
The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007 41

Can Function Points be Mapped to
Object Points?

Ayman Issa1, Mohammed Odeh1, and David Coward2
1Centre for Complex Cooperative Systems, CEMS Faculty, University of the West of England, UK

2School of Computer Science, CEMS Faculty, University of the West of England, UK

Abstract: Object points is a new software size metric that has emerged to cope with recent developments in software
engineering, and to overcome the deficiencies of the traditional lines of code and function points size metrics. Moreover, object
points has been utilized as the basis for several software cost estimation models with promising improvements in the accuracy
of estimates. However, the infancy of the object points size metric means that there is a shortage of object points based
software historical projects, on which to base the empirical validation of the new object points based software cost estimation
models. Hence, the relationship between the extensively used function points and newly invented object points size metrics
have been conceptualized and utilized in a novel forward approach to convert the function points projects data into their
equivalent object points data. Empirical investigations of 66 function points projects have shown high correlation and
significance, 88% and 0.33, respectively, between the resulting object points effort estimates and the actual function points
effort. Furthermore, the resulting object points data have been utilized to model the embodied function points-object points
relationship in two specialized productivity factors and function points type dependent linear models. The resulting models
have shown high fitness, R2, values of 0.95, for both models.

Keywords: Software size metrics, function points, object points, software cost estimation.

Received August 1, 2005; accepted January 29, 2006

1. Introduction
Software system sizing has been a difficult and
controversial topic for a long time. Great debates have
been reported in the literature [14] on whether lines of
code is a better sizing metric than Function Points
(FP), and vice versa. This is dependent on several
factors such as system type, programming language(s),
and the software development life cycle phase in which
the estimation is conducted. Several software systems
size metrics have emerged to cope with recent
developments in software engineering including new
development paradigms, new programming language
generations, and new Computer Aided Software
Engineering (CASE) development tools. Object Points
(OP) [1], being a size metric developed to cope with
the visual widgets (objects) of recent programming
language generations, is a typical example of those
metrics that were intended to be used and estimated
earlier and faster than lines of code and FP.

Several software cost estimation models [1, 2] have
been built on top of this relatively young sizing metric
and, most interestingly, their results were promising
and comparable to those models that are based on the
more complicated low level lines of code and FP size
metrics. However, all these new models share the same
problem. There is a shortage of historical project data,
which significantly reduces the reliability of their
empirical validation. The main reason behind this data

shortage is that these new metrics are based on the
most recent software development life cycles artifacts,
where only a limited number of organizations have
adopted and applied them in their software
development projects [14]. However, the International
Software Benchmarking Standards Group (ISBSG) [6]
has taken the responsibility of building a large volume
software project repository based on the FP size
metric. On the other hand, building similar repositories
based on the new sizing metrics, e. g., OP, will take a
long time. This requires them to be recognized and
applied by software development houses yet, until the
data is available to justify a change of metric they may
be loath to do so.

Thus, the promising results of the new sizing metric,
e. g., OP, based software cost estimation models, and
the unavailability of historical data raised a number of
research questions:

• How can these models be validated and employed in
the software cost estimation phases of the current
software development life cycles?.

• Is it possible to generate highly reliable software
project data for the new sizing metrics, e. g., OP,
from the currently available data?.

• To what extent will the generated data be
sufficiently reliable to be employed in building and
validating software cost estimation models that are

42 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

applicable at the early stages of the software
development life cycle?.

Consequently, this research is aimed at investigating
these research questions that exist between the new OP
and the traditional FP sizing metrics. These sizing
metrics, OP and FP, have been selected for this
investigation for three major reasons. First, OP has
been used in earlier research [8] as a basis for a use
case-OP based software cost estimation model and
more historical projects data are needed to inform its
reliability. Second, the ISBSG projects data repository
provides a large volume of reliable FP based software
projects data. Third, there appears a hidden
relationship between the elements of OP and FP sizing
metrics that should be bridged and modelled for further
research and validation.

