window Strategy (PLR-SW). PLR-SW uses SW to 

initialize the first data point of the original time series 

entering SW as the starting point of the linear 

segment and then searches for the current linear 

segment according to the pre-specified RS conditions 

during the sequential scan of the time series. This 
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process is repeated at the original sequence's 

termination point until the original sequence's 

piecewise linear representation is completed. The 

PLR method based on the Sliding Window (SW) 

strategy lacks time series feature representation from 

a global perspective. Liu et al. [10] proposed the 

Feasible Space Window (FSW) and Stepwise 

Feasible Space Window (SFSW) methods, and they 

have greatly improved the calculation efficiency of 

segmentation. Yin et al. [21] defined the local 

maximum and local minimum points as turning 

points. 

GA is one of the earliest population-based random 

algorithms proposed in history [11]. It has been widely 

used. Sosiawan et al. [17] applied it in the hidden 

Markov model to obtain the best parameters of the 

model so that the model can obtain higher accuracy. 

Sheta et al. [16] uses GA to obtain the global optimal 

solution of the time series forecasting model, making 

the model more practical. Nayak used the global search 

ability of GA to get a better performance, which has 

been incorporated with the better generalization ability 

of a second order neural network [12]. Hence, how to 

make its solution more reliable is a problem we must 

pay attention to. What makes this algorithm reliable and 

able to estimate the global optimum for a given problem 

is the process of maintaining the best solutions in each 

generation and using them to improve other solutions. 

The GA used in our methods will be described in section 

4. However, the previous methods cannot effectively 

obtain essential data points and some more realistic 

turning points of FTS. Moreover, the methods 

mentioned in the Relative work chapter are based on the 

traditional segmentation strategy. Furthermore, some 

transaction keys are not retained for the FTS, and the 

optimization strategy is not used in the final segment 

representation results. So, we propose a division 

criterion based on the quantile segmentation points and 

use the GA to optimize the segmentation representation 

of FTS.  

3. Problem Description 

To better describe the problem of FTS feature 

representation, we first present a set of conceptual 

definitions and quantitative measurement. 

 Definition 1: Time series TS is a collection of data 

collected in chronological order, and it can be stated 

in the following form: for a given time series T = 

(𝑣𝑡1, 𝑣𝑡2, … , 𝑣𝑡𝑖, 𝑣𝑡𝑖+1, … , 𝑣𝑡𝑛) of length n, the goal 

is to divide T into a sequence of 

segments 𝑆1𝑆2 … 𝑆𝑘(1 ≤ 𝑘 ≤ 𝑛 − 1 ) and represent 

each segment with a straight line. Variable 𝑣𝑡𝑖 

represents the time series data point at the time i in 

TS, which is referred to as the time series point. 

Variable n is generally a certain constant that 

represents the number of time series points in TS. In 

streaming time series data, n is a positive integer that 

can indefinitely increase.  

In the FTS, the data characteristics of TS are reflected 

by all the data points in it. However, the impact of each 

data point on the overall data trend is not the same. 

When performing Linear Segmentation (LS) of TS, we 

need to pay special attention to the time series points in 

the TS that can reflect the trend of data changes not only 

to reduce the dimensionality of the original time series 

data but also to retain the basic data characteristics of 

the original data to the greatest extent. According to the 

analysis of FTS by Yin et al. [21] the local maximum 

and minimum points in the time series can be defined as 

turning points because these local extreme points 

indicate the beginning and ending moments of key 

transactions in related financial activities. These key 

transaction moments will guide users to choose the 

corresponding best transaction period. The turning point 

of time series also includes the diquantile segmentation 

points, which can reflect a dividing point of the current 

trading volume, and indicate the key time points in the 

related financial trading activities, to provide users 

accurate guidance at the key time. Next, we provide the 

basic definition of the data point of the time series. 

