
The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008 381

Incompatibility Dimensions and Integration of
Atomic Commit Protocols

Yousef Al-Houmaily
Department of Computer and Information Programs, Institute of Public Administration, Saudi Arabia

Abstract: Advanced software application systems contain transactions that tend to traverse incompatible database sites
belonging to different human organizations. One key requirement of these application systems is universal transactional
support and, in particular, guaranteeing the atomicity property of transactions in the presence of incompatible atomic commit
protocols. Detailed analysis show that incompatibilities among atomic commit protocols could be due to the semantics of
coordination messages or the presumptions about the outcome of terminated transactions. This leads to the definition of
“operational correctness”, a criterion that captures the practical integration of incompatible atomic commit protocols. It also
leads to the definition of “safe state”, a notion that determines the conditions under which all information pertaining to
distributed transactions can be discarded without sacrificing their consistent termination across all participating sites. The
significance of the analytical results is demonstrated through the development of a new atomic commit protocol called
“integrated two-phase commit” that integrates the most commonly known atomic commit protocols, with respect to
applicability and performance, in a practical manner and in spite of their incompatibilities.

Keywords: Two-phase commit, voting protocols, distributed transaction processing, integrated database systems, internet
transactions, electronic services and electronic commerce.

Received March 26, 2007; accepted June 9, 2007

Incompatibility Dimensions and Integration of Atomic Commit Protocols 381

1. Introduction

With the recent advances of intranet and internet
technologies, there is a greater need than ever before to
inter-operate different database sites in a practical and
efficient manner. Such inter-operation is absolutely
necessary towards supporting the interoperability
characteristic of advanced database applications such
as electronic services and electronic commerce, multi-
organizational workflows and web-based transactions
(to name just a few). A key requirement of these
applications is the ability to support universal
transactional access and, in particular, the atomicity
property of transactions.

An Atomic Commit Protocol (ACP) is the only
mean to ensure the traditional atomicity property of
transactions in any distributed database system. This is
to guarantee, in spite of possible site and
communication failures, that all sites participating in a
transaction’s execution reach the same final outcome
for the transaction, i.e., to either commit or abort the
transaction. Since commit processing consumes a
substantial amount of a transaction’s execution time
[10] and ACPs are known to be blocking in case of
failures [18], a variety of ACPs and optimizations have
been proposed in the literature. Although the search
for efficient ACPs has received much attention in the
past decade and continue to be an important research
topic for many environments including main memory
databases (e.g., [15]), mobile database systems (e.g.,
[17]) and real-time databases (e.g., [12]), besides
traditional (homogenous) distributed databases (e.g.,
[1, 21]); the issue of compatibility among ACPs did
not receive as much attention in spite of its importance
in advanced applications.

For the above reason, it is imperative to focus on the
compatibility of ACPs in distributed database
environments where the different database sites do not
unanimously adopt the same ACP, such as
multidatabase systems and the internet. Section 2
presents the choice of protocols that are used to
demonstrate the incompatibly issues while section 3
shows that incompatibilities among ACPs could be due
to (1) the semantics of the coordination messages
(which include both their meanings as well as their
existence), or (2) the presumptions about the outcome
of terminated transactions in case of failures. Thus, in
contrast to what was previously believed [7, 19],
supporting a visible prepared-to-commit state is not
sufficient for a practical integration of ACPs. This is
because the outcome of some terminated transactions
might have to be remembered forever, curtailing the
system's operation on the long run. This leads to the
definition of operational correctness, a criterion that
captures, unlike functional correctness, the practical
integration of incompatible ACPs. It also leads to the
definition of safe state, a notion that determines the

conditions under which all information pertaining to
distributed transactions can be discarded without
sacrificing their consistent termination across all
participating sites.

The notion of safe state is expressed using ACTA
[8], a first order predicate logic formalism. Although
all ACPs can be specified and all theorems can be
proven using ACTA by modeling log operations and
system crashes as transactions’ significant events1, we
choose to structure the proofs of the theorems along
the lines of the proofs of ACPs in [5] for the sake of
simplicity and ease of exposition. In all the proofs, we
assume that (1) each site is sane and (2) each site can
cause only omission failures. That is, each site is
assumed to be fail stop where it never deviates from
the specification of the protocol that it is using and,
when it fails, it will, eventually, recover.

The significance of the analytical results is
demonstrated through the development of a new ACP
called Integrated Two-Phase Commit (I-2PC) which is
presented in section 4. I-2PC integrates the most
commonly known APCs, with respect to performance
and applicability, according to the operational
correctness criterion. Section 4 also provides a prove
of correctness to the new protocol. Section 5
summarizes the contributions of this paper with some
concluding remarks.

2. Choice of ACPs

A distributed/ internet transaction accesses data located
at different database sites. When the transaction
finishes its execution and submits a “Commit” request,
the transaction manager at the site where the
transaction was initiated acts as the coordinator for the
termination of the transaction across all participating
sites. This is achieved by initiating an ACP such as the
basic Two-Phase Commit (2PC) protocol [11, 13],
which is also called Presumed Nothing (PrN) [14]. In
this paper, it is assumed that each database site
implements an ACP that is not necessarily the same as
the ACPs adopted by the other sites. Furthermore, it is
assumed that the ACP adopted by a site can be either
PrN, Presumed Abort (PrA) [16], Presumed Commit
(PrC) [16] or Implicit Yes-Vote (IYV)2 [3]. The choice
of these four protocols is because they are the best to
demonstrate the dimensions of incompatibilities among
ACPs that seem, at first glance, to be straight forward
to interoperate and also because of the importance of
these protocols which is as follows:

•PrN for historical reason since it is the first
known and published ACP.

•PrA because it is currently part of the database
standards [6, 20].

•PrC because of its performance advantage for
committing transactions and the argument that
favors

The basic two-phase commit protocol was specified and its important functional correctness aspects was shown using ACTA in [9].
Autonomy implications on the constituent database sites are not discussed in this paper as it has been shown to be violated in one form or another in [9].