Section 2 surveys the most well-known software
size metrics conversion literature. The process of
bridging the relationship between FP and OP is
explained in section 3. A forward FP-OP conversion
approach is proposed in section 4. The implementation
of the forward conversion approach is discussed in
section 5. Section 6 briefly explains the nature of the
ISBSG empirical data, and evaluates the empirical OP
results. Finally, the conclusion and the outline of future
work are presented in section 7.

2. Size Metric Converters
The most well known software size metrics converter
in the literature is the FP-lines of code backfiring table
produced by Jones’s at the Software Productivity
Research Centre [9, 15]. This table, as shown in the
extracted sample in Table 1, approximates the number
of logical source statements of each programming
language/ language generation that correlated roughly
with a single FP [15], as observed by analyzing several
historical projects.

Table1. An extract of FP-lines of code backfiring table.

Programming Language/
Language Generation

Average Source
Statements Per FP

1st Generation default 320
2nd Generation default 107
3rd Generation default 80
4th Generation default 20
5th Generation default 4
C++ 55
Java 53

Smith [13] proposed a use case-lines of code
backfiring table to approximate the system size in lines
of code from its use case model. Smith assumed that
each software solution has a structural hierarchy
consisting of the following levels: System of systems,
system(s), subsystem group, subsystem(s), and
class(es). As detailed in Table 2, the method
determines and uses typical adjacent factors between

the architectural levels to approximate the lines of code
system size [13].

Table2. Use case model-lines of code architectural level adjacent
factors.

Architectural Level Adjacent Factor
Operation Size 70 lines of code
Number of operations per class 12
Number of classes per subsystem 8
Number of subsystems per subsystem group 8
Number of subsystem group per system 8
Number of systems per system group 8
Number of external use cases (per system,
subsystem, etc.) 10

Unfortunately, there are no available historical
projects data that accommodate OP and FP
information. Thus, a straightforward statistical analysis
could not be performed to generate a similar FP-OP
conversion table, which facilitates the process of
generating OP projects data, and consequently
validating the OP based software cost estimation
models. Therefore, the problem should firstly be
conceptualized to bridge the relationship between the
elements of the two sizing metrics. Then, the available
FP data could be used empirically to investigate this
conceptualization.

3. FP-OP Relationship Conceptualization
Albrecht, as cited in [12], has developed the well-
known FP size metric which sizes the software project
based on its functionality. It counts the number of
Internal Logical Files (ILF), External Logical Files
(ELF), External Input (EI), External Output (EO), and
External Queries (EQ). Banker et al. [1] have proposed
the OP size metric as a replacement for FP to cope
with the visual widgets of the fourth generation
languages and the integrated CASE environments. OP
is mainly concerned with producing a reliable early
count of the application points, being the sum of the
adjusted number of screens, reports, and third
generation language modules that are expected to be
developed to supplement the fourth generation
languages code. Hence, OPs do not relate to object
oriented concepts such as inheritance, encapsulation,
etc, but are more closely dependent on the user
interface of the system being developed. Furthermore,
the OP method was adopted and generalized by the
COCOMO II team [2] as a size measure in the early
prototyping stage, namely the Application
Composition model. Section 3.1 outlines the mapping
between the elements of the original FP and OP sizing
metrics, while section 3.2 explains how the different
OPs with different complexity levels consume the
different FPs elements based on the original FP and OP
methods.

Can Function Points be Mapped to Object Points? 43

3.1. FPs-OPs Elements Mapping
In defining OP measures, Boehm et al. [2] identified
three categories of complexity levels for screens and
reports: Simple, medium, and difficult. Furthermore,
OP complexity levels are determined using specialized
characteristic dimensions. As detailed in Table 3,
screens’ complexity levels are rated according to the
embodied number of views and data tables [1, 2]. Each
view contains several EI, EO, or EQ items that send or
receive data to or from several ILFs or ELFs. Reports
are rated similarly by the embodied number of sections
and data tables [1, 2]. Furthermore, as can be seen in
Table 3, screen and report complexity levels are
dependent on the values of their characteristic
dimensions [2]. For example, a screen that contains
less than 3 views and interacts with less than 4 data
tables is considered as a simple screen. At the same
time, a screen that contains 3-7 views and interacts
with less than 4 data tables is also considered as a
simple screen. Hence, in order to facilitate the
subsequent phases in bridging the relationship between
FP and OP sizing metrics, new derived screen and
report complexity level schemes have been defined in
this conceptualization phase. Table 4 presents the
derived screen complexity levels rating scheme.