 Definition 2: The time series sorted by TS are marked 

as TSO={𝑣𝑡1, 𝑣𝑡2, … , 𝑣𝑡𝑗, 𝑣𝑡𝑗+1, … , 𝑣𝑡𝑛}, where 1 <

𝑗 < 𝑛, TSO is obtained after the TS is sorted from 

small to large by default. Our diquantile 

segmentation points are recorded as MSP (median 

split point) to facilitate the subsequent presentation. 

When n is an odd number, the diquantile 

segmentation point is defined as 𝑀𝑆𝑃2 =  𝑣𝑡𝑛+1

2

. 

When n is an even number, 𝑀𝑆𝑃2 =  𝑣𝑡
[

𝑛+1

2
]
, where 

it is expressed as rounding down to correspond to the 

time series points in the original time series. The 

original data points will not be lost in the result of our 

feature representation. We can effectively identify 

MSP from TS on the basis of the above definition. 

The identification process of the above median segment 

points is shown in Figure 1. Figure 1-a) shows the initial 

segmentation result. According to the above definition 

2, a quantile point is selected between segmentation 

points 1 and 2, as shown in Figure 1-b). Then, continue 

to select the next binary point 3, as shown in Figure 1-

c). The result is shown in Figure 1-d). In completing the 

above identification operations, we consider the stream 

data characteristics of TS. Thus we need to establish a 

corresponding SW to perform LS operation on TS 

flowing into Sliding Window (SW). Given that the 

above operations need to be processed according to the 

corresponding data standards, and we need to determine 

the segmentation metric in the segment representation, 

this work uses the Maximum Vertical Distance (MVD) 

between the actual data point and the best-fit straight 

line as the metric standard. In comparison with Linear 
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Regression (LR), Linear Interpolation (LI) is more 

efficient in processing data. Therefore, the subsequent 

segmentation operations in this work and related 

comparison experiments will use LI to complete the 

corresponding segmentation linear representation 

operations. 

 
a) The first step of segment operation. 

 
b) The second step of segment operation. 

 
c) The third step of segment operation. 

 
d) The fifth step of segment operation. 

Figure 1. Process of identifying median segment points. 

 Definition 3: Single Point Error (SPE) refers to the 

MVD between any time sequence point in TS and the 

fitted straight line. We suppose that the new time 

series  𝑇𝑆′ = {𝑣𝑡1
′, 𝑣𝑡2

′, … , 𝑣𝑡𝑖
′, 𝑣𝑡𝑖+1

′, …,  𝑣𝑡𝑛
′}. 

After completing the segmentation operation on the 

time series TS, the SPE at time 𝑡𝑖 in TS 𝑒𝑝𝑖 can be 

calculated as 𝑒𝑝𝑖 = |𝑣𝑖
′ − 𝑣𝑖|. 

 Definition 4: Maximum Error of Segmentation 

(MES) refers to the threshold value that the 

segmentation error of any segment obtained in TS. 

The MES cannot be exceed when LS is performed on 

the time series TS. After LS, the new segmented 

sequence can be expressed a 𝑇𝑆′ =
{𝑠𝑒𝑔1, 𝑠𝑒𝑔2, … , 𝑠𝑒𝑔𝑚} , and segi is a segmented 

feature representation result of the time series. 

According to the definition of SPE in Definition 3, 

we can calculate the segmentation error of 𝑠𝑒𝑔𝑖 as 

𝑒𝑟𝑟𝑜𝑟𝑆𝑒𝑔𝑖 = ∑ 𝑒𝑝𝑛
𝑞
𝑛=𝑝 . Thus the MES in the time 

series TS can be expressed as 𝑀𝐸𝑆 =
𝑚𝑎𝑥

𝑖=1…𝑚
𝑒𝑟𝑟𝑜𝑟𝑆𝑒𝑔𝑖. 