382 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

it to become also part of the database protocol
standards [4].

•IYV because of its performance advantages in
high-speed networks that characterize today's
computing environments.

3. Incompatibility Dimensions of ACPs

This section examines the compatibility of PrN, PrA,
PrC, and IYV by assuming that they can co-exist in a
system and can be used together to commit a
distributed/ internet transaction. As it shows, the
incompatibilities of ACPs could be due to the
semantics of their coordination messages or the
presumptions that they make about the outcome of
terminated transactions. The analysis of both of these
dimensions is presented in the next two sections.

3.1. Message Semantics Incompatibilities

The incompatibilities that are due to the semantics of
messages arise in two forms. The first one is due to the
meaning of messages whereas, the second one, is due
to the existence of messages. The differences between
the two forms of incompatibilities are presented
through two example protocols.

3.1.1. Meaning Incompatibilities

Assume that a coordinator follows its own protocol and
does not realize any message out of its protocol. That
is, it simply ignores any message that violates its
protocol and interprets any message that it recognizes
according to its own protocol. We call this type of
integrated protocol used by a coordinator as Strict
Atomic Commit (SAC) protocol. In the examples
below, a site follows SAC when acting as a coordinator
and its original ACP when acting as a participant.

Consider the case where a transaction has executed
at two participants. Furthermore, assume that the
coordinator and one of the participants employ PrA
while the other participant employs IYV. Following
IYV, when the participant executes an update
operation, it acknowledges the operation with a
message that contains the redo log records that were
generated during the execution of the operation and
enters an implicit prepared-to-commit state. The
coordinator, following SAC, will recognize and
interpret the message as only an acknowledgment for
the successful execution of the operation without
extracting the redo records contained in the message
since this is not part of its protocol. At commit time of
the transaction, the coordinator initiates the voting
phase that will be recognized by the PrA participant

but not the IYV participant. Based on that, the IYV
participant will never send an explicit vote back to the
coordinator since it employs a One-Phase Commit
(1PC) protocol. In this scenario, the coordinator will
timeout waiting for the vote of the IYV participant and
will abort the transaction. Thus, using SAC, no
transaction that executes at an IYV participant will
ever commit. Similar scenarios occur if the coordinator
is using PrN or PrC and there is at least one IYV
participant.

Now, assume that, instead of using a 2PC variant,
the coordinator and one of the participants are using
IYV while the other participant is using PrA.
Furthermore, assume that the transaction has finished
its execution and submitted its final commit primitive.
Following IYV, the coordinator will commit the
transaction since all the operations pertaining to the
transaction have been executed at both participants and
acknowledged. In this case, it force writes a commit
record and sends commit messages to both
participants. The IYV participant will recognize the
message and commits the transaction whereas, the PrA
participant will not recognize the commit message
since it is out of its protocol and will ignore it. In this
case, the coordinator will keep sending the final
commit message to the PrA participant, according to
IYV, forever, without getting an acknowledgment. On
the other hand, the participant will keep ignoring these
messages awaiting a prepare to commit message from
the coordinator. Eventually, the PrA participant will
timeout and abort the transaction, according to PrA.
Thus, in this scenario, the atomicity of the transaction
has been violated because it ended up committing at
one site and aborting at the other. Similar scenarios
occur if any participant in a transaction’s execution
uses PrN or PrC.

We reached the above two scenarios because the
coordinator misinterpreted the meaning of the
operations’ acknowledgment messages. In the first
scenario, the coordinator interpreted the meaning of an
operation’s acknowledgment received from the 1PC
participant to only mean that the operation has been
executed successfully without interpreting it to also
mean that the participant has entered an implicit
prepared-to-commit state. In the second scenario, the
opposite happened. That is, the coordinator
misinterpreted the meaning of an operation’s
acknowledgment received from the 2PC participant to
mean that the participant has entered an implicit
prepared-to-commit state while the participant is still
in an active state. The above two scenarios can be
generalized with the following theorem.
Theorem 1: it is impossible to achieve global atomicity
if the coordinator is using SAC in the presence of
transactions that execute at both 1PC and 2PC
participants.
Proof: the proof proceeds by example and consists of
two parts. The first is when the coordinator is using a

Incompatibility Dimensions and Integration of Atomic Commit Protocols 383

2PC variant while the second is when the coordinator
is using 1PC.
Part 1: assume that the coordinator is using a 2PC
variant and a transaction has executed at a 1PC
participant. Furthermore, assume that all the
transaction’s operations have been executed
successfully across all participants and acknowledged,
and the coordinator decided to commit the transaction.
In this case, the 1PC participant will not recognize the
prepare to commit message of the voting phase and,
consequently, will never send back an explicit vote in
response to the prepare to commit message of the
coordinator. Eventually, the coordinator will timeout
and abort the transaction. Thus, no transaction will
ever commit when the coordinator is using 2PC in the
presence of 1PC participants.
Part 2: assume that the coordinator is using 1PC and a
transaction has executed at a 2PC participant.
Furthermore, assume that all the transaction’s
operations have been executed successfully across all
participants and acknowledged, and the coordinator
decided to commit the transaction. In this case, the
2PC participant will not recognize the commit message
of the coordinator since it precedes the voting phase of
the participant’s protocol. Eventually, the participant
will timeout waiting the prepare to commit message
and will abort the transaction. Thus, the atomicity of
the transaction is violated since it ended up committing
by its coordinator (and 1PC participants if any) and
aborting at the 2PC participant.

3.1.2. Existence Incompatibilities

This section demonstrates the incompatibilities that are
due to the existence (i.e., absence vs. presence) of
messages rather than their meaning. Assume that a
coordinator follows its own protocol, “knows” and
“understands” what messages to send and what
messages to expect from each participant. Furthermore,
assume that the coordinator handles any violations of
its protocol with respect to extra or missing messages
by simply ignoring such messages. We call this
protocol used by a coordinator Participants’ Integrated
Protocol (PIP). In the examples below, a site will
follow PIP when acting as a coordinator and its
original ACP when acting as a participant.