Table 3. Original OP method screens complexity rating scheme.
Number and Source of Data TablesNumber of

Views
Contained

Total < 4
(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

< 3 Simple Simple Medium
3 – 7 Simple Medium Difficult
> 8 Medium Difficult Difficult

Table 4. Derived screens complexity levels.
Number and Source of Data TablesNumber of

Views
Contained

Total < 4
(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

< 3 Simple 1 Simple 2 Medium 1
3 – 7 Simple 3 Medium 2 Difficult 1
> 8 Medium 3 Difficult 2 Difficult 3

When defining complexity levels for third
generation language modules, Boehm et al. [2] have
identified one complexity level for OPs. They stated
that all third generation language modules OPs are
rated equally as difficult as modules that are built to
support fourth generation languages code. Possibilities
of third generation language modules include
time/event-triggered module, application programming
interface/protocol based system call, and data
manipulation supportive module [10, 16]. Hence, third
generation language modules use EI, EO, and EQ in
performing their tasks, which will incorporate some
interaction with ILF or ELF to inquire about the
system state or save their results. Accordingly, Figure
1 presents a suggested mapping between the elements
that compose the FP and OP size metrics.

Figure1. Suggested FP-OP elements mapping.

3.2. Qualitative & Quantitative Analysis of FP-
OP Relationship

According to the original OP method complexity levels
described in the previous section, there are 9 distinct
complexity levels of screens, 9 distinct complexity
levels of reports, and 1 complexity level for third
generation language modules. This focuses attention
on discovering more about the nature of the FP
elements that are embodied in each OP complexity
level. Subsequently, several distinct FP element
combinations have been constructed and matched to
the different OP complexity levels taking into
consideration the original characteristic dimensions of
each OP complexity level, and the following FP-OP
mapping and consumption guideline:

Guideline 1: Screen sections and report views should
be associated with EI, EO, and EQ FP elements. Also,
screen and report data tables characteristic dimensions
should be associated with ILF and ELF FP elements.

Table 5 presents a sample from the constructed FP
element combinations and their corresponding screen
OP complexity levels. Assuming that this
correspondence is supported by empirical analysis, this
should deal with the qualitative aspects of the
relationship between FP and OP elements.
Furthermore, these FP-OP element pairings form the
basis for the quantitative analysis of the FP-OP
element relationship. As a result, the values of the
original OP complexity levels characteristic
dimensions have been utilized to define the
quantitative FP consumption for each OP complexity
level. In addition, the following FP-OP elements
mapping and consumption guidelines have also been
used to bridge the gaps between the semantics of the
different FP and OP elements.
Guideline 2: The complexity of managing one ELF
equals that of two ILFs due to the overhead of external
systems communication.

Hence, the existence of ELFs in any FP combination
raises the complexity of the corresponding OP
complexity level. This may result in some OP
complexity levels where the total FP consumption is

44 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

less than the original OP characteristic dimensions
values.

Table 5. Screens complexity levels and their matched FPs
combinations sample.

Screen
Complexity

Level
FP Combination

Simple 1 EI, ILF
Simple 3 EI, ELF
Medium 1 EI, EQ, ILF
Medium 2 EO, EI, ILF
Difficult 2 EI, EQ, ELF
Difficult 3 EO, EI, ILF, ELF

Guideline 3: OP characteristic dimension intervals
have been distributed among the involved complexity
levels uniformly to highlight the complexity
differences in the resulting objects of the same interval.

In that, simple objects have been assigned the lower
limit of the dimension’s interval. Medium objects have
been assigned the middle of the dimension’s interval,
and, difficult objects have been awarded the upper
limit of the dimension’s interval. For example,
according to the original OP method complexity rating
scheme, any screen that consists of 3-7 views could be
considered as simple, medium, or difficult depending
on the embodied number of data tables. Hence, in the
defined FP-OP consumption scheme, simple screens
are considered to have 3 views, medium screens are
considered to have 5-6 views, and difficult screens are
considered to have 7 views.
Guideline 4: According to the original OP method, any
screen may contain less than 3, from 3 to 7, or greater
than 8 views.