The definitions of SPE, Segment Error (ES), and MES 

play important roles in the PLR and are the evaluation 

indicators for the subsequent comparison experiment of 

PLR. The feature representation method proposed in 

this work is divided into three stages on the basis of the 

above definition. In the first stage, we use diquantile 

segmentation point as the segmentation point to perform 

segmentation of TS and use the MES to constrain the 

segmentation point selection. If the ES of the current 

segment exceeds the pre-given MES, the diquantile 

segmentation points are selected again as the 

segmentation point on the current segment. The above 

process is repeated until all segments meet the 

requirements of MES. In the second stage, we combine 

the idea of bottom-up merging and continuously merge 

adjacent segments under the constraint of preset 

segment merging errors. If the segment of the new 

segment indicates that the error exceeds the given error, 

we begin from the next segment start to continue the 

merge operation until all segments have completed the 

merge operation. In stage three, introducing the GA idea 

can let us use the segmentation result obtained in stage 

two as the parent group, and generate new offspring 

through selection, crossover, and mutation operators. 

We select the optimal solution from these offspring as 

the final result. The detailed work and related 

algorithms of each stage will be provided below. 

4. Algorithm Description 

This work proposes a new time series segmentation 

algorithm on the basis of the segmentation criteria and 

related definitions proposed in section 3. We take the 

median in statistics as the dividing point, which is the 

representative value of the overall unit flag value 

determined by its position. The median is the number in 

the middle that can measure the central tendency of the 

data. When the median is applied to the FTS, it can dig 

out its hidden internal information and trends. Based on 

previous research, we selected SPE, ES, and MES 

evaluation indicators in the PLR. An integrated factor of 

the number of segments and the error of segment 
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representation has been added. Choosing these 

indicators can help us describe the accuracy of the 

algorithm in PLR. The method also combines the 

traditional bottom-up strategy to achieve a concise 

representation result and, greatly improve the 

segmentation efficiency of the algorithm. Finally, we 

added the GA on the basis of the above-mentioned 

segmentation merge. We use the idea of a greedy 

method when merging adjacent segments. When the 

current segmentation error is less than MES, we 

continue to merge adjacent segments until the 

requirements of the MES are satisfied. Then, we merge 

from the next segment. The optimization strategy of the 

greedy method can easily fall into the local optimal 

solution and may not be able to obtain the global optimal 

solution from the global aspect; however, the GA can do 

that. We will further optimize the results of the previous 

step after segmentation through GA. After the selection, 

crossover, mutation, and combination operators are 

chosen, we have a low segmentation representation 

error based on the optimization of the previous step. A 

better performance on the integrated factor of segment 

number and error is obtained. Detailed algorithm 

description and experimental analysis will be provided 

in sections 5 and 6. 

Algorithm 1: MS-BU-GA Algorithm phase 1: LS algorithm 

based on diquantile segmentation points 

Input: time series (𝑇𝑆 = {𝑣0, … , 𝑣𝑖 , … 𝑣𝑗}) , MEP =δ, MES=ε 

Output: segmenting points(𝑠0, 𝑠2 … , 𝑠𝑖). 

1 Initial: start = 𝑣0,end = 𝑣𝑗 , segList = [𝑣0, 𝑣𝑗] 

2 midnum = getMedian(TS, start, end) 

// obtain the median index of the current segment 

3 segList.add(midnum) 

// adds the resulting median to the segmentation list 

4 Ts_left = TS[start, midnum] 

// obtain the segment to the left of the median segment 

point 

5 Ts_right = TS[midnum, end] 

// obtain the segment to the right of the median segment 

point 

6 error_left = calculateError(Ts_left) 

// the left segmentation error is obtained 

7 error_left = calculateError(Ts_right) 

// the right segmentation error is obtained 

8 if (error_left >ε):  

9    segList.add(getMMP(Ts_left, start, midnum, δ, ε)) 

10 end If 

11 if (error_right >δ):  

12    getMMP(Ts_right, midnum, end, δ, ε)) 

13 end If 

14 return segList 
 

The above description is the segmentation part. The 

time series TS is divided into several segments on the 

basis of the given MEP and MES. Each segment 

satisfies the constraint of MES. First, all the diquantile 

segmentation points (median) of the time series are 

searched by the second row of the above algorithm. In 

the current segList (segment point list), we can obtain 

the segments composed of the current segment point, 

the initial point, and the endpoint, as Ts_left and 

Ts_right according to the index of the segment point, as 

shown in line 4. In the fifth line of the algorithm, we can 

repeat the above operations on Ts_left and Ts_right 

through recursion until we find all the diquantile 

segmentation points that meet the conditions. 

 
a) The results before merging. 

 
b) The results after merging. 

