
 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009196

Empirical Validation of Requirements

Management Measures

Mahmoud Khraiwesh
1
 and Asim El Sheikh

2

1
Faculty of Science and Information Technology, Zarqa Private University, Jordan

2
Faculty of Information System, Arab Academy for Banking and Financial Sciences, Jordan

Abstract: Requirements management measures help organizations to understand, control and assess requirements

management process. This paper validates empirically a set of requirements management measures. The measures were

defined for the five specific practices of requirement’s management key process area in capability maturity model integration

by applying the goal question metrics paradigm to the five specific practices. We have applied the defined measures on three

information systems using historical data. Then, for each information system some hypotheses have been followed to confirm

the validity of the defined measures empirically.

Keywords: Requirements management, measures, measures validation, CMMI, GQM.

Received August 19, 2007; accepted December 9, 2007

1. Introduction

The only way to improve any process is to measure

specific attributes of the process, develop a set of

meaningful metrics based on these attributes, and then

use the metrics to provide indicators that will lead to

strategy for improvement. Software measurement

plays an important role in understanding and

controlling software development practices and

products [11]. Measurement is a mechanism for

characterizing, evaluating, and predicting for various

software processes and products [2].

Requirements are the foundation of the software

development process. Carefully developed software

requirements are a key issue for project success [10].

Since requirements often change, even during

development, it is important to control the continuing

definition of requirements as they change throughout

the software life cycle to be able to anticipate and

respond to requests of change [18]. Our rationale for

concentrating on this early phase of the software

process was that problems in this area have a profound

effect on system development costs and functionality

[22].

Measurement is the process by which numbers or

symbols are assigned to attributes of entities in the

real world in such a way as to characterize the

attributes by clearly defined rules (and scales) [7].

Measurement is important for three basic activities:

understanding, control and improvement [6]. Reasons

for measuring are: to assess achievement of quality

goals, to determine status with respect to plans, to gain

understanding of processes, products, resources, and

environments, to establish baselines for comparisons

with future assessments and track improvement efforts

[15] .

Software measurement is currently in a phase in

which terminology; principles and methods are still

being defined and consolidated. We should not expect

to find quantitative laws that are generally valid and

applicable, and have the same precision and accuracy

as the laws of Physics, for instance. As a consequence,

the identification of universally valid and applicable

measures may be an ideal, long term research goal,

which cannot be achieved in the near future [5].

Software engineering is not grounded in the basic

quantitative laws of physics. Direct measure such as

voltage, mass, velocity, or temperature, are

uncommon in the software world. Because software

measures and metrics are often indirect, they are open

to debate [17].

Lamsweerde [12] conducted a survey of over 8000

projects from 350 US companies and revealed that

one third of the projects were never completed and

one half succeeded only partially, that is, with partial

functionalities, major cost overruns, and significant

delays. When asked about the causes of such failures,

executive managers identified poor requirements as

the major source of problems (about half of the

responses) - more specifically, the lack of user

involvement (13%), requirements incompleteness

(12%), changing requirements (11%), unrealistic

expectations (6%), and unclear objectives (5%). On

the European side, a recent survey of over 3800

organizations in 17 countries similarly concluded that

most of the perceived software problems are in the

area of requirements specification (greater than 50%)

and requirements management (50%).

Empirical Validation of Requirements Management Measures

197

Hall et al. [9] carried out a case study of 12

companies at different levels of capability as

measured by the CMM. They discovered that, out of a

total of 268 development problems cited, almost 50%

(128) were requirements problems. Organizations

from industry, government, and the Software

Engineering Institute (SEI) joined together to develop

the CMMI Framework, a set of integrated CMMI

models.Two kinds of materials are contained in the

CMMI model [1]:

• Materials to evaluate the contents of the processes-

information that is essential to technical, support

and managerial activities.

• Materials to improve process performance-

information that is used to increase the capability of

the organization's activities.

The Goal Question Metric (GQM) paradigm to

process and metrics was developed by Basili and

Weiss [3] as a technique for identifying meaningful

measures for any part of the software process. It has

proven to be a particularly effective approach to

selecting and implementing measures.