However, no mention is made of screens containing
8 views. It is not clear how they are classified and
rated. Instead of extending the range of the last interval
to include screens that have greater or equal 8 views, a
decision has been made to extend the range of the
middle interval of screens views to include screens that
contain 8 views since it covers a diverse range of OP
complexity levels: Simple, medium and difficult.
Guideline 5: It has been found, by surveying the
literature [10, 17], that regardless of the third
generation language module type, a minimum of 1 FP
for each FP element will be needed to develop any
third generation language module.

As a result of applying the above FP-OP mapping
and consumption guidelines to the matched FP-OP
combinations, three screens, reports, and third
generation language modules FP consumptions
schemes have been constructed. Table 6 presents a
sample from the constructed screen-FP consumption
scheme.

4. Forward FP-OP Conversion Approach
This has been denoted as a forward bottom-up
approach compared to a backward top-down approach,

being developed by the research team, as simply the
latter approach starts from the assumption that the total
effort when estimating using FPs is equal to the total
effort when estimating using OPs.

In the forward approach, the OP counts and effort of
ISBSG FP historical software projects are estimated
based on the above newly defined FP-OP elements
mapping and consumption schemes. The following
sections detail the underlying assumptions, input and
output, and workflow of the proposed conversion
approach.

Table 6. Screens FP consumption scheme sample.
Screen

Complexity
Level

EI EO EQ ILF ELF

Simple 1 1 2
Simple 3 3 2
Medium 1 2 1 8
Medium 2 4 2 6
Difficult 2 5 4 5
Difficult 3 6 5 7 5

4.1. Assumptions
The forward FP-OP conversion approach has been
built on top of several assumptions that facilitate the
conversion process and place the development context
of ISBSG software development projects:

1. FP and OP elements are related to each other
according to the defined FP-OP elements
relationship.

2. The original OP method productivity scheme does
not fit ISBSG FP projects.

3. The generated OP counts should cover all the OP
types in their ideal proportions in real world
systems.

4.2. Input and Output
For each ISBSG FP project, several input data are
required by the forward conversion approach to infer
its corresponding OP elements. The required input data
could be partitioned into two groups as follows:

1. FP Project Information: This includes actual FP
effort, EI, EO, EQ, ILF, and ELF FPs counts.

2. Productivity Project Information: This includes
lower CASE tools with/without code generation
used, upper CASE tools used, integrated CASE
tools used, and programming language generation.

On the other hand, the forward conversion approach
should produce the following OP artefacts for each
project:

1. Total Adjusted OP (AOP) count.
2. Total unadjusted OP count.
3. Unadjusted OP count breakdown.
4. OP re-estimated effort.

Can Function Points be Mapped to Object Points? 45

4.3. Conversion Workflow
The workflow of the forward conversion approach
consists of four phases:

1. Determine project parameters.
2. OP counting and FP consumption.
3. Project re- estimation.
4. Record conversion results.

Each phase has a well-defined objective and
relationship with subsequent phases. In addition, the
objective of each phase is carried out by one or more
specialized steps. The boundaries of the conversion
phases and the embodied steps are presented in the
workflow of Figure 2. The corresponding details of the
conversion phases and steps are explained in the
following subsections. However, a detailed numerical
conversion example that explains the details of the
proposed forward conversion approach is presented in
[7].

Figure 2. Forward conversion approach workflow.

4.3.1. Phase I: Determine Project Parameters

The main objective of this phase is to place the OP
context of the current project to guide the FP-OP
conversion process. For realistic and correct generation
of OP counts, it is necessary to cover all OP types in
their ideal proportions in real world systems. Hence,
according to the current project type (i. e., shared or
stand alone application [6, 14]), the OP types and
complexity levels contribution proportions are
determined from the calculated contribution
proportions in Tables 7 and 8.