Consider the case where a transaction has executed
at two participants. Furthermore, assume that the
coordinator and one of the participants are using PrC
while the other participant is using IYV. Assuming that
the coordinator knows the used protocol by each of the
two participants and understands the meaning of their
coordination messages, it will extract any redo log
records contained in an acknowledgment form the IYV
participant and record them in its log. The coordinator
will also interpret the message to mean that the
participant is in an implicit prepared-to-commit state.
At the end of the transaction, in accordance to PrC, the
coordinator will force write an initiation record and

sends a prepare to commit message to only the PrC
participant. This is because such a message is not
within the IYV protocol. When the coordinator
receives the vote of the PrC participant, the coordinator
makes the final decision. Assuming a commit final
decision, the coordinator will force write a commit
final decision and then sends commit messages to both
participants. However, the IYV participant will
acknowledge the commit decision. By knowing that
this participant will send an acknowledgment, the
coordinator will not consider this message since this
message is a violation of its protocol. With respect to
the logging activities at the coordinator, the
coordinator will be able to forget about the transaction
and discard all information pertaining to the
transaction from its protocol table once it has written
the commit final decision onto its stable log. The
coordinator will be also able to garbage collect the
transaction’s log records when necessary. Since the
coordinator employs PrC, it will respond to the
inquiries of the participants in case of a failure with a
commit final decision, using the PrC presumption.

Now, let us consider another transaction that has
finished its execution at the same two participants and
the coordinator has decided to abort the transaction. In
this case, the IYV participant will never acknowledge
the abort decision. This means that the coordinator,
which expects acknowledgment messages from all
participants, can never garbage collect the records
pertaining to the transaction from its stable log nor it
can discard the information from its protocol table that
is kept in main memory. To alleviate this situation,
knowing that the IYV participant will never
acknowledge an abort decision, in PIP, the coordinator
forgets the outcome of the transaction once it has
received the acknowledgment of the PrC participant. In
this case, the atomicity of the transaction might be
violated. For example, if a failure occurs before the
IYV participant has received the abort decision, the
participant is left blocked and will inquire about the
outcome of the transaction as part of its recovery
procedure. If the coordinator has already received the
acknowledgment from the PrC participant, before the
failure, and forgotten about the transaction, it will
wrongly respond with a commit final decision (using
the PrC presumption) which clearly violates the
atomicity of the transaction.

Similar situations occur if the coordinator employs
PrN, PrA or IYV and some participants employ PrC
while the others employ PrN, PrA or IYV. In these
situations, the atomicity of committed transactions
might be violated.

The above scenarios can be generalized with the
following theorem.
Theorem 2: it is impossible to achieve global atomicity
if the coordinator is using PIP in the presence of
transactions that execute at participants that
acknowledge only abort decisions and participants that

384 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

acknowledge only commit decisions.
Proof: the proof proceeds by example and consists of
four parts. The first is when the coordinator is using
PrN. The second is when the coordinator is using PrA.
The third is when the coordinator is using PrC. The
fourth is when the coordinator is using IYV.
Part 1: assume that the coordinator is using PrN and a
transaction has executed at two participants one of
which is using PrA whereas the other is using PrC.
Furthermore, assume that coordinator decides to
commit the transaction. In this case, the PrA
participant will acknowledge the commit decision but
the PrC participant will not. Now, it is possible for the
PrC participant to fail before receiving the commit
decision and for the inquiring message of the PrC
participant to arrive after the coordinator has received
the acknowledgment of the PrA participant and
forgotten the transaction. In this case, the coordinator
will respond with an abort decision (using the PrN
presumption) which violates the atomicity of the
transaction.
Part 2: assume that a transaction has executed at two
participants as above but the coordinator is using PrA
instead of PrN. Assume that the coordinator decides to
commit the transaction. In this case, the PrA
participant will acknowledge the decision but the PrC
participant will not, as above. Now, it is possible for
the PrC participant to fail before receiving the commit
decision and for the inquiring message to arrive after
the coordinator has received the acknowledgment of
the PrA participant and forgotten the transaction. In
this case, the coordinator will respond with an abort
decision (using the PrA presumption) which violates
the atomicity of the transaction.
Part 3: we have proven this part in our motivating
example at the beginning of this section.
Part 4: assume that a transaction has executed at two
participants one of which is using IYV whereas the
other one is using PrC. Assume that the coordinator is
using IYV. Furthermore, assume that the transaction
has finished it execution at both participants
successfully and the coordinator has received a “Yes”
vote from the PrC participant. If the coordinator makes
a commit final decision, the IYV participant will
acknowledge the decision but the PrC participant will
not. Now, it is possible for the PrC participant to fail
before receiving the commit decision and for the
inquiring message to arrive after the coordinator has
received the acknowledgment of the IYV participant
and forgotten the transaction. In this case, the
coordinator will respond with an abort decision (using
the IYV presumption) which violates the atomicity of
the transaction.

3.2. Presumptions’ Incompatibilities

Clearly, the PIP solution in which a coordinator
“knows” and “understands” (i.e., “talks”) the language

of the protocols implemented by the different
participants does not work. The PIP protocol might
violate transaction atomicity because the coordinator
forgets about transactions prematurely due to missing
messages from some participants. Let us consider an
alternative integrated protocol, called Coordinator
Integrated Protocol (CIP) which behaves similar to
PIP. However, unlike PIP, a coordinator in CIP never
forgets a transaction until it has received all necessary
messages.

As we have discussed above, some participants will
never acknowledge either commit or abort decisions.
This means that the coordinator will never be able to
discard information pertaining to some terminated
transactions from both its protocol table and stable log.
Since these terminated transactions when they are
forgotten might lead to a wrong presumption (as seen
in PIP), CIP does not lead to atomicity violations by
requiring a coordinator to always remember the
outcome of these transactions and never uses its
presumption after a failure. Thus, even though CIP
guarantees functional correctness in which it ensures
the atomicity of all distributed transactions, it fails to
guarantee operational correctness which requires that
the coordinator should be able to eventually forget
about the outcome of terminated transactions, as the
following definition states [2]:
Definition 1: the integration of different ACPs is
operationally correct if and only if:

•The coordinator and all the participants reach
consistent decisions regarding the outcome of
transactions and regardless of failures.