In our previous work [10] we analyzed the five

specific practices defined in the requirements

management Key Process Area (KPA) of the CMMI

[19]. By means of the GQM paradigm [2], we defined

nearly 70 measures.

This paper validates empirically the defined

measures in [10] for the five specific practices of

requirements management KPA in CMMI-SW (staged

representation) model and confirms that they really

measure the five specific practices. The five specific

practices are: obtain an understanding of

requirements, obtain commitment to requirements,

manage requirements changes, maintain bidirectional

traceability of requirements, and identify

inconsistencies between project work and

requirements.

The remainder of the paper is organized as follows.

Section 2 describes measurement theory. Section 3

describes the related work on measures validation.

Section 4 describes the validity of the defined

measures empirically. Finally, section 5 presents

conclusions and future research.

2. Measurement Theory

Software measurement is concerned with deriving a

numeric value for an attribute of a software product or

process. By comparing these values to each other and

to standards that apply across an organization, one

may be able to draw conclusions about the quality of

software or software process.

Measurement is not solely the domain of

professional. We use it in every day life. Price acts as

a measure of values of an item in a shop. When

making a journey, we calculate distance, choose our

route, measure our speed, and predict when we will

arrive at our destination. So measurement helps us to

understand our world, interact with our surroundings

and improve our lives.

Measurement is the process by which numbers or

symbols are assigned to attributes of entities in the

real world in such a way as to describe them

according to defined rules [6, 20]. Software

measurement is concerned with deriving a numeric

value for some attributes of product or process. By

comparing these values to each other and to standards

that apply in the organization we can conclude the

quality of the product or process [21].

Measurement captures information about attributes

of entities. An entity is an object (such as person or a

room) or an event (such as a journey) in real world.

We want to describe the entity by identifying

characteristics that are important to distinguishing one

entity from another. An attribute is a feature or

property of an entity, the area or color of a room and

the cost of a journey. When we describe entities by

using attributes, we often define the attributes using

numbers or symbols. Some software engineers claim

that important attributes like dependability, quality,

usability and maintainability are simply not

quantifiable; we prefer to try to use measurement to

advance our understanding of them [6].

Formally, we define measurement as mapping from

empirical world to formal, relational world.

Consequently, a measure is the number or symbol

assigned to an entity in order to characterize an

attribute by this mapping. We begin in the real world,

studying the entity. Thus the real world is the domain

of the mapping and the mathematical world is the

range.

The purpose of performing the mapping is to be

able to manipulate data in the numerical system and

use the result to draw conclusions about the attribute

in the empirical system. We refer to our measuring

mapping as a measurement scale. We classify

measurement scales as one of the five major types:

nominal, ordinal, interval, ratio, and absolute [6].

Although some companies have introduced

measurement programs, most organizations still don’t

make systematic use of software measurement.

Because the software processes are poorly defined and

controlled, and are not sufficiently mature to make use

of measurements. Another reason is that there are few

established standards in this area.

Software metrics may be either predictor metrics

used to predict product attributes or control metrics

used to control the software process [21]. In software

there are three classes of entities and attributes we

wish to measure.

• Processes: are collections of software-related

activities.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009198

• Products: are any artifacts, deliverables or

documents that result from a process activity.

• Resources: are entities required by a process

activity (example: documentation from previous

phase).

Within each class of entity, we can distinguish

between internal and external attributes.

• Internal attributes of a product, process or

resources: are those that can be measured purely in

terms of the product, process or resources itself.

• External attributes of a product, process or

resources: are those that can be measured only with

respect to how the product, process or resources

relates to its environment.

It is impossible to measure software quality attributes

directly. Quality attributes such as maintainability,

understandability and usability are external attributes

that relate to how developers and users see the

software. They are affected by many factors and there

is no simple way to measure them [21]. The

relationship between the internal and the external

attributes should be clear and validated. (Example,

stability of requirements is an external attribute, while

number of requirements changes is internal attributes).

 Direct measurement of an attribute of an entity

involves no other attributes or entity (length of source

code measured by lines of code, duration of testing

process measured by elapsed time in hours). Indirect

measurement of an attribute of an entity involves

other attributes or entity.