4.3.2. Phase II: OP Counting and FP Consumption

This phase embodies the core functionality of the
forward conversion approach. It follows a bottom-up
iterative approach to construct the OP counts of the
current project. Furthermore, it employs the FP-OP

consumption schemes to achieve the main objective of
this phase by the means of four specialized steps.

Step 1: Check FPs Availability
The first step in this phase is the assessment of the
termination condition for the OP counting iterations. It
checks whether all FPs have been consumed, and if
not, determines whether or not the remaining FPs fit
the FP consumption scheme of any OP complexity
level. The outcome to these queries determines the
next step to be executed. If the remaining FPs fit the
FP consumption of one or more OP complexity level,
control is transferred to step 2, otherwise step 4 is
executed. Alternatively, if all FPs have been
consumed, control is transferred to phase III.
Step 2: Determine New Candidate OP Type for
Addition
In this step, a new candidate OP complexity level for
addition is determined on the basis of both the
remaining FP topography and the current project OP
proportions.
Step 3: Consume the Corresponding FP for the
Determined OP Type
This step is specialized in using the defined FP-OP
consumption schemes to consume the corresponding
FPs for the determined OP complexity level.
Step 4: Handle Additional FPs
This step is executed when the remaining FPs do not fit
the FP consumption of any OP complexity level.
Hence, an additional FP handler is triggered to
distribute the additional FP across several OP
complexity levels that have not utilized the upper limit
of their OP characteristic dimensions.

Table 7. OP contribution proportions in the different software
systems types.

Software System Type
OP Type Shared

Application
Stand-Alone
Application

Screen 38% 57%
Report 24% 43%
Third
Generation
Language
Module

38% 0%

Table 8. OP complexity levels sub-proportions in the different
software systems types.

OP Type Complexity
Level

Shared
Applications’
Proportions

Stand-Alone
Applications’
Proportions

Simple 79 % 49 %
Medium 17 % 32 %Screen
Difficult 4 % 19 %
Simple 78 % 48 %
Medium 20 % 35 %Report
Difficult 2 % 17 %

4.3.3. Phase III: Project Re-Estimation

The main objective of this phase is to re-estimate the
project effort using the resulting AOP count as:

Effort = AOP/OP-Productivity

46 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

where AOP is the resulting count from the previous
phase, and the OP-productivity, determined from the
calculated programming language generation and
CASE tools dependent OP productivity scheme in
Table 9.

Table 9. Calculated OP productivity scheme.

CASE Tool Type and Level

Programming
Language
Generation

Upper
CASE

Lower
CASE

(no code
generation)

Lower
CASE

(with code
generation)

Integrated
CASE

No
CASE
Tools

Third
Generation
Language

5 6 7 8 4

Fourth
Generation
Language

7 8 9 12 6

4.3.4. Phase IV: Record Conversion Results

The main objective of the last phase of the forward
conversion approach is to archive the conversion
results, as specified in the input and output section, for
expert analysis and evaluation.

5. FP-OP Converter System
Java, being a powerful portable language that eases the
burden of platform dependent languages [4], has been
adopted to implement the proposed conversion
approach. Section 5.1 discusses the conversion system
architectural style and the functionalities of the
different system components are outlined in section
5.2.

5.1. System Architecture
A model-view-controller 3-tier architecture [14] has
been adopted in the implementation of the conversion
system to separate the concerns of the different system
components. The first tier, the view tier, is represented
by a graphical user interface component. The middle
tier, the controller tier, holds the business logic
component of the conversion approach. The last tier,
the persistence model tier, is represented by a data
management component.

5.2. Components Functionalities
Data management component is the data consumer and
producer component. It consumes the data by reading
the required input data project by project from the
source file. First, the FP project information is
retrieved and saved independently. Then, the
productivity project information that is required during
the conversion process is fetched. It also produces data
by generating an output excel spreadsheet that contains
the conversion results.

Business logic component is the main component
that holds the technical application of the forward

conversion approach, which is presented in section 4.
In addition, it is the responsibility of this component to
keep a historical record about each resulting OP and its
corresponding consumed FPs.

Finally, a specialized graphical user interface
component has been designed and developed, as shown
in Figure 3, to facilitate the system customization and
configuration to fit the different development
environments. This enabled the user to overwrite the
empirically calculated default values of the OP type’s
contribution proportions, OP complexity level
contribution proportions, and input/output data files
physical locations.