•The coordinator can, eventually, discard all the
information pertaining to terminated transactions
from its protocol table and garbage collect its log.

•All participants can, eventually, forget about
transactions and garbage collects their logs.

Since CIP has to remember the outcome of some
transactions forever, we generalize this result with the
following theorem.
Theorem 3: it is impossible to achieve operational
correctness if the coordinator is using CIP in the
presence of transactions that execute at participants
that adopt ACPs with contradicting presumptions about
terminated transactions.
Proof: the proof proceeds by example and consists of
four parts. The first is when the coordinator is using
PrN. The second is when the coordinator is using PrA.
The third is when the coordinator is using PrC. The
fourth is when the coordinator is using IYV.
Part 1: assume that the coordinator is using PrN and
that a transaction has executed at two participants one
of which is using PrA whereas the other is using PrC.
Furthermore, assume that coordinator decides to
commit the transaction. In this case, the PrA
participant will acknowledge the commit decision but
the PrC participant will not. Hence, the coordinator

Although PrN treats transactions uniformly during normal processing regardless of whether they are to be finally committed or aborted, there is a hidden presumption in PrN by which it considers all active transactions as aborted in case of a failure. For this reason, there is no need for an abort acknowledgment from a PrN participant in I-2PC.
Incompatibility Dimensions and Integration of Atomic Commit Protocols 385

will not be able to write an end log record and has to
remember the transaction forever.
Part 2: assume that a transaction has executed at two
participants as above but the coordinator is using PrA
instead of PrN. Assume that the coordinator decides to
commit the transaction. In this case, the PrA
participant will acknowledge the decision but the PrC
participant will not, as above. Hence, the coordinator
will not be able to write an end log record and has to
remember the transaction forever.
Part 3: assume that a transaction has executed at two
participants as above but the coordinator is using PrC.
Assume that the coordinator decides to abort the
transaction. In this case, the PrC participant will
acknowledge the decision but the PrA participant will
not. Hence, the coordinator will not be able to write an
end log record and has to remember the transaction
forever.
Part 4: assume that a transaction has executed at two
participants one of which is using IYV whereas the
other one is using PrC. Assume that the coordinator is
using IYV. Furthermore, assume that the transaction
has finished it execution at both participants
successfully and the coordinator has received a “Yes”
vote from the PrC participant. If the coordinator makes
a commit final decision, the IYV participant will
acknowledge the decision but the PrC participant will
not. Hence, the coordinator will not be able to write an
end log record and has to remember the transaction
forever.

To maintain operational correctness in an ACP, a
coordinator should be able to, eventually, forget the
outcome of transactions without violating the
consistency of its decisions. This is called a safe state
[2]. Intuitively, a coordinator is in a safe state with
respect to a transaction if (1) it forgets a transaction
after all participants have acknowledged its decision
(as in PrN) or (2) it can use a single presumption that is
consistent with the transaction’s final outcome (as in
PrA, PrC and IYV).

Thus, in order to integrate protocols that adopt
contradicting presumptions in a practical manner, we
need a safety criterion that determines the conditions
under which a coordinator can reach a safe state in
which only a single presumption that is consistent with
a transaction’s final outcome holds. The following
safety criterion satisfies this requirement. It is
expressed using ACTA [8], a first order predicate logic
with a precedence relation (→) in the execution history
(H). H represents the complete history of the execution
of a transaction until it is either committed or aborted
across all participating sites. In the definition below, C
denotes the coordinator of the transaction. The
predicate α → b is true if event α precedes event b in
H. It is false, otherwise. Here, DecideC(AbortT)

denotes that the coordinator decides to abort a
transaction T and DecideC(CommitT) denotes that the

coordinator decides to commit T.DeletePTC(T) denotes

that the information pertaining to T is deleted from the
protocol table of the coordinator. INQti

 denotes an

inquiry message from a participant regarding a
subtransaction ti that it has executed at its site on

behalf of T. RespondC(Outcometi
) denotes the reply

of the coordinator to the inquiry message.

Definition 2: the definition of safe state.
SafeStateC(T) ⇒
 ((DecideC(AbortT) ∈ H ∧
∀ti∈T(DeletePTC(T)) → INQti

)⇒ RespondC(Abortti
)

∈ H) ∨
 ((DecideC(CommitT)∈H ∧
∀ti∈T(DeletePTC(T))→INQti

)⇒ RespondC(Committi
)

∈ H)

The above definition states that a coordinator is in a
safe state with respect to a transaction T if T has been
aborted and only the presumed abort presumption
holds (the first clause of the safe state implication), or
T has been committed and only the presumed commit
presumption holds (the second clause). Thus, the safety
criterion implies that some information including the
outcome of transactions has to be remembered as long
as more than one presumption is possible.

4. The Integrated Two-Phase Commit

This section presents I-2PC that integrates PrN, PrA,
PrC and IYV according to the operational correctness
criterion that is defined above. The basic philosophy
behind the design of I-2PC is to resolve the
incompatibilities that are due to the semantics of
messages as in CIP and, at the same time, to allow a
coordinator to reach a safe state with respect to the
outcome of terminated transactions without having to
remember them forever.

According to the behavior of PrN, PrA, PrC and
IYV, a coordinator expects those participants that
employ PrN, PrA and IYV to acknowledge commit
final decisions but not those participants that employ
PrC. Similarly, a coordinator expects those participants
that employ PrN and PrC to acknowledge abort final
decisions but not those participants that employ PrA
and IYV. Based on the behavior of the four protocols,
a coordinator, in I-2PC, forgets a committed
transaction when PrN, PrA and IYV participants
acknowledge the commit decision. For an abort
decision, a coordinator forgets an aborted transaction
when PrC participants acknowledge the abort
decision3.