3. Measurement Validation

Each attribute in the empirical system corresponds by

the measurement to an element in a number system, so

that by studying the numbers, we learn about the real

world. Thus, we want the mapping to preserve the

relation. This rule is called the representation

condition, because the measure represents the attribute

in the numerical world. The representation condition

asserts that a measurement mapping M must map

entities into numbers and empirical relations into

numerical relations. Any measure that satisfies the

representation condition is a valid measure. We can

say that our intuition about the way the world works is

the starting point for all measures. [6]. Measurement

validation means that measures must represent

accurately those attributes they claim to quantify [11].

If X is taller than Y our observation reflects that X is

taller than Y, we can say that “taller than” is the

empirical relation and the numerical relation is >.

When we say X height is 91 centimeters and Y height

is 71 centimeters, we really mean that we are

measuring height by mapping each person into

centimeters. We can say that X is taller than Y if and

only if M(X) > M(Y), which is satisfied because in the

numerical world M(X) = 91 and M(Y) = 71,

representation condition is satisfied. Suppose that in

the numerical world M(X) = 70 and M(Y) = 90, the

representation condition is not satisfied, because it

does not correspond to what happen in the real world.

Several definitions of measures validations are

present in the literature. The most recognized is the

internal-external validation. Fenton and Pfleeger [6]

define measure validation as: validating a software

measure is the process of ensuring that the measure is

a proper numerical characterization of the claimed

attribute by showing that the representation condition

is satisfied. This definition is also known as internal

validation, which is validation in a narrow sense.

Theoretical validation involves the intuitive

understanding of the attribute we want to measure [4].

Researchers assume that the theoretical validation is

not sufficient; they expect that the measure is part of

the prediction system [6]. No theoretical model can

guarantee the validity of a measure, the measure must

be validated empirically [4].

External validation is done by showing that an

external attribute is function of an internal one. We

prove that an external attribute X verifies the equation

X=f(Y) where Y is an internal attribute [13].

The same concepts of internal and external

validation are used in the definition of theoretical and

empirical validation [11]. Theoretical validation

allows us to say whether a measure is valid with

respect to some defined properties as the list defined

by Fenton and Pfleeger. External attributes are mostly

indirect measures and internal attributes are mostly

direct measures.

When we perform an empirical validation we

verify that measured values of attributes are consistent

with values predicted by models involving the

attribute [11]. Empirical validation is based on the

proof that internal attributes are connected to external

attributes. In other words, with empirical validation

we prove that a measure is useful, i.e., that it is

connected to a goal [4]. Connection between internal

and external attributes can only be determined

empirically [6]. The measures which are defined for

external attributes can only be validated empirically

[14]. No requirements management measures have

been validated, and only few empirical studies have

been performed in the area of RM measures [14].

The goal or the relation can be expressed as a

hypothesis and then test the hypothesis to see if the

data we collect will confirm or refute the hypothesis

we have stated [6]. A hypothesis proposes a specific

relationship between a measure and some useful

attribute or the supposition which explains the

behavior you want to explore; we must conduct an

experiment to test the hypothesis. Whenever possible,

we should state the hypothesis in quantifiable terms,

so that it is easy to test the hypothesis. A hypothesis

Empirical Validation of Requirements Management Measures

199

captures our intuitive understanding of the studied

phenomena [5].

The entity which is related to our work is the

requirements management process. This entity can

have several attributes, the ones we would like to

measure are understandability, commitment, manage

requirements, traceability, and consistency, which

determine whether the general goals of the

requirements management KPA are reached. These

are external attributes and the measures defined for

these attributes can only be validated empirically.

3.1. Fuzziness in Measures Validation

It is not possible to theoretically validate a measure

without performing an empirical study, because the

representation condition can only be proven

empirically [6]. Theoretical validation of the measure

is often not possible and a large number of measures

have never been subject to an empirical validation [5].

The proof that the representation condition is

satisfied can only be empirical by its nature [16, 24].

The validity of measures connected to many external

attributes can only be performed by external

validation [13]. Empirical validation requires a large

number of data and it is not possible for some

measures [14].