Figure 2. Process of piecewise merge. 

In Figure 2, we can combine the adjacent segments 

according to the requirements of the overall 

representation error combined with the bottom-up 

strategy, to reduce the number of segments. For example, 

the SWAB method combined with the bottom-up 

strategy is better than the SW method in the segment 

representation results. Figure 2-a) demonstrates the 

segment representation result obtained by the above 

segmentation stage. Every two consecutive segment 

points form a segment with each other, which will 

produce too many numbers of segment points and fail in 

simplifying the original time series. Segments Seg_1, 

Seg_2, and Seg_3 in Figure 2-a) become Seg_1 in 

Figure 2-b) after merging. Seg_5 and Seg_6 become 

Seg_3 in Figure 2-b) after merging. Based on the 

segmentation representation result of phase 1, we carry 

out the merging operation of adjacent segments to 

ensure that the segment representation result more 

concise under the constraints of the MEM (maximum 

error of merge segment). In combination with the 

bottom-up strategy, we have simplified the 6-segment 

segmentation result from the first segmentation to the 3-

segment segmentation result shown in Figure 2-b). We 

will describe the merge operation in phase 2. 
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Algorithm 2: MS-BU-GA Algorithm phase 2: Merging stage 

based on bottom-up strategy 

Input: segmenting points(𝑠0, … , 𝑠𝑖 , … 𝑠𝑗), TS, MEM=β, 

Output: segList (𝑣0, … , 𝑣𝑖 , … 𝑣𝑗) 

1 Initial: i = 1, start = 𝑠0, segList_merge=null 

2 segList_merge.add(start) //add segment starting 

point 

3 while i < segList.length: //run the merging operation  

4   error_merge = 

mergeSeg_error(start,segList[i+1]) 

  // calculate the combined segmentation error 

5   if error_merge < β:  

6     end = TS[TS.index(end) + 1] 

7   else: 

8     seg_merge.add(end) // 

9     start=TS[i+1] 

     // change the merge operation starting point 

10    end if 

11   i += 2  

12 end while 

13 return segList_merge 

 

Phase 2 takes the segmentation point list after the 

segmentation operation in Table 1 as input. Under the 

constraints of the MEM specified by the user, we 

perform segmentation merge optimization operations. 

The third row calculates the segmentation error of the 

new segment after merging two adjacent segments. 

Then, we conduct error judgment. If the ES of the new 

segment is less than the Maximum Error of Merged 

segment (MEM), then continue to merge forward, 

otherwise, as shown in line 5. We continue to find 

segment points in segList until the ES of current 

segment is greater than the MEM, as shown in lines 7 

and 8. The above process is repeated until all segments 

are merged. In comparison with the traditional method 

Sliding Window and Bottom-up (SWAB), the method 

starts to merge operation from adjacent segments. 

Nevertheless, the merge operation of SWAB starts from 

adjacent timing points. Therefore, this method can not 

only retain the segmentation results after the 

segmentation operation of phase 1 but also improve the 

feature representation efficiency of the overall 

algorithm.  

Based on the segmentation results in phase 2, we use 

the evolvable nature of GA to optimize the segmentation 

results. The specific algorithm description will be 

provided in phase 3. 