386 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

Thus, I-2PC behaves similar to PIP with respect to
the timing at which it forgets about the outcome of
terminated transactions.

However, unlike PIP, a coordinator in I-2PC,
instead of using a single presumption for all terminated
transactions, which is the case in all presumption-based
ACPs, the presumption used by the coordinator (in the
absence of information) depends on the protocol used
by the inquiring participant. That is, if the inquiring
participant is abort-based, the presumption of the
coordinator is abort. On the other hand, if the inquiring
participant is commit-based, the presumption is
commit. In this way, the presumption of the
coordinator always matches the actual final outcome of
a forgotten terminated transaction.

The next section presents the details of I-2PC during
normal processing. Then, section 4.2 discusses the
recovery aspects of I-2PC in case of failures and
proves its correctness.

4.1. I-2PC During Normal Processing

In I-2PC, a coordinator records the 2PC protocol
employed by each participant in a table called
Participants’ Commit Protocol (PCP). The PCP table is
kept onto stable storage and is updated when a new site

joins or leaves the distributed environment. Only a
portion of the PCP table, called Active Participants’
Protocols (APP), is maintained in main memory,
containing the identities of the participants with active
transactions.

Once the coordinator of a transaction has identified
a participating site for the execution of the transaction,
it checks its protocol table. If the identity of the
participant is not in the protocol table, the coordinator
adds the identity of the participant into the table. Then,
it forwards the operation to the participant for
execution.

If the coordinator receives either an abort request
from a transaction or a negative acknowledgment from
any participant, it aborts the transaction. In this case,
the coordinator discards all information pertaining to
the transaction from its protocol table without writing a
decision log record for the transaction. Then, the
coordinator sends an abort message to each participant
that has acknowledged the processing of all the
transaction's operations successfully.

 On the other hand, when the coordinator of a
transaction receives a commit primitive from the
transaction, it waits for the acknowledgments of the
transaction’s pending operations and then checks its
APP to determine which protocol to use for the
termination of the transaction. The coordinator selects
PrN if all the participants are using PrN. Similarly, it

selects PrA if all the participants are using PrA
whereas, it selects PrC if all the participants are using
PrC. If all participants are using IYV, the coordinator
selects IYV.

In the event of protocols’ mix, the coordinator
selects I-2PC. By using I-2PC, there are two cases to
consider. The first one is when the protocols used by
the participants have the same presumptions about
the outcome of terminated transactions. This case
occurs when the participants are mixed PrN, PrA and
IYV. These three protocols adopt the abort
presumption of terminated transactions. The second
case is when the used protocols’ mix has
contradicting presumptions about the outcome of
terminated transactions. This case occurs when the
participants’ mix contains a PrC participant.

4.1.1. Absence of Contradicting Presumptions

When the used protocols by the participants have the
same presumption about the outcome of terminated
transactions, the coordinator sends a prepare to
commit message to each 2PC participant (i.e., each
PrN and PrA participant), as shown in Figure 1.
When a 2PC participant receives a prepare to commit
message, it validates the transaction and then sends
back its vote. If the transaction can be committed, the
participant force writes a prepared log record and
then sends back its “Yes” vote, following either PrN

Incompatibility Dimensions and Integration of Atomic Commit Protocols 387

or PrA used by the participant. Otherwise, the
participant aborts the transaction and sends back a
“No” vote without writing any log records.

When the coordinator receives the votes of 2PC
participants, the coordinator makes the final decision.
The decision is commit if each IYV participant is in an
implicit prepared-to-commit state and each 2PC
participant is in an explicit prepared-to-commit state.
Otherwise, the decision is abort.

On a commit decision Figure 1-(a), the coordinator

force writes a commit log record, that includes the
identities of all participating sites, and sends out
commit messages. When a 2PC participant receives a
commit message, it commits the transaction; force
writes a commit log record and then, acknowledges the
commit decision. When a 1PC participant receives a
commit message, it commits the transaction, writes a
non-forced commit log record and, when the commit
record is flushed onto the stable log, it sends back an
acknowledgment. Once the coordinator has received
acknowledgments from all participating sites, it writes
a non-forced end log record and forgets the transaction.

On an abort decision Figure 1-(b), assuming that
some 2PC participant (l) has voted “No”, the
coordinator sends out abort messages to IYV
participants and each 2PC participant that has voted
“Yes” and forgets the transaction without writing any
log records. When an IYV or PrA participant receives
an abort message, it complies with the decision and

writes a non-forced abort log record. On the other
hand, when a PrN participant receives an abort
message, following PrN, it complies with the decision;
force writes an abort log record and sends back an
acknowledgment. When the coordinator receives an
acknowledgment from a PrN, it simply ignores the
message, knowing that it has no effect on the protocol
correctness, as we will show in section 4.2.

4.1.2. Presence of Contradicting Presumptions

When the used protocols by the participants have
contradicting presumptions about the outcome of
terminated transactions (i.e., there is at least one PrC
participant), the coordinator force writes an initiation
log record, that includes the identities of all
participants, and then, sends a prepare to commit
message to each 2PC participant (i.e., each PrN, PrA
and PrC participant), as shown in Figure 2. When a
2PC participant receives a prepare to commit
message, it validates the transaction and then sends
back its vote. If the transaction can be committed, the
participant force writes a prepared log record and
then sends back its “Yes” vote, following either PrN,
PrA or PrC used by the participant. Otherwise, the
participant aborts the transaction and sends back a
“No” vote without writing any log records.

 When the coordinator receives the votes of 2PC
participants, the coordinator makes the final decision.
The decision is commit if each IYV participant is in
an implicit prepared-to-commit state and each 2PC
participant is in an explicit prepared-to-commit state.
Otherwise, the decision is abort.