[

Figure 3. FP-OP converter system graphical user interface.

6. Empirical Results Evaluation
The source of the FP projects empirical data is the
ISBSG Release 9 data repository [6]. Currently, it
holds information about 3,024 software projects
gathered from different organizations around the
world. Several fidelity and sizing filtering criteria [7]
have been applied to ISBSG repository to extract the
most appropriate projects for the empirical and critical
evaluation of the proposed forward conversion
approach. This resulted in reducing the selected
number of ISBSG projects to 66 as detailed in [7].
Consequently, several statistical tests, as discussed in
sections 6.1 and 6.2, have been performed to
investigate the reliability of the defined FP-OP
relationship in addressing the research questions.

6.1. Reliability of the Forward FP-OP
Conversion Approach

The relationship between the calculated and actual
ISBSG data attributes has been assessed using both
Spearman’s correlation coefficients and paired sample
T-test significance measures [5, 7]. The outcomes from
investigating the relationship between the forward
conversion approach estimated effort and ISBSG
actual effort have shown high correlation and
significance, 88% and 0.33, respectively. Further
highly desirable correlation, 87%, has been discovered

Can Function Points be Mapped to Object Points? 47

between the calculated AOP and both FP types;
unadjusted and adjusted. Having the high correlation
and significance relationships between the main output
attributes of the forward conversion approach and the
ISBSG actual data can be considered as supporting the
reliability of the defined FP-OP elements mapping and
consumption schemes.

6.2. FP-OP Relationship Modelling
The construction of the anticipated FP-OP conversion
table needs a large volume of historical data to cater
for the increasing number of programming languages
and programming language generations. Moreover, it
should be regularly maintained to consider the
emerging versions of current and new programming
languages. Therefore, one could conclude that the
relationship between FP and OP should be independent
from any external factors that might limit its stability
and reliability. Thus, the embedded relationship
between FP and OP sizing metrics should be modelled
using the converted OP data.

FP effort is calculated as:

FPEffort = Total AFP/FP Productivity

Similarly, OP effort is calculated as:

OPEffort = Total AOP/OP Productivity

Having available the completed and delivered ISBSG
projects, allowed a comparison of the two predicted
effort estimates with the actual expended effort. Given
the high correlation, we can assume that the effort
estimates can be deemed equal. Hence, equating FP
and OP effort formulae results in one consolidated
formula as:

oductivityPrOP
TotalAOP

oductivityPrFP
TotalAFP

=

Re-factoring this formula has resulted in obtaining a
linear relationship between FP and OP as:

oductivityPrFP
oductivityPrOPTotalAFPTotalAOP ×=

Hence, the relationship between OP and FP sizing
metrics is governed by an adjustment factor being the
ratio between the OP and FP productivities, and vice
versa. Accordingly, two linear curve fitting statistical
studies have been conducted to investigate the fitness
of two specialized productivity factors and FP type
dependent FP-OP conversion models:

1. Unadjusted FP (UFP) dependent model:
AOP = (0.66×UFP) + (-0.27×UFP×Z1)

+ (-0.18×UFP×Z2) + (-0.29×UFP×Z3)
+ (-0.26×UFP×Z4) + 30.87

2. Adjusted FP (AFP) dependent model:

AOP = (0.58×AFP) + (-0.28×AFP×Z1)

+ (-0.13×AFP×Z2) + (-0.27×AFP×Z3)
+ (-0.23×AFP×Z4) + 33.17

where Z1, Z2, Z3, and Z4 are project size and
programming language generation indicator
variables as summarized in Table 10.

Table 10. Specialized FP-OP conversion models productivity
factors indicators.

Indicator
Variable Value Productivity

Factor
Z1 0 or 1 Small Size Project

Z2 0 or 1 Medium Size
Project

Z3 0 or 1 Third Generation
Language Project

Z4 0 or 1 Fourth Generation
Language Project

The fitness of the resulting FP-OP conversion
models has been measured by R2 statistical fitness
measure. R2 is the proportion of variation in the
dependent variable, AOP [5]. The values of R2 range
from 0 to 1. Small values indicate that the model does
not fit the data well. Finally, the fitness, R2, of the
resulting UFP/AFP-OP conversion models is 0.95.

