
The International Arab Journal of Information Technology,   Vol. 4,   No. 1,   January 2007 41

Can Function Points be Mapped to 
Object Points?

Ayman Issa1, Mohammed Odeh1, and David Coward2
1Centre for Complex Cooperative Systems, CEMS Faculty, University of the West of England, UK

2School of Computer Science, CEMS Faculty, University of the West of England, UK

Abstract: Object points is a new software size metric that has emerged to cope with recent developments in software 
engineering, and to overcome the deficiencies of the traditional lines of code and function points size metrics. Moreover, object 
points has been utilized as the basis for several software cost estimation models with promising improvements in the accuracy 
of estimates. However, the infancy of the object points size metric means that there is a shortage of object points based 
software historical projects, on which to base the empirical validation of the new object points based software cost estimation 
models. Hence, the relationship between the extensively used function points and newly invented object points size metrics 
have been conceptualized and utilized in a novel forward approach to convert the function points projects data into their 
equivalent object points data. Empirical investigations of 66 function points projects have shown high correlation and 
significance, 88% and 0.33, respectively, between the resulting object points effort estimates and the actual function points
effort. Furthermore, the resulting object points data have been utilized to model the embodied function points-object points
relationship in two specialized productivity factors and function points type dependent linear models. The resulting models 
have shown high fitness, R2, values of 0.95, for both models.
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1. Introduction
Software system sizing has been a difficult and 
controversial topic for a long time. Great debates have 
been reported in the literature [14] on whether lines of 
code is a better sizing metric than Function Points 
(FP), and vice versa. This is dependent on several 
factors such as system type, programming language(s), 
and the software development life cycle phase in which 
the estimation is conducted. Several software systems 
size metrics have emerged to cope with recent 
developments in software engineering including new 
development paradigms, new programming language
generations, and new Computer Aided Software 
Engineering (CASE) development tools. Object Points 
(OP) [1], being a size metric developed to cope with 
the visual widgets (objects) of recent programming 
language generations, is a typical example of those 
metrics that were intended to be used and estimated 
earlier and faster than lines of code and FP. 

Several software cost estimation models [1, 2] have 
been built on top of this relatively young sizing metric 
and, most interestingly, their results were promising 
and comparable to those models that are based on the 
more complicated low level lines of code and FP size 
metrics. However, all these new models share the same 
problem. There is a shortage of historical project data, 
which significantly reduces the reliability of their 
empirical validation. The main reason behind this data 

shortage is that these new metrics are based on the 
most recent software development life cycles artifacts, 
where only a limited number of organizations have 
adopted and applied them in their software 
development projects [14]. However, the International 
Software Benchmarking Standards Group (ISBSG) [6] 
has taken the responsibility of building a large volume 
software project repository based on the FP size 
metric. On the other hand, building similar repositories 
based on the new sizing metrics, e. g., OP, will take a 
long time. This requires them to be recognized and 
applied by software development houses yet, until the 
data is available to justify a change of metric they may 
be loath to do so. 

Thus, the promising results of the new sizing metric, 
e. g., OP, based software cost estimation models, and 
the unavailability of historical data raised a number of 
research questions: 

• How can these models be validated and employed in 
the software cost estimation phases of the current 
software development life cycles?.

• Is it possible to generate highly reliable software 
project data for the new sizing metrics, e. g., OP, 
from the currently available data?.

• To what extent will the generated data be
sufficiently reliable to be employed in building and 
validating software cost estimation models that are 
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applicable at the early stages of the software 
development life cycle?.

Consequently, this research is aimed at investigating 
these research questions that exist between the new OP 
and the traditional FP sizing metrics. These sizing 
metrics, OP and FP, have been selected for this 
investigation for three major reasons. First, OP has 
been used in earlier research [8] as a basis for a use 
case-OP based software cost estimation model and 
more historical projects data are needed to inform its 
reliability. Second, the ISBSG projects data repository 
provides a large volume of reliable FP based software 
projects data. Third, there appears a hidden 
relationship between the elements of OP and FP sizing 
metrics that should be bridged and modelled for further 
research and validation.

Section 2 surveys the most well-known software 
size metrics conversion literature. The process of 
bridging the relationship between FP and OP is 
explained in section 3. A forward FP-OP conversion 
approach is proposed in section 4. The implementation 
of the forward conversion approach is discussed in 
section 5. Section 6 briefly explains the nature of the 
ISBSG empirical data, and evaluates the empirical OP 
results. Finally, the conclusion and the outline of future 
work are presented in section 7.