On a commit decision, as shown in Figure 2, the
coordinator force writes a commit log record and
then sends out commit messages. When a PrN or PrA
participant receives a commit message, it commits
the transaction, force writes a commit log record and

then, sends back an acknowledgment. When a PrC
participant receives the commit decision, it commits
the transaction, writes a non-forced commit log record
without sending an acknowledgment back to the
coordinator (following PrC protocol). When an IYV
participant receives a commit message, it commits the
transaction, writes a non-forced commit log record
and, when the commit record is flushed onto the stable
log, it sends back an acknowledgment. Once the
coordinator receives “commit” acknowledgments from
all sites employing abort-based presumption protocols,
the coordinator writes a non-forced end log record and
forgets the transaction.

On an abort decision, as shown in Figure 3, once
again assuming that some 2PC participant l has voted
“No” during the voting phase, the coordinator sends
out an abort message to each prepared-to-commit
participant (whether implicitly or explicitly) without
writing an abort log record. When an IYV or PrA

388 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

participant receives an abort message, as shown in
Figure 3-b, it complies with the decision and writes a
non-forced abort log record. On the other hand, when a
PrN participant receives an abort message, as shown in
Figure 3-a, following PrN, it complies with the
decision; force writes an abort log record and sends
back an acknowledgment. When a PrC participant
receives the abort decision, it aborts the transaction;
force writes an abort log record and then, sends back
an acknowledgment.

When the coordinator receives an acknowledgment
from a PrN, it simply ignores the message, knowing
that it has no effect on the protocol correctness (as we
show in the next section). On the other hand, when the
coordinator receives “abort” acknowledgments from
all PrC participants, it writes a non-forced end log
record and forgets the transaction.

4.2. Recovery and Correctness of I-2PC

As in all other commit protocols, communication and
site failures are detected by timeouts. The recovery
procedure in case of communication and participants’
failures are handled in a manner similar to the way
they are handled in PrN, PrA, PrC and IYV protocols.
According to the behavior of PrN, PrA, PrC and IYV,
the coordinator expects those participants that employ
PrN, PrA and IYV to acknowledge commit final
decisions but not those participants that employ PrC.
Based on the that, the coordinator forgets about the
outcome of a committed transaction once the PrN, PrA

and IYV participants acknowledge the commit
decision, knowing that only a participant that uses PrC
might inquire about the decision in the future. If a PrC
participant inquires about a forgotten commit decision,
the coordinator, knowing that the participant uses PrC,
will direct the participant to commit the transaction
using the presumption of PrC employed by the
participant. This is accomplished by the coordinator
even without examining its stable log.

Similarly, if a coordinator makes an abort final
decision, it expects only those participants that employ
PrN and PrC to acknowledge the decision but not those
employing PrA and IYV. Since the coordinator does
not wait for, or even consider, the acknowledgments of
PrN participants when writing the end log record for an
aborted transaction, the coordinator forgets about the
outcome of such a transaction once the PrC
participants acknowledge the abort decision. Hence,
besides PrA and IYV participants, PrN participants
might inquire about a forgotten abort decision. In this
case, the coordinator, knowing that only a participant
that uses an abort-based protocol (i.e., PrN, PrA or
IYV) might inquire about the decision, it will direct the
participant to abort the transaction using the abort
presumption of these three protocols. Again, this is
accomplished by the coordinator even without having
to examine its stable log.

Thus, in I-2PC, when a participant inquires a
coordinator about the final outcome of a forgotten
transaction, the coordinator, not remembering the
transaction, it infers the transaction’s outcome from the

presumption used in the inquiring participant’s
protocol. This inference of decisions is always
consistent with the actual final outcome of forgotten
transactions.

The next section thoroughly analyzes all possible
scenarios of communication failures whereas section
4.2.2 analyzes the recovery aspects of a coordinator’s
site failure. On the other hand, participants’ site
failures are not discussed since they are handled in a
manner similar to the way they are handled in PrN,
PrA, PrC and IYV, depending on the protocol
adopted by each participant

4.2.1. Communication Failures

There are four points during the execution of I-2PC
where a communication failure might occur while a
site is waiting for a message. The first point is when
the coordinator of a transaction has sent an operation
for execution at a participant’s site and is waiting for
an operation acknowledgment from the participant.
In this case, the coordinator aborts the transaction
and sends out abort messages to the rest of the
participants. Similarly, a participant aborts a
transaction when a communication failure occurs and
the participant has a pending operation’s

Incompatibility Dimensions and Integration of Atomic Commit Protocols 389

acknowledgment. Notice that the coordinator of a
transaction may commit the transaction in spite of
communication failures with some participants as long
as these participants are IYV participants and have no
pending operations’ acknowledgments.

The second point is when a participant has no
pending operation acknowledgment. If the participant
is using a 2PC variant, it aborts the transaction. On the
other hand, if the participant is using IYV, in
accordance to IYV, the participant is left blocked until
communication is re-established with the coordinator.
Then, the participant inquires the coordinator about the
transaction’s status. If the coordinator has already
committed the transaction, it must have been waiting
for the commit acknowledgment of the participant.
Based on that, the coordinator replies with a commit
message and waits for an acknowledgment. If the
coordinator has aborted the transaction and still
remembers it (i.e, the transaction is still in the protocol
table), the coordinator replies with an abort decision. If
the coordinator does not remember the transaction, it
means that the coordinator must have aborted the
transaction. In this case, it replies with an abort
message using the presumption of IYV, which is the
presumption used in the protocol of the inquiring
participant. If the transaction is still active in the
system, the coordinator replies with a still active
message, following IYV protocol. When the
participant receives a final decision, the participant
enforces the decision and writes a non-forced decision
(i.e., commit or abort) log record. Then, if the decision
is commit, the participant also acknowledges the
decision (after the decision is written onto the stable
log). If the participant receives a still active message,
the participant waits for further operations.