The empirical validation would require a large

amount of data and rarely be conducted in the proper

way. Empirical validation of some measures is not

possible. Few measures have been validated because

there is no widely accepted way of validating

measures [23, 16, 24, 14]. This situation has

frequently led to some degree of fuzziness in the

measures validation [5]. Measures validation is

extremely difficult and one should not expect a single

researcher to provide, within one study, a complete

and definitive validation [4]. We should not expect to

find quantitative laws that are generally valid and

applicable, and have the same precisions and accuracy

as the laws of Physics [5, 7].

4. Validity and Reliability of the Defined

Measures

We have applied the defined measures on three

information systems. The information systems are in

the maintenance phase, so we have entered the

historical data for the last 6 months of two information

systems and the historical data for the last 18 months

of one information system.

The experiment has been performed in the

computer centre at Zarqa Private University (Jordan)

on three information systems: human resource

information system, continuous teaching information

system, and library information system. For each

information system we have described the collected

data for all the defined measures. Then, for each

information system some hypotheses have been

followed to show the validity of the defined measures

empirically.

4.1. The Human Resource System

The human resource application is a medium system,

it is a production system. It has 14 main requirements

as a baseline and 1 new requirement. The total number

of items related to all the requirements is 156 items

(form, report, table …etc). We have followed the

changes to the requirements for a period of six months

and tracked all the affected items because of the

change.

Following are some hypotheses:

• Hypothesis: 100 % of the requirements providers

must have direct relation to work, which is

important for the understanding of requirements.

Collected data. The 15 requirements providers of

the 15 requirements have relation to work. No

misunderstood requirements, no missing

requirements, and no rejected requirements. So

requirements providers' relation to work is a good

predictor for understanding.

• Hypothesis: each requirement must be elicited from

more than one level of requirements providers,

which is important for the understanding of

requirements.

• Collected data: there are 2 levels of requirements

providers for each of the 15 requirements. No

misunderstanding in requirements, no missing

requirements, and no rejected requirements. So the

number of levels the requirements providers are

from is a good predictor for understanding.

• Hypothesis: 100 % of the requirements must have

shared understanding between the requirements

providers and the practitioners, which is important

for the understanding of requirements.

• Collected data: the 15 requirements providers have

shared understanding with practitioners about the

15 requirements. No misunderstanding in

requirements, no missing requirements, and no

rejected requirements. So requirements providers'

relation to work is a good predictor for

understanding.

• Hypothesis: 80% of the requirements changes are

implemented and delivered within the estimated

time, which is important for the commitment to

requirements.

• Collected data: From 65 requirements changes

proposed, 63 are approved, 1 is rejected, 1 is To

Be Determined (TBD).

The 63 approved requirements changes are

implemented, 3 under testing and 60

requirements changes are delivered.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009200

From 65 requirements changes, 59 are processed

within the estimated time. (More than 80% of requests

to change were processed within the estimated time

which means the commitment was obtained).

• Hypothesis: the number of change requests for each

requirement must be identified, which is important

to manage requirements changes.

• Collected data: 5 requirements have more than 5

requests to change (one requirement has 31

requests to change; one requirement has 15

requests to change). 10 requirements have less

than 5 requests to change (4 requirements have 0

request to change).

• Hypothesis: acurrent statuses of all requests to

change must be identified, which is important to

manage requirements changes.

• Collected data: the total number of requests to

change is 65 requests. From them, 60 requests to

change were delivered, 3 requests to change are

under testing, 1 request to change was rejected, and

1 request to change is TBD.

• Hypothesis: all project items that are affected by

the request to change must be identified, which is

important to manage requirements changes.

• Collected data: the total number of items affected

by all the changes is 121 changes to items. From

the 121 changes to items, 64 were reports, 33 were

forms, 20 were tables, 2 were menus, and 2 were

software media. The number of items that were

changed for the 15 requirements are: 3, 41, 6, 35, 5,

4, 1, 16, 6, 0, 0, 0, 0, 2, 2 respectively. The number

of items affected for each request to change was

identified.

• Hypothesis: source of all requests to change must

be identified, which is important to maintain

traceability.

• Collected data: the source of each of the 65 of

requests to change is identified. The source is the

department and the practitioner who issue the

request to change.