7. Conclusion and Future Work
A novel approach to bridge the relationship between
FP and OP sizing metrics has been proposed. The
intension, as per the defined research questions, is to
investigate the applicability and reliability of inferring
and reusing the OP information of a software project
from its available FP information. Hence, the
relationship between the elements of OP and FP sizing
metrics has been bridged in two phases. First, a
mapping scheme between the elements of the two
sizing metrics has been defined. Then, the second
phase focused on quantifying the defined FP-OP
relationship.

A multi-phase forward conversion approach has
been proposed to infer the OP information for 66
ISBSG multi-organizational historical projects using
the defined FP-OP elements mapping and consumption
schemes. Consequently, the reliability of the defined
FP-OP relationship has been evaluated by assessing the
resulting OP attributes against the actual ISBSG FP
and effort attributes. The evaluation of the conversion
approach empirical results showed high correlation,
88%, between the OP estimated and FP actual efforts
that generally supports the reliability of the defined FP-
OP elements mapping and consumption schemes.
Furthermore, a high correlation, 87%, has been found
between the calculated AOP and unadjusted/adjusted
FP. This confirms the hypothesis that motivated this
research to reveal the existence of a hidden relationship
between the two size metrics as defined in the
proposed FP-OP relationship. The low level
investigation of the above correlation in the performed

48 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

statistical studies showed that the lower the underlying
programming language generation is, the higher the
correlation between FP and OP size metrics.

The high AOP and FP correlation has been used to
relate the FP and OP effort formulae to discover the
embodied relationship between them. It has been
demonstrated that the AOP is linearly related to the FP
by an adjustment factor, and vice versa. Statistically,
two productivity factors and FP type dependent linear
models have fit the relationship between FP and AOP
with high statistical fitness, R2, values, 0.95, for both
models.

To facilitate the conversion process, a 3-tier
architecture [14] FP-OP converter has been developed
using JAVA due to its diverse features that suite the
purposes of the current and planned research. Future
work is being planned to integrate the FP-OP converter
in a multi-model software cost estimation CASE tool
that suits the different stages of the software
development life cycle.

Several requirements elicitation and modelling
techniques have been used to model and specify
system requirements [11, 14]. Use case elicitation and
modelling is one of the techniques that have been used
extensively in the literature. Subsequently, several use
case model based software cost estimation models [3,
8] have been developed since use case models capture,
relatively, an accurate representation of the users’
requirements. Therefore, further work is being carried
out to integrate the resulting FP-OP conversion models
with earlier work [8] specialized in building a use case
model and OP based software cost estimation model
that is applicable at the early stages of the software
development life cycle. In parallel, reusing the
generated OP data in building and validating OP based
software cost estimation models is being evaluated by
the research team.

Acknowledgements
Ayman Issa would like to thank Philadelphia
University, www.philadelphia.edu.jo, for sponsoring
this research programme. Also, the authors would like
to thank ISBSG and in particular Peter Hill for
granting them permission to utilize the data repository
in this research.

References
[1] Banker R., Kauffman R., and Kumar R. “An

Empirical Test of Object-Based Output
Measurement Metrics in a Computer Aided
Software Engineering (CASE) Environment,”
Journal of Management and Information
Systems, vol. 8, no. 3, pp. 127-150, 1992.

[2] Boehm B., Abts C., Brown A., Chulani S., Clark
B., Horowitz E., Madachy R., Reifer D., and
Steece D., Software Cost Estimation with

Cocomo II, Prentice Hall, 2000.
[3] Damodaran, M. and Washington, A., “Estimation

Using Use Case Points” in Proceedings of
ISECON 2002, San Antonio, 2002.

[4] Deitel H. and Deitel P., Java: How to Program,
Upper Saddle River, Pearson Education
International Prentice Hall, 2003.

[5] Gerber S., Voelkl K., Anderson T. W., and Finn
J. D., The SPSS Guide to The New Statistical
Analysis of Data, Springer-Verlag, New York,
1997.