The third point is when a coordinator is waiting for
the votes of 2PC participants. In this case, the
coordinator treats communication failures as “No”
votes and aborts the transaction. As during normal
processing, once the coordinator has aborted a
transaction, it sends out abort messages to all
accessible participants and waits for the required
acknowledgments. For an inaccessible participant, the
participant is left blocked if has voted “Yes” before the
communication failure and it is the responsibility of the
participant to inquire about the transaction’s status
after the failure is fixed. If the coordinator receives an
inquiry message after the failure has been fixed, the
coordinator either still remembers the aborted
transaction (because the transaction has an initiation
record in its protocol table and some participants are
using PrC) or it has aborted and forgotten the
transaction. In the former case, the coordinator sends
back an abort message. It also waits for an
acknowledgment if the participant is using PrC. Once
the participant has received the abort message, it aborts
the transaction and sends back an acknowledgment
only if it uses PrC. In the latter case, since the

coordinator does not remember the transaction and the
transaction has been aborted, it means that the
inquiring participant must be a PrN or PrA participant.
Based on that, the coordinator replies with an abort
message using the presumption of PrN or PrA, which
is the presumption used in the protocol of the inquiring
participant.

 The fourth point is when the coordinator of a
transaction is waiting for the acknowledgments of a
final decision. Since the coordinator needs the
acknowledgments in order to discard the information
pertaining to the transaction from its protocol table and
its log (during the garbage collection procedure), it re-
sends the decision to the appropriate participants once
communication failures are fixed. That is, if the
decision is commit, the coordinator re-sends the
decision to each inaccessible PrN, PrA and IYV
participant. On the other hand, if the decision is abort,
the coordinator re-sends the decision to each
inaccessible PrC participant. When an IYV participant
receives a commit decision after a failure, it either
acknowledges the decision if it has already received
and enforced the decision prior to the failure (i.e., the
participant has no recollection about the transaction),
or enforces the decision, writes a non-forced commit
log record and then sends back an acknowledgment
(after the decision is written onto the stable log).
Similarly, when a 2PC participant receives a decision,
it either acknowledges the decision if it has already
received and enforced the decision prior to the failure,
or enforces the decision, force writes a decision record
and then acknowledges the decision. Once the
coordinator has received the required
acknowledgments, it writes an end log record, as
during normal processing, and forgets the transaction.

4.2.2. Coordinator’s Failure

Upon a coordinator’s restart after a failure, the
coordinator re-builds its protocol table by scanning its
stable log. The coordinator needs to complete the
commit protocol for each incomplete transaction.
Hence, it needs to consider only the following
transactions during its recovery procedure:

•Each transaction with an initiation log record but
without a corresponding commit and end records -
the coordinator knows that either PrC or I-2PC
(with contradicting presumptions) was used for the
commit processing of the transaction. In either case,
the coordinator considers the transaction aborted
and sends an abort message to each PrC participant
recorded in the initiation record and waits for
acknowledgments.

•Each transaction with an initiation log record and a
commit record but without an end record - the
coordinator knows that either PrC or I-2PC (with
contradicting presumptions) was used for the
commit processing of the transaction. Based on the

390 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

identities of the participants recorded in the
initiation record, if I-2PC was used, the coordinator
sends commit messages to all participants recorded
in the initiation record except those using PrC and
waits for acknowledgments.

•Each transaction with a commit record but without
an initiation and an end record - the coordinator
knows that either PrN, PrA, IYV or I-2PC (without
contradicting presumptions) was used for the
commit processing of the transaction. In either case,
the coordinator sends a commit message to each
participant recorded in the commit decision record
and waits for acknowledgments.

In all the three cases above, when a participant receives
a decision message, it either acknowledges the
message if it has already received and enforced the
decision prior to the failure, or enforces the decision,
writes the required log record and then sends back an
acknowledgment. Once the coordinator receives the
required acknowledgments for a transaction, it writes
an end log record an forgets the transaction.

For all other transactions, the coordinator can safely
ignore them during its recovery procedure and
considers them completed transactions. If a participant
inquires about a transaction that has been considered
completed by the coordinator, regardless of the
protocol used for the termination of the transaction, the
coordinator, not remembering the transaction, it replies
with a decision that matches the presumption used in
the protocol of the inquiring participant (as recorded in
the PCP).

4.2.3. Proof of Correctness

The above discussion provides an iterative method that
proves the correctness of I-2PC in the presence of site
and communication failures. That is, it enumerates all
possible points of site and communication failures
during the course of the protocol and shows how to
deal with them. This leads to the following theorem.
Theorem 4: the I-2PC protocol satisfies the operational
correctness criterion.
Proof: to show the correctness of I-2PC according to
operational correctness, we need to show that all the
three requirements of operational correctness are
satisfied. The first and the third requirements of the
operational correctness criterion are satisfied since all
participants in a transaction’s execution will reach an
agreement and forget about the transaction, as we
iteratively proven in the previous two sections. The
only remaining requirement that needs to be proven is
the second one which requires that the coordinator
should eventually be able to forget about the outcome
of transactions. I-2PC also satisfies this requirement
because a transaction is forgotten once all required
acknowledgments arrive from the participants. What
we need to prove is that a coordinator never sacrifices
the consistency of its decisions even though it might be

using different protocols for the termination of
different transactions (i.e., I-2PC, PrN, PrA, PrC or
IYV). We prove this part by considering the two
possible outcomes of transactions. For the prove of this
part, we recall that, in the absence of information, a
coordinator of a transaction always uses the
presumption adopted by the protocol of the inquiring
participant. This is regardless of the actual protocol
that has been used for the termination of the
transaction. The prove proceeds by contradiction.
Commit case: assume that the coordinator has made a
commit decision and after forgetting the transaction, it
replies to an inquiry message with an abort decision. If
the inquiring participant is PrC, the coordinator will
use the commit presumption of PrC and will respond
with a commit decision which contradicts the initial
assumption.

In order to reply with an abort, it means that
coordinator has used the abort presumption. This
means that the message is from either a PrN, PrA or
IYV participant which is impossible since all PrN, PrA
and IYV participants must have acknowledged the
commit decision in order for the coordinator to forget
the outcome of the transaction.
Abort case: assume that the coordinator has made an
abort decision and after forgetting the transaction, it
replies to an inquiry message with a commit decision.
If the inquiring participant is PrN, PrA or IYV, the
coordinator will use the abort presumption and will
respond with an abort decision which contradicts the
initial assumption.