• Hypothesis: for each inconsistency case the source

of inconsistency (report, form, database …etc) and

the reason of inconsistency (requirement provider,

practitioner...) must be identified, which is

important to identify inconsistency between the

requirement and the product.

• Collected data: there is no inconsistency case.

4.2. The Continuous Teaching System

The continuous teaching is a medium system, it is a

production system. It has 5 main requirements as a

baseline. The total number of items related to all the

requirements is 91 items (form, report, table …). We

have followed the changes to the requirements for a

period of 18 months and tracked all the affected items

because of the change.

Following are some hypotheses

• Hypothesis: 100 % of the requirements providers

must have direct relation to work, which is

important for the understanding of requirements.

• Collected data: the 5 requirements providers of the

5 requirements have relation to work. No

misunderstanding in requirements, no missing

requirements, and no rejected requirements. So,

requirements providers' relation to work is a good

predictor for understanding.

• Hypothesis: each requirement must be elicited from

more than one level of requirements providers,

which is important for the understanding of

requirements.

• Collected data: there are 2 levels of requirements

providers for each of the 5 requirements. No

misunderstanding in requirements, no missing

requirements, and no rejected requirements. So the

number of levels the requirements providers are

from is a good predictor for understanding.

• Hypothesis: 100 % of the requirements must have

shared understanding between the requirements

providers and the practitioners, which is important

for the understanding of requirements.

• Collected data: the 5 requirements providers have

shared understanding with practitioners about the 5

requirements. No misunderstanding in

requirements, no missing requirements, and no

rejected requirements. So requirements providers'

relation to work is a good predictor for

understanding.

• Hypothesis: 80% of the requirements changes are

implemented and delivered within the estimated

time, which is important for the commitment to

requirements.

• Collected data: from 22 requirements changes

proposed, 21 are approved, 1 is rejected. The 21

approved requirements changes are implemented

and delivered. From 22 requirements changes 20

are processed within the estimated time. More than

80% of request to change were processed within

the estimated time which means the commitment

was obtained.

• Hypothesis: the number of change requests for each

requirement must be identified, which is important

to manage requirements changes.

• Collected data: 1 requirement has more than 5

requests to change (13 requests to change). 4

requirements have less than 5 requests to change (4

requirements have 0 request to change).

• Hypothesis: all current statuses of all requests to

change must be identified, which is important to

manage requirements changes.

• Collected data: the total number of requests to

change is 22 requests. From them, 21 requests to

change are delivered, and 1 request to change is

rejected.

Empirical Validation of Requirements Management Measures

201

• Hypothesis: all project items that are affected by

the request to change must be identified, which is

important to manage requirements changes.

• Collected data: the total number of items affected

by all the changes is 47 changes to items. From the

47 changes to items, 40 were reports, and 7 were

forms. The number of items that were changed for

the 5 requirements are: 5, 35, 0, 7, 0 respectively.

The number of items affected for each request to

change was identified.

• Hypothesis: source of all requests to change must

be identified, which is important to maintain

traceability.

• Collected data: the source of each of the total

number 22 of requests to change is identified. The

source is the department and the practitioner who

issue the request to change.

• Hypothesis: for each inconsistency cases the source

of inconsistency (report, form, database …etc) and

the rationale of inconsistency (requirement

provider, practitioner...etc) must be identified,

which is important to identify inconsistency

between the requirement and the product.

• Collected data: there is no inconsistency case.

4.3. The Library System

The library system is a medium system, it is a

production system. It has 19 main requirements as a

baseline and 1 new requirement. The total number of

items related to all the requirements is 346 items

(form, report, table …etc). We have followed the

changes to the requirements for a period of six months

and track all the affected items because of the change.

Following are some hypotheses:

• Hypothesis: 100 % of the requirements providers

must have direct relation to work, which is

important for the understanding of requirements.

• Collected data: the 19 requirements providers of

the 19 requirements have relation to work. No

misunderstanding requirements, no missing

requirements, and no rejected requirements. So

requirements providers' relation to work is a good

predictor for understanding.

• Hypothesis: each requirement must be elicited from

more than one level of requirements providers,

which is important for the understanding of

requirements.