[6] ISBSG, Projects Data Repository (Release 9),
available at: http://www.isbsg.org.au/html/
index2.html, 2004.

[7] Issa A., Odeh M., and Coward D., “FP-OP
Conversion,” Technical Report, Centre of
Complex and Cooperative Systems, University of
the West of England, UWE-CEMS-TR-CCCS-
0002, 2005.

[8] Issa A., Odeh M., and Coward D., “Using Use
Case Models to Generate Object Points,” in
Proceedings of the IASTED International
Conference on Software Engineering, Austria,
pp. 468-473, 2005.

[9] Jones C., Applied Software Measurement:
Assuring Productivity and Quality, McGraw-Hill,
London, 1997.

[10] Lokan C., “An Empirical Analysis of Function
Point Adjustment Factors,” Information and
Software Technology, vol. 42, no. 9, pp. 649-659,
2000.

[11] Major M., “A Qualitative Analysis of Two
Requirements Capturing Techniques for
Estimating the Size of Object-Oriented Software
Projects,” Object Technology Group, Department
of CS, Clemson University, 1996.

[12] Matson J., Barrett B., and Mellichamp J.,
“Software Development Cost Estimation Using
Function Points,” IEEE Transactions on Software
Engineering, vol. 20, no. 4, pp.275-287, 1994.

[13] Smith J., “The Estimation of Effort Based on Use
Cases,” Rational Software, available at:
http://www.rational.com/products/whitepapers/T
P171.jsp, 2003.

[14] Sommerville I., Software Engineering, Addison-
Wesley, Harlow, England 2001.

[15] SPR, “Programming Languages Table,” Software
Productivity Research, available at: http://
www.spr.com/products/programming.shtm 2005.

[16] Stutzke R., “Experience with the COCOMO II
Application Point Model,” in Proceedings of the
15th International Forum on COCOMO and
Software Cost Modeling, Los Angeles, pp. 1-17,
2000.

[17] United Kingdom Software Metrics Association,
MKII Function Point Analysis Counting
Practices Manual, UKSMA Metrics Practices
Committee, UK, 1998.

Can Function Points be Mapped to Object Points? 49

Ayman Issa received his BSc and
MSc degrees in computer science
from the University of Jordan in
2000 and 2003, respectively. In
2003, he joined the University of
West of England, Bristol, UK as a
software engineering PhD researcher

and visiting lecturer. He has four years of experience in
quality assurance of e-business applications. In
addition, he has been appointed in several management
posts. His research interests include use case
modelling, use case patterns, software cost estimation,
software metrics, software complexity, and software
development life cycles.

Mohammed Odeh is a senior
lecturer in software engineering and
the leader of the Software
Engineering Research Group of the
Complex Cooperative Systems
Centre in the Faculty of CEMS at the
University of West of England,

Bristol, UK. He holds PhD degree in computer science
from the University of Bath, 1993 in addition to
PGCert in higher education and ITL membership. He
has more than 20 years of experience in software
engineering including research and development,
extensive project management experience in planning
and leading a range of IT-related projects in addition to
management posts. He is a co-investigator on EU-
funded projects, and led the second work-package (the
user-requirements specifications) of the MammoGrid
project, an FP5 EU-funded project with collaboration
from European partners such as Oxford University,
Cambridge University Hospital, CERN, Udine
University Hospital in Italy, and Mirada Solutions
Limited. Dr. Odeh has been supervising six PhD
students, with one successful completion, four
expected completions in 2006, and one in 2007. His
research interests are mainly focused on bridging the
gap between knowledge, business, and system models
in addition to software cost estimation and
requirements engineering processes.

David Coward received his BSc in
computing and statistics, in 1978, a
PhD degree in computer science
from the Open University, UK, in
1992, and also a Cert Ed (Further
and Higher Education). He is a
principal lecturer in computer

science. Currently, he is a head of the School of
Computer Science in the Faculty of CEMS at the
University of West of England, Bristol, UK. He has
been in higher education for more than 20 years. His
research interests include software engineering in
particular software validation, software metrics and
cost estimation.

50 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