Algorithm 3: MS-BU-GA Algorithm phase 3: GA optimization 

stage 

Input: segmenting points (𝑠0, 𝑠1 … , 𝑠𝑖 , … 𝑠𝑗 , …) , GEN = γ 

// γ is the max iteration 

Output: segList_GA (𝑣0, 𝑣1 … , 𝑣𝑖 , … 𝑣𝑗 , …) 

1 geneticAlgorithm(segList, G): 

2 num = getParentNum(segList.length)  

// obtain the number of parent generations 

3 ParentList = getVector(segList,num)  

// obtain the parent solution vector 

4 parent1 = random.randsample(ParentList,num))  

//one half of the parent solution vector is chosen at 

//random as parent 1 

5 parent2 = ParentList.remove(parent1)  

//the remaining vector of parentList is chosen as 

//parent2 

6 random = (selection,cross,mutation,combine)  

//randomly select one from the four operator 

7 segList_GA = random(parent1,parent2) 

8 if(segList.length == 1 or G > γ): // obtain the best 

//child generation 

9 return segList 

10 G == G + 1 

11 geneticAlgorihtm(segList, G) 
 

The input of the above-mentioned method is the 

segmented point list from the phase 2. First, the length 

of the currently segmented point list segList is used to 

determine the number of initial solution vectors of the 

initial population, as shown in the second row of Table 

3. Then, we divide the above-mentioned initial parents 

into two equally for genetic operator operations as 

shown in the 4th and 5th lines. The genetic operators we 

choose include natural selection, crossover, mutation, 

and combination operators.  

 

 

Figure 3. The flow chart of GA. 

We select operators from the four operators based on 

random probability to directly perform genetic 

operations on the two parents to produce better offspring. 

The selection strategy is to select the offspring that 

meets the requirements according to the segmentation 

error standard. If the offspring produced is better than 

the parent, then the parent is discarded, otherwise, the 

current parent is retained for the next round of 

inheritance. The above operations are repeated until one 

offspring is left. Then, the current offspring is the 

optimal offspring that meets the requirements. The 

detailed flowchart of the algorithm is shown in Figure 3. 

5. Experiment and Analysis 

In this section, we will conduct a comprehensive 

experimental analysis of our methods, MS-BU, MS-

BU-GA, and FSW methods, SFSW methods, and 



An Improved Quantile-Point-Based Evolutionary Segmentation Representation ...                                 879 

 

OPLR-TP methods. In order to make more detailed 

comparison, MS-BU-GA phase 2 is named MS-BU 

(median segmentation based bottom-up). The FSW, 

SFSW, and OPLR-TP methods are online methods. The 

FSW and SFSW algorithms are improved methods in 

terms of the global evaluation of the entire time series 

of the SW algorithm, and they are faster than the SW 

method and more reliable. In the subsequent 

experiments, we consider three indicators, the number 

of segments, the representation error, and the product of 

their standardized results, as the experimental standards 

to compare other methods with the MS-BU-GA method 

to evaluate the LS efficiency. 

5.1. Experimental Setting 

In the experiment, the experimental data set we selected 

includes the historical data of the US S&P 500 index 

and the Shanghai and Shenzhen 300. In the subsequent 

comparative experimental analysis, SAP500 will be 

used to represent the closing price in the historical data 

of the US S&P 500, and the CSI300 is used to represent 

the closing price in the historical data of CSI 300. This 

initiative is carried out to facilitate the description of the 

data set. The detailed description is provided in Table 1. 

The setting of MES will affect the performance of the 

algorithm. For example, all algorithms will have n-1 

segments when we give a small MES error, where n is 

the overall length of the current data. When MES is 

provided with a large value, all algorithms will have a 

segment. If we use the same fixed MES value for the 

different data sets for the subsequent experiments, it 

may not be possible for the LS to be reasonably 

evaluated and analyzed, considering the certain 

differences in the different data sets in our experiments. 

For example, the maximum error segmentation of two 

is acceptable for a time series with a value from 1 to 100. 

However, such an MES is not acceptable for a time 

series with a value ranging from 50 to 70. If the MES is 

set to 30% for a time series with values ranging from 50 

to 70, then the maximum percentage segmentation error 

MEPS=(70-50)*30%=6 in our algorithm. Accordingly, 

we use the relative MES in our experiment which is the 

percentage of MES in the range of time series values, 

named the Maximum Error Percentage (MEPS) rather 

than absolute MES because the absolute MES is 

invariable. The error of time series representation in 

different data sets cannot be effectively calculated by 

using the same MES for different data sets.  

Table 1. Data set description. 