• Collected data: there are 2 levels of requirements

providers for each of the 19 requirements. No

misunderstanding requirements, no missing

requirements, and no rejected requirements. So the

number of levels the requirements providers are

from is a good predictor for understanding.

• Hypothesis: 100 % of the requirements must have

shared understanding between the requirements

providers and the practitioners, which is important

for the understanding of requirements.

• Collected data: the 19 requirements providers have

shared understanding with practitioners about the

19 requirements. No misunderstanding in

requirements, no missing requirements, and no

rejected requirements. So requirements providers'

relation to work is a good predictor for

understanding.

• Hypothesis: 80% of the requirements changes are

implemented and delivered within the estimated

time, which is important for the commitments to

requirements.

• Collected data: from 58 requirements changes

proposed, 54 are approved, 1 is analyzed, 1 is

rejected, and 2 is TBD. The 54 approved

requirements changes are delivered. From 58

requirements changes 56 are processed within the

estimated time. More than 80% of request to

change were processed within the estimated time

which means the commitment was obtained.

• Hypothesis: the number of change requests for each

requirement must be identified, which is important

to manage requirements changes.

• Collected data: 4 requirements have more than 5

requests to change (one requirement has 17

requests to change; one requirement has 10

requests to change...). 15 requirements have less

than 5 requests to change (7 requirements have 0

request to change).

• Hypothesis: all current statuses of all requests to

change must be identified, which is important to

manage requirements changes.

• Collected data: the total number of requests to

change is 58 requests. From them, 54 requests to

change were delivered, 1 request to change is

analyzed, 1 request to change was rejected, and 2

requests to change is TBD.

• Hypothesis: all project items that are affected by

the request to change must be identified, which is

important to manage requirements changes.

• Collected data: the total number of items affected

by all the changes is 389 changes to items. From

the 389 changes to items, 205 were reports, 172

were forms, 11 were tables, and 1 was menus. The

number of items that were changed for the 19

requirements are: 0, 3, 0, 0, 3, 0, 38, 13, 6, 0, 2, 0,

21, 2, 118, 0, 0, 1, 182 respectively. The number of

items affected for each request to change was

identified.

• Hypothesis: source of all requests to change must

be identified, which is important to maintain

traceability.

• Collected data: the source of each of the total

number 58 of requests to change is identified. The

source is the department and the practitioner who

issue the request to change.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009202

• Hypothesis: for each inconsistency case the source

of inconsistency (report, form, database …etc) and

the rationale of inconsistency (requirement

provider, practitioner...etc) must be identified,

which is important to identify inconsistency

between the requirement and the product.

• Collected data: there is no inconsistency case.

5. Conclusion and Future Research

This paper has proved empirically the validity of the

defined measures in [10] by using historical data of

three information systems. The information systems

are in the production phase. For each information

system we have described the collected data for all the

defined measures. Then, for each information system

some hypotheses have been followed empirically and

proved that the collected data confirm the hypotheses.

 The defined measures should be implemented on a

number of large long-term projects. Another important

area of future research is the definition of measures

for other key process areas in CMMI.

References

[1] Ahern D., Clouse A., and Turner R., CMMI

Distilled: A Practical Introduction to Integrated

Process Improvement, Addison Wesley, 2003.

[2] Basili R. and Rombach D., “The TAME Project:

Towards Improvement Oriented Software

Environments,” Computer Journal of IEEE

Transactions on Software Engineering, vol. 14,

no. 6, pp. 758-773, 1988.

[3] Basili R. and Weiss D., “A Methodology for

Collecting Valid Software Engineering Data,”

Computer Journal of IEEE Transactions on

Software Engineering, vol. 10, no. 6, pp.728-

738, 1984.

[4] Briand C., El Eman K., and Morasca S.,

“Theoretical and Empirical Validation of

Software Product Measures,” Technical Report,
Pennsylvania State University, 1995.

[5] Briand C., Morasca S., and Basili R., “An

Operational Process for Goal Driven Definition

of Measures,” Computer Journal of IEEE

Transactions on Software Engineering, vol. 28,

no. 12, pp. 194-1200, 2002.