2. Size Metric Converters
The most well known software size metrics converter 
in the literature is the FP-lines of code backfiring table 
produced by Jones’s at the Software Productivity 
Research Centre [9, 15]. This table, as shown in the 
extracted sample in Table 1, approximates the number 
of logical source statements of each programming 
language/ language generation that correlated roughly 
with a single FP [15], as observed by analyzing several 
historical projects. 

Table1. An extract of FP-lines of code backfiring table.

Programming Language/ 
Language Generation

Average Source 
Statements Per FP

1st Generation default 320
2nd Generation default 107
3rd Generation default 80
4th Generation default 20
5th Generation default 4
C++ 55
Java 53

Smith [13] proposed a use case-lines of code 
backfiring table to approximate the system size in lines 
of code from its use case model. Smith assumed that 
each software solution has a structural hierarchy 
consisting of the following levels: System of systems, 
system(s), subsystem group, subsystem(s), and 
class(es). As detailed in Table 2, the method 
determines and uses typical adjacent factors between 

the architectural levels to approximate the lines of code 
system size [13].

Table2. Use case model-lines of code architectural level adjacent 
factors.

Architectural Level Adjacent Factor
Operation Size 70 lines of code
Number of operations per class 12
Number of classes per subsystem 8
Number of subsystems per subsystem group 8
Number of subsystem group per system 8
Number of systems per system group 8
Number of external use cases (per system, 
subsystem, etc.) 10

Unfortunately, there are no available historical 
projects data that accommodate OP and FP 
information. Thus, a straightforward statistical analysis 
could not be performed to generate a similar FP-OP 
conversion table, which facilitates the process of 
generating OP projects data, and consequently 
validating the OP based software cost estimation
models. Therefore, the problem should firstly be 
conceptualized to bridge the relationship between the 
elements of the two sizing metrics. Then, the available 
FP data could be used empirically to investigate this 
conceptualization.

3. FP-OP Relationship Conceptualization
Albrecht, as cited in [12], has developed the well-
known FP size metric which sizes the software project 
based on its functionality. It counts the number of 
Internal Logical Files (ILF), External Logical Files 
(ELF), External Input (EI), External Output (EO), and 
External Queries (EQ). Banker et al. [1] have proposed 
the OP size metric as a replacement for FP to cope 
with the visual widgets of the fourth generation 
languages and the integrated CASE environments. OP 
is mainly concerned with producing a reliable early 
count of the application points, being the sum of the 
adjusted number of screens, reports, and third 
generation language modules that are expected to be 
developed to supplement the fourth generation 
languages code. Hence, OPs do not relate to object 
oriented concepts such as inheritance, encapsulation, 
etc, but are more closely dependent on the user 
interface of the system being developed. Furthermore, 
the OP method was adopted and generalized by the 
COCOMO II team [2] as a size measure in the early 
prototyping stage, namely the Application 
Composition model. Section 3.1 outlines the mapping 
between the elements of the original FP and OP sizing 
metrics, while section 3.2 explains how the different 
OPs with different complexity levels consume the 
different FPs elements based on the original FP and OP 
methods. 
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3.1. FPs-OPs Elements Mapping
In defining OP measures, Boehm et al. [2] identified 
three categories of complexity levels for screens and 
reports: Simple, medium, and difficult. Furthermore, 
OP complexity levels are determined using specialized 
characteristic dimensions. As detailed in Table 3, 
screens’ complexity levels are rated according to the 
embodied number of views and data tables [1, 2]. Each 
view contains several EI, EO, or EQ items that send or 
receive data to or from several ILFs or ELFs. Reports 
are rated similarly by the embodied number of sections 
and data tables [1, 2]. Furthermore, as can be seen in 
Table 3, screen and report complexity levels are 
dependent on the values of their characteristic 
dimensions [2]. For example, a screen that contains 
less than 3 views and interacts with less than 4 data 
tables is considered as a simple screen. At the same 
time, a screen that contains 3-7 views and interacts 
with less than 4 data tables is also considered as a 
simple screen. Hence, in order to facilitate the 
subsequent phases in bridging the relationship between 
FP and OP sizing metrics, new derived screen and 
report complexity level schemes have been defined in 
this conceptualization phase. Table 4 presents the 
derived screen complexity levels rating scheme.