Name Length Description 

SAP500 7603 Closing price in the historical data of the U.S. S&P 

500 Index 

CSI300 4515 Closing price in the historical data of CSI 300 

SAPO 7603 Opening price in the historical data of the US S&P 

500 Index 

CSIO 4515 Opening price in the historical data of CSI 300 

Given that the time series is sensitive to errors, we 

must select the appropriate MEPS for each different data 

set. This operation is necessary to ensure that the 

number of segments is within a reasonable range, 

thereby eliminating the influence of other unrelated 

parameters on the result of the linear representation. We 

illustrate the parameter MEM (maximum error of merge 

segment) in phase 2. We will set the numerical value of 

MEM to an integer multiple of MEPS to ensure the 

reasonableness of the subsequent experimental results 

of MS-BU, where N is set to a positive integer not less 

than one. Hence MEM is defined as MEM=N×MEPS. 

The MES percentage in the comparison method OPLR-

TP is defined as MEM=N×MEPS, where n={1, 2, 3,…N} 

and N is a positive integer. We will conduct the 

corresponding comparative experiments on the MS-BU 

method and the three comparative methods on the above 

four data sets. 

5.2. Segmentation Comparison Experiment 

Combined with Bottom-Up Merge Strategy 

In this section, we will use the FSW, SFSW, and OPLR-

TP methods as comparison methods in the data set 

shown in Table 1 to conduct comparative experiments. 

Then we calculate the Normalized Representation 

Errors (NREs) corresponding to different methods. We 

set MEPS as {3*10%, 3*20%, 3*30%, 3*40%, 3*50%} 

to objectively evaluate the representation errors (RE) of 

different methods. We set the MEM of the MS-BU 

method in the second stage of the merge operation as 

{3*10%, 3*20%, 3*30%, 3*40%, 3*50%} which 

constitutes five sets of PLR thresholds based on 

different MESP and MEPS and 

MEM{(10%,3*10%,8*10%),(20%,3*20%,8*20%),(30

%,3*30%,8*30%),(40%,3*40%,8*40%),(50%,3*50%,

8*50%)}.  Then, the representation error comparison 

experiments based on the threshold conditions set above 

are carried out on the data set shown in Table 1. 

5.3. Representation Error and Segment Number 

Comparison Experiment 

On the basis of the data set in Table 1, we conduct 

comparative experiments based on the experimental 

parameters provided in section 5.2. In the comparative 

experiment, we use RE to measure the representation 

accuracy of different representation methods. In the 

comparative experiment, we use RE to measure the 

representation accuracy of different representation 

methods. We set the NARE of FSW method as one in 

condition on MESP=10% to have clear results. We 

standardize the representation errors on the basis of the 

five groups of different thresholds, and obtain the NRE 

of each method in the current data set by using FSW, 

SFSW, and OPLR-TP as the comparison methods. The 

error comparison results are shown in Table 2. 
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Table 2. Representation error based on different thresholds. 

SM MESP MEPS MEM ARE NARE 

FSW 10%   247.1067 1 

SFSW 10%   198.3730 0.7798  

OPLR-TP 10% 3×10%  231.0596 0.9083  

MS-BU 10%  8×10% 209.1565 0.8222  

FSW 20%   483.7300 1.9897  

SFSW 20%   442.4271 1.7392  

OPLR-TP 20% 3×20%  362.7395 1.4260  

MS-BU 20%  8×20% 283.8535 1.1159  

FSW 30%   850.5825 3.4946  

SFSW 30%   677.4146 2.6630  

OPLR-TP 30% 3×30%  421.5392 1.6571  

MS-BU 30%  8×30% 340.1663 1.3372  

FSW 40%   1024.3371 4.3726  

SFSW 40%   858.8847 3.3764  

OPLR-TP 40% 3×40%  508.1452 1.9976  

MS-BU 40%  8×40% 391.7257 1.5399  

FSW 50%   1289.6974 5.2916  

SFSW 50%   1071.4184 4.2119  

OPLR-TP 50% 3×50%  544.2596 2.1395  

MS-BU 50%  8×50% 420.3861 1.7012  

 