In order to reply with a commit, it means that the
coordinator has used the commit presumption. This
means that the message is from a PrC participant
which is impossible since all PrC participants must
have acknowledged the abort decision in order for the
coordinator to forget the outcome of the transaction.

5. Conclusion

With the current advances in internet applications, it is
imperative to support universal transactional access
and, in particular, guaranteeing the atomicity property
of transactions in the presence of incompatible Atomic
Commit Protocols (ACPs). Detailed analysis showed
the dimensions of incompatibilities among ACPs.
Then, the significance of the analytical results was
demonstrated through the development of a new ACP
called “integrated two-phase commit” (I-2PC) that
integrates the most commonly known ACPs, with
respect to applicability and performance, in a practical
manner and in spite of their incompatibilities.

The results of this work should help in a better
understanding to atomicity in heterogeneous
environments where the different database sites do not
unanimously adopt the same ACP. It should also
stimulate the development of new and more flexible
methods that support the interoperability characteristic

Incompatibility Dimensions and Integration of Atomic Commit Protocols 391

of today’s software application systems especially for
those emerging environments such as mobile database
systems and e-government.

References

1]Al-Houmaily Y., “On Interoperating
Incompatible Atomic Commit Protocols in
Distributed Databases,” in Proceedings of the 1st

IEEE International Conference on Computers,
Communications, and Signal Processing, 2005.

2]Al-Houmaily Y. and Chrysanthis P., “Atomicity
with Incompatible Presumptions,” in
Proceedings of the 18th ACM PODS, United
States, pp. 306-315, 1999.

3]Al-Houmaily Y. and Chrysanthis P., “An Atomic
Commit Protocol for Gigabit-Networked
Distributed Database Systems,” Journal of
Systems Architecture, vol. 46, pp. 809-833, 2000.

4]Al-Houmaily Y., Chrysanthis P., and Levitan S.,
“An Argument in Favor of the Presumed Commit
Protocol,” in Proceedings of the 13th

International Conference on Data Engineering
(ICDE), UK, pp. 255-265, 1997.

5]Bernstein P., Hadzilacos V., and Goodman N.,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, MA, 1987.

6]Braginski E., “The X/Open DTP Effort,” in
Proceedings of the 4th International Workshop on
HPTS, Asilomar, California, 1991.

7]Breitbart Y., Garcia-Molina H., and Silberschatz
A., “Overview of Multidatabase Transaction
Management,” VLDB Journal, vol. 1, no. 2,
1992.

8]Chrysanthis P. and Ramamritham K., “Synthesis
of Extended Transaction Models using ACTA,”
ACM TODS, vol. 19, no. 3, pp. 450-491, 1994.

9]Chrysanthis P. and Ramamritham K., “Autonomy
Requirements in Heterogeneous Distributed
Database Systems,” in Proceedings of the 6th

International Conference on Management of
Data, pp. 283-302, 1994.

10]Chrysanthis P., Samaras G., and Al-Houmaily Y.,
"Recovery and Performance of Atomic Commit
Processing in Distributed Database Systems," in
Kumar V. and Hsu M. (eds.), Recovery
Mechanisms in Database Systems, Prentice Hall,
1998.

11]Gray J., “Notes on Data Base Operating
Systems,” in Bayer R., Graham R., and
Seegmuller G. (eds.), Operating Systems: An
Advanced Course, LNCS, Springer-Verlag, vol.
60, pp. 393-481, 1978.

12]Haritsa J., Ramamritham K., and Gupta R., “The
PROMPT Real-Time Commit Protocol,” IEEE
Transactions on Parallel and Distributed
Systems, vol. 11, no. 2, 2000.

13]Lampson B., “Atomic Transactions,” in Lampson

B. (eds.), Distributed Systems: Architecture and
Implementation -An Advanced Course, LNCS,
Springer-Verlag, vol. 105, pp. 246-265, 1981.

14]Lampson B. and Lomet D., “A New Presumed
Commit Optimization for Two Phase Commit,”
in Proceedings of the 19th International
Conference on VLDB, pp. 630-640, 1993.

15]Lee I. and Yeom H., “A Single Phase Distributed
Commit Protocol for Main Memory Database
Systems,” in Proceedings of the 6th International
Parallel and Distributed Processing Symposium
(IPDPS), Fort Lauderdale, FL, USA, 2002.

16]Mohan C., Lindsay B., and Obermarck R.,

“Transaction Management in the R* Distributed
Data Base Management System,” ACM TODS,
vol. 11, no. 4, pp. 378-396, 1986.

17]Nouali N., Drias H., and Doucet A., “A Mobility-
Aware Two-Phase Commit Protocol,”
International Arab Journal of Information
Technology, vol. 3, no. 1, 2006.

18]Skeen D. and Stonebraker M., “A Formal Model
of Crash Recovery in a Distributed System,”
IEEE TSE, vol. SE-9, no. 3, 1983.

19]Tal A. and Alonso R., “Integration of Commit
Protocols in Heterogeneous Databases,”
Distributed and Parallel Databases, vol. 2, no. 2,
pp. 209-234, 1994.

20]Upton IV F., “OSI Distributed Transaction
Processing, An Overview,” in Proceedings of the
4th International Workshop on HPTS, Asilomar,
CA, 1991.

21]Yu W. and Pu C., “A Dynamic Two-Phase
Commit Protocol for Adaptive Composite

http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/n/Nouali:Nadia.html

392 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

Services,” International Journal of Web Services
Research, vol. 4, no. 1, 2007.

Yousef Al-Houmaily received a
BSc in computer engineering from

King Saud University, Riyadh, Saudi
Arabia in 1986, MSc in computer
science from George Washington

University, Washington DC in 1990,
and a PhD in computer engineering

from the University of Pittsburgh, Pittsburgh,
Pennsylvania in 1997. Currently, he is an assistant

professor at the Department of Computer and
Information Programs, Institute of Public

Administration, Riyadh, Saudi Arabia. Dr. Al-
Houmaily’s current research interests are in the areas

of database systems, mobile distributed computing
systems and sensor networks .