Table 3. Original OP method screens complexity rating scheme.
Number and Source of Data TablesNumber of

Views
Contained

Total < 4
(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

< 3 Simple Simple Medium
3 – 7 Simple Medium Difficult
> 8 Medium Difficult Difficult

Table 4. Derived screens complexity levels.
Number and Source of Data TablesNumber of

Views
Contained

Total < 4
(< 2 srvr
< 3 clnt)

Total < 8
(2/3 srvr
3-5 clnt)

Total 8+
(> 3 srvr
> 5 clnt)

< 3 Simple 1 Simple 2 Medium 1
3 – 7 Simple 3 Medium 2 Difficult 1
> 8 Medium 3 Difficult 2 Difficult 3

When defining complexity levels for third 
generation language modules, Boehm et al. [2] have 
identified one complexity level for OPs. They stated 
that all third generation language modules OPs are 
rated equally as difficult as modules that are built to 
support fourth generation languages code. Possibilities 
of third generation language modules include 
time/event-triggered module, application programming 
interface/protocol based system call, and data 
manipulation supportive module [10, 16]. Hence, third 
generation language modules use EI, EO, and EQ in 
performing their tasks, which will incorporate some 
interaction with ILF or ELF to inquire about the 
system state or save their results. Accordingly, Figure 
1 presents a suggested mapping between the elements 
that compose the FP and OP size metrics. 

Figure1. Suggested FP-OP elements mapping.

3.2. Qualitative & Quantitative Analysis of FP-
OP Relationship

According to the original OP method complexity levels 
described in the previous section, there are 9 distinct 
complexity levels of screens, 9 distinct complexity 
levels of reports, and 1 complexity level for third 
generation language modules. This focuses attention 
on discovering more about the nature of the FP 
elements that are embodied in each OP complexity 
level. Subsequently, several distinct FP element 
combinations have been constructed and matched to 
the different OP complexity levels taking into 
consideration the original characteristic dimensions of 
each OP complexity level, and the following FP-OP 
mapping and consumption guideline: 

Guideline 1: Screen sections and report views should 
be associated with EI, EO, and EQ FP elements. Also, 
screen and report data tables characteristic dimensions 
should be associated with ILF and ELF FP elements.

Table 5 presents a sample from the constructed FP 
element combinations and their corresponding screen 
OP complexity levels. Assuming that this 
correspondence is supported by empirical analysis, this 
should deal with the qualitative aspects of the 
relationship between FP and OP elements. 
Furthermore, these FP-OP element pairings form the 
basis for the quantitative analysis of the FP-OP 
element relationship. As a result, the values of the 
original OP complexity levels characteristic 
dimensions have been utilized to define the 
quantitative FP consumption for each OP complexity 
level. In addition, the following FP-OP elements 
mapping and consumption guidelines have also been 
used to bridge the gaps between the semantics of the 
different FP and OP elements.
Guideline 2: The complexity of managing one ELF
equals that of two ILFs due to the overhead of external 
systems communication. 

Hence, the existence of ELFs in any FP combination 
raises the complexity of the corresponding OP 
complexity level. This may result in some OP 
complexity levels where the total FP consumption is 
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less than the original OP characteristic dimensions 
values.

Table 5. Screens complexity levels and their matched FPs 
combinations sample.

Screen 
Complexity 

Level
FP Combination

Simple 1 EI, ILF
Simple 3 EI, ELF
Medium 1 EI, EQ, ILF
Medium 2 EO, EI, ILF
Difficult 2 EI, EQ, ELF
Difficult 3 EO, EI, ILF, ELF

Guideline 3: OP characteristic dimension intervals 
have been distributed among the involved complexity 
levels uniformly to highlight the complexity 
differences in the resulting objects of the same interval. 

In that, simple objects have been assigned the lower 
limit of the dimension’s interval. Medium objects have 
been assigned the middle of the dimension’s interval, 
and, difficult objects have been awarded the upper 
limit of the dimension’s interval. For example, 
according to the original OP method complexity rating 
scheme, any screen that consists of 3-7 views could be 
considered as simple, medium, or difficult depending 
on the embodied number of data tables. Hence, in the 
defined FP-OP consumption scheme, simple screens 
are considered to have 3 views, medium screens are 
considered to have 5-6 views, and difficult screens are 
considered to have 7 views.
Guideline 4: According to the original OP method, any 
screen may contain less than 3, from 3 to 7, or greater 
than 8 views.