[6] Fenton N., Whitty R., and Yoshinori I., Software

Quality Assurance and Measurement: A

Worldwide Perspective, Elsevier Science, 1995.

[7] Fenton E. and Pfleeger L., Software Metrics: A

Rigorous and Practical Approach, International

Thomson Publishing, Boston, 1995.

[8] George D. and Mallery P., SPSS for Windows

Step by Step: A Simple Guide and Reference,

New Jersey, 2003.

[9] Hall T., Beecham S., and Rainer A.,

“Requirements Problems in Twelve Software

Companies: An Empirical Analysis,” IEE

Proceedings: Software, USA, pp. 153-160,

2002.

[10] Khraiwesh M. and El Sheikh A.,

“Requirements Management Measures,” in

Proceedings of the International Arab

Conference on Information Technology

(ACIT'2005), Jordan, pp. 124-128, 2005.

[11] Kitchenham B., Pfleeger L., and Fenton N.,

“Towards a Framework for Software

Measurement Validation,” Computer Journal of

IEEE Transactions on Software Engineering,

vol. 21, no. 12, pp. 23-37, 1995.

[12] Lamsweerde A., “Requirements Engineering in

the Year: A Research Perspective,” in

Proceedings of the 22
nd
 International

Conference on Software Engineering

(ICSE’2000), Ireland, pp. 5-19, 2002.

[13] Loconsole A., “Empirical Studies on

Requirement Management Activities,” in

Proceedings of 26
st
 IEEE/ACM International

Conference on Software Engineering, UK, pp.

431-437, 2004.

[14] Loconsole A. and Brِstler J., “Theoretical

Validation and Case Study of Requirements

Management Measures,” Internal Report, Umea

University, 2003.

[15] Park E., Goethert W., and Florac A., Goal

Driven Software Measurement: A Guidebook,

Software Engineering Institute Handbook,

Carnegie Mellon University, 1996.

[16] Pfleeger L., Jeffery R., Curtis B., and

Kitchenham B., “Status Report on Software

Measurement,” Computer Journal of IEEE

Software, vol. 14, no. 2, pp. 179-192, 1997.

[17] Pressman S., Software Engineering: A

Practitioner's Approach, McGraw-Hill, 2005.

[18] Reifer J., “Requirements Management: The

Search for Nirvana,” in Proceedings of IEEE

Software, China, pp. 45-47, 2000.

[19] Sarse K. and Jasper V., Software Engineering

Institute, Maturity Model Integrated Software

Engineering Stage Representation, Carnegie

Mellon University, 2002.

[20] Solingen R. and Berghout E., The Goal Question

Metric Method: A Practical Guide for Quality

Improvement of Software Development,

McGRAW-Hill, London, 1999.

[21] Sommerville I., Software Engineering, Addison

Wesley, 2004.

[22] Sommerville I. and Ranson J., “An Empirical

Study of Industrial Requirements Engineering

Proces Assessment and Improvement,”

Computer Journal of ACM Transactions on

Software Engineering and Methodology, vol. 14,

no. 1, pp. 85-117, 2005.

[23] Weyuker E., “Evaluating Software Complexity

Measures,” Computer Journal of IEEE

Empirical Validation of Requirements Management Measures

203

Transactions on Software Engineering, vol. 14,

no. 9, pp. 1357-1365, 1988.

[24] Zuse H., A Framework of Software

Measurement, Walter de Gruyter, 1998.

Mahmoud Khraiwesh is an

assistant professor at Faculty of

Science and Information

Technology in Zarqa Private

University, Jordan. He received his

MSc degree in computer science

from Jordan University, Jordan, in

2002, and his PhD degree in computer information

systems from the Arab Academy for Banking and

Financial Sciences, Jordan, in 2006. His area of

research is in requirements management measures.

Asim El Sheikh received his BSc

(honors) from University of

Khartoum, Sudan, an MSc and a

PhD from University of UK.

Professor El Sheikh worked for

University of Khartoum,

Philadelphia University in Jordan,

and the Arab Academy for Banking and Financial

Sciences, Jordan. He is currently the dean of the

Faculty of Information System and Technology at the

Arab academy for Banking and Financial Sciences.

His areas of research interest are computer simulation

and software engineering.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009204