The ARE column in Table 1 is the average 

representation error of the above-mentioned four 

methods on the four different data sets. We set the 

NARE of the FSW method as one in condition on 

MESP=10% and standardize the ARE of the remaining 

methods to intuitively reflect the changes in the ARE 

under different threshold limits. According to the results 

in Table 1, the NARE of the MS-BU method slightly 

increases with the increase in MESP under different 

MEM constraints. The comparison results of the above-

mentioned four methods under different MESP are 

shown in Figure 4. The MS-BU method has the smallest 

NARE under different MESP conditions. When 

MESP=50%, the NARE gap with other methods is the 

largest. In comparison with the FSW and SFSW 

methods, the MS-BU method uses MEPS to constrain 

the segmentation in the linear segment representation. 

In addition, the bottom-up merge operation is added on 

the basis of the segmentation result, and the 

predetermined MEM is used. The initial segmentation 

results are optimized. The number of segments is 

reduced and better accuracy can be maintained. 

 

Figure 4. ARE under different segmentation error conditions. 

5.4.Comparative Experiment Based On GA 

Optimization Stage 

In this part, we will use the GA to further optimize our 

results on the basis of the above-mentioned segmented 

representation results that combine with the bottom-up 

merging strategy. A detailed description of the 

algorithm is provided in phase 3. In section 4, the MS-

BU method uses the greedy strategy. We added a GA 

operation that can search for the global optimal solution 

in the overall segmentation result to ensure that the MS-

BU method achieves better performance in segmented 

representation. In particular, we introduced the 

important perception point based on the turning point [8] 

as the segmentation point and added it to the 

optimization goal in the mutation operation of the 

genetic operator in GA. When adding such points, the 

reduction percentage in the ES is greater than the 

increase in the number of segments. The crossover and 

selection operators in the genetic operator can ensure 

that the number of segments selected after the parent 

crossover operation is not higher than the parent. The 

overall segmentation error of the offspring is better than 

that of the parent. The MS-BU-GA method can do better 

in the overall performance of segment representation 

error and the number of segments. Based on this 

optimization goal, the results of our detailed comparison 

experiments on the different data sets illustrated in 

Table 1 are showed in Figure 5. 

In the results shown in Figure 5, panel (e) is based on 

the average representation error of different methods on 

various data sets, and panel (f) is the product of the 

standardized segment number and error. The NRE 

results of different methods on four different data sets 

are shown in Figures 5-a) to 5-d). With the continuous 

increase in the maximum error percentage, the 

representation errors of the above four methods will 

increase. The changes between the FSW and the SFSW 

methods are more obvious. When the MESP is =30% on 

the SAP500 closing price data set, the representation 

error of the SFSW and FSW methods has significantly 

exceeded that of Online PLR based on Turning Points 

(OPLR-TP) and MS-BU. When the MESP is=50% in 

Figures 5-c) and 5-d), it means that the error is better 

than OPLR-TP and MS-BU. When the MESP is=10%, 

the representation error of MS-BU-GA is better than 

those of OPLR-TP and MS- BU on the CSI300 closing 

price and CSI300 opening price data sets as shown in 

Figures 5-c) and 5-d). Under the constraint of small 

error, the two methods of FSW and SFSW have better 

segmentation performance; however, the representation 

error increases more than the other two methods with 

the increases in the maximum error percentage. 

Therefore, the MS-BU, MS-BU-GA, and OPLR-TP 

methods have good adaptability to errors. Meanwhile, 

the MS-BU-GA method shows the smallest increase in 

error under the relatively relaxed maximum error 

percentage limit, which is better than the other methods. 

To evaluate the overall performance of the above-

mentioned four methods on different datasets and 

intuitively reflect the overall situation of the four 

methods, we summarize the representation errors of the 

above four methods in the last four data sets according 
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to the different threshold conditions. Then, we obtain 

the average representation errors on different data sets. 