However, no mention is made of screens containing 
8 views. It is not clear how they are classified and 
rated. Instead of extending the range of the last interval 
to include screens that have greater or equal 8 views, a 
decision has been made to extend the range of the 
middle interval of screens views to include screens that 
contain 8 views since it covers a diverse range of OP 
complexity levels: Simple, medium and difficult. 
Guideline 5: It has been found, by surveying the 
literature [10, 17], that regardless of the third 
generation language module type, a minimum of 1 FP 
for each FP element will be needed to develop any 
third generation language module.

As a result of applying the above FP-OP mapping 
and consumption guidelines to the matched FP-OP 
combinations, three screens, reports, and third 
generation language modules FP consumptions 
schemes have been constructed. Table 6 presents a 
sample from the constructed screen-FP consumption 
scheme. 

4. Forward FP-OP Conversion Approach
This has been denoted as a forward bottom-up 
approach compared to a backward top-down approach, 

being developed by the research team, as simply the 
latter approach starts from the assumption that the total 
effort when estimating using FPs is equal to the total 
effort when estimating using OPs.

In the forward approach, the OP counts and effort of 
ISBSG FP historical software projects are estimated 
based on the above newly defined FP-OP elements 
mapping and consumption schemes. The following 
sections detail the underlying assumptions, input and 
output, and workflow of the proposed conversion 
approach. 

Table 6. Screens FP consumption scheme sample.
Screen 

Complexity 
Level

EI EO EQ ILF ELF

Simple 1 1 2
Simple 3 3 2
Medium 1 2 1 8
Medium 2 4 2 6
Difficult 2 5 4 5
Difficult 3 6 5 7 5

4.1. Assumptions
The forward FP-OP conversion approach has been
built on top of several assumptions that facilitate the 
conversion process and place the development context 
of ISBSG software development projects: 

1. FP and OP elements are related to each other 
according to the defined FP-OP elements 
relationship.

2. The original OP method productivity scheme does 
not fit ISBSG FP projects.

3. The generated OP counts should cover all the OP 
types in their ideal proportions in real world 
systems.

4.2. Input and Output
For each ISBSG FP project, several input data are 
required by the forward conversion approach to infer 
its corresponding OP elements. The required input data 
could be partitioned into two groups as follows:

1. FP Project Information: This includes actual FP 
effort, EI, EO, EQ, ILF, and ELF FPs counts.

2. Productivity Project Information: This includes 
lower CASE tools with/without code generation 
used, upper CASE tools used, integrated CASE 
tools used, and programming language generation.

On the other hand, the forward conversion approach 
should produce the following OP artefacts for each 
project: 

1. Total Adjusted OP (AOP) count.
2. Total unadjusted OP count.
3. Unadjusted OP count breakdown.
4. OP re-estimated effort.
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4.3. Conversion Workflow
The workflow of the forward conversion approach 
consists of four phases:

1. Determine project parameters.
2. OP counting and FP consumption.
3. Project re- estimation.
4. Record conversion results. 

Each phase has a well-defined objective and 
relationship with subsequent phases. In addition, the 
objective of each phase is carried out by one or more 
specialized steps. The boundaries of the conversion 
phases and the embodied steps are presented in the 
workflow of Figure 2. The corresponding details of the 
conversion phases and steps are explained in the 
following subsections. However, a detailed numerical 
conversion example that explains the details of the 
proposed forward conversion approach is presented in 
[7].  

Figure 2. Forward conversion approach workflow.

4.3.1. Phase I: Determine Project Parameters 

The main objective of this phase is to place the OP 
context of the current project to guide the FP-OP 
conversion process. For realistic and correct generation 
of OP counts, it is necessary to cover all OP types in 
their ideal proportions in real world systems. Hence, 
according to the current project type (i. e., shared or 
stand alone application [6, 14]), the OP types and 
complexity levels contribution proportions are
determined from the calculated contribution 
proportions in Tables 7 and 8.

4.3.2. Phase II: OP Counting and FP Consumption

This phase embodies the core functionality of the 
forward conversion approach. It follows a bottom-up 
iterative approach to construct the OP counts of the 
current project. Furthermore, it employs the FP-OP 

consumption schemes to achieve the main objective of 
this phase by the means of four specialized steps.