We set the representation error of the FSW method in 

different data sets to one, and standardize other methods 

to obtain the results shown in Table 3. Moreover, we 

take the same operation on the segment numbers, and 

the results are shown in Table 4. 

 
 

a) NRE results on SAP500 close price. b) NRE results on SAP500 open price. 

  
c) NRE results on CSI300 close price. d) NRE results on CSI300 open price. 

 
 

d) NARE results on CSI300 and 

SAP500. 

e) NRE multiplication segmentation 

results on CSI300 and SAP500. 

Figure 5. Comparison of NRE and comprehensive performance 

on different data sets. 

Table 3. Average normalized representation error of different 
methods. 

SM FSW SFSW OPLR-TP MS-BU MS-BU-GA 

SAP500 1 0.67 0.37 0.26 0.19 

CSI300 1 0.85 0.74 0.63 0.46 

SAPO 1 0.72 0.30 0.27 0.27 

CSIO 1 0.85 0.70 0.62 0.59 

Average 1 0.77 0.53 0.44 0.38 

 

 

Table 4. Average normalized number of segments of different 

methods. 

SM FSW SFSW OPLR-TP MS-BU MS-BU-GA 

SAP500 1 1.45  2.35  2.91  3.01 

CSI300 1 1.45  1.24  1.29  1.39 

SAPO 1 1.50  2.50  2.59  2.67 

CSIO 1 1.35  1.10  1.13  1.22 

Average 1 1.44  1.80  1.98  2.07 

 

According to the results in Tables 3 and 4, the MS-

BU-GA method has the lowest number of segments, and 

the average representation error is reduced by 62 percent 

compared with the FSW. Meanwhile, the average 

normalized number of segments is increased by 107 

percent. When performing the crossover operation, 

some important turning and perception points are added 

to the current parent to improve the accuracy of the 

representation. In terms of the overall number of 

segments, the FSW method has the lowest average 

number of segments, while the MS-BU-GA and OPLR-

TP methods have more segments under the condition of 

the same segmentation constraints. By contrast, the MS-

BU-GA method has the largest number of segments. In 

comparison with the MS-BU method, the number of 

segments is increased by 4.55%, which is less than the 

error reduction percentage of 13.63%, especially on the 

CSI300 data set. The overall average representation 

error combined with the GA optimization is 26.98% 

lower than the bottom-up merge result. However, the 

number of segments only increases by 7.75%. The GA 

can optimize the overall performance of the MS-BU 

method in the number of segments and the segment 

representation error. MS-BU-GA is 21.73% higher than 

the FSW in terms of the product result of the overall 

standardization error and the overall standardization 

segment number. A great improvement can be observed 

in the overall indicator of the error during the production 

as well as the error and the number of segments. 

6. Conclusions 

In this work, we first provide a basic segmentation 

criterion based on the diquantile point in the FTS. On 

the basis of this segmentation criterion, we propose an 

improved quantile-point-based evolutionary 

segmentation online PLR method MS-BU-GA based on 

a bottom-up mechanism. Experiments show that this 

method can perform efficiently PLR of FTS and make 

the result have higher representation accuracy. We 

conducted the corresponding comparative experiments 

based on a large number of different data sets under the 

condition of different representation errors that prove 

the advantages of diverse algorithms in the data set. The 

experimental results show that the FSW and SFSW 

methods always produce fewer segments and higher 

representation efficiency when given the same 

constraint MESP. By contrast, MS-BU-GA has higher 

representation accuracy when it has more segments 

while retaining the special points of the FTS such as the 

diquantile points. The OPLR-TP and MS-BU-GA 
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methods have better stability and good robustness when 

given a relatively loose error. The MS-BU-GA method 

has better performance in the two standards of segment 

representation error and segment number. In future 

work, we will consider tertiles or quartiles as split points, 

not just diquantile. Moreover, we will also consider 

extending the segmentation method to other types of 

time series. Furthermore, we will pay more attention to 

the calculation time of the algorithm in the future. 

Finally, we will do some data mining work based on the 

time series feature representation results, such as 

classification and prediction. 
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