Step 1: Check FPs Availability
The first step in this phase is the assessment of the 
termination condition for the OP counting iterations. It 
checks whether all FPs have been consumed, and if 
not, determines whether or not the remaining FPs fit 
the FP consumption scheme of any OP complexity 
level. The outcome to these queries determines the 
next step to be executed. If the remaining FPs fit the 
FP consumption of one or more OP complexity level, 
control is transferred to step 2, otherwise step 4 is 
executed. Alternatively, if all FPs have been 
consumed, control is transferred to phase III.
Step 2: Determine New Candidate OP Type for 
Addition
In this step, a new candidate OP complexity level for 
addition is determined on the basis of both the 
remaining FP topography and the current project OP 
proportions.
Step 3: Consume the Corresponding FP for the 
Determined OP Type
This step is specialized in using the defined FP-OP 
consumption schemes to consume the corresponding 
FPs for the determined OP complexity level. 
Step 4: Handle Additional FPs
This step is executed when the remaining FPs do not fit 
the FP consumption of any OP complexity level. 
Hence, an additional FP handler is triggered to 
distribute the additional FP across several OP 
complexity levels that have not utilized the upper limit 
of their OP characteristic dimensions.

Table 7. OP contribution proportions in the different software 
systems types.

Software System Type
OP Type Shared 

Application
Stand-Alone 
Application

Screen 38% 57%
Report 24% 43%
Third 
Generation 
Language
Module

38% 0%

Table 8. OP complexity levels sub-proportions in the different 
software systems types.

OP Type Complexity 
Level

Shared 
Applications’ 
Proportions

Stand-Alone 
Applications’ 
Proportions

Simple 79 % 49 %
Medium 17 % 32 %Screen
Difficult 4 % 19 %
Simple 78 % 48 %
Medium 20 % 35 %Report
Difficult 2 % 17 %

4.3.3. Phase III: Project Re-Estimation 

The main objective of this phase is to re-estimate the 
project effort using the resulting AOP count as: 

Effort = AOP/OP-Productivity
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where AOP is the resulting count from the previous 
phase, and the OP-productivity, determined from the 
calculated programming language generation and 
CASE tools dependent OP productivity scheme in 
Table 9.

Table 9. Calculated OP productivity scheme.

CASE Tool Type and Level

Programming 
Language 
Generation

Upper 
CASE

Lower 
CASE

(no code 
generation)

Lower 
CASE 

(with code 
generation)

Integrated 
CASE

No 
CASE 
Tools

Third
Generation 
Language

5 6 7 8 4

Fourth 
Generation 
Language

7 8 9 12 6

4.3.4. Phase IV: Record Conversion Results

The main objective of the last phase of the forward 
conversion approach is to archive the conversion 
results, as specified in the input and output section, for 
expert analysis and evaluation.

5. FP-OP Converter System
Java, being a powerful portable language that eases the 
burden of platform dependent languages [4], has been 
adopted to implement the proposed conversion 
approach. Section 5.1 discusses the conversion system 
architectural style and the functionalities of the 
different system components are outlined in section 
5.2.

5.1. System Architecture
A model-view-controller 3-tier architecture [14] has 
been adopted in the implementation of the conversion 
system to separate the concerns of the different system 
components. The first tier, the view tier, is represented 
by a graphical user interface component. The middle 
tier, the controller tier, holds the business logic 
component of the conversion approach. The last tier, 
the persistence model tier, is represented by a data 
management component. 

5.2. Components Functionalities
Data management component is the data consumer and 
producer component. It consumes the data by reading 
the required input data project by project from the 
source file. First, the FP project information is 
retrieved and saved independently. Then, the 
productivity project information that is required during 
the conversion process is fetched.  It also produces data 
by generating an output excel spreadsheet that contains 
the conversion results. 

Business logic component is the main component 
that holds the technical application of the forward 

conversion approach, which is presented in section 4.
In addition, it is the responsibility of this component to 
keep a historical record about each resulting OP and its 
corresponding consumed FPs. 

Finally, a specialized graphical user interface 
component has been designed and developed, as shown 
in Figure 3, to facilitate the system customization and 
configuration to fit the different development 
environments. This enabled the user to overwrite the 
empirically calculated default values of the OP type’s
contribution proportions, OP complexity level 
contribution proportions, and input/output data files
physical locations.

[

Figure 3. FP-OP converter system graphical user interface.

6. Empirical Results Evaluation
The source of the FP projects empirical data is the 
ISBSG Release 9 data repository [6]. Currently, it 
holds information about 3,024 software projects 
gathered from different organizations around the 
world. Several fidelity and sizing filtering criteria [7] 
have been applied to ISBSG repository to extract the 
most appropriate projects for the empirical and critical 
evaluation of the proposed forward conversion 
approach. This resulted in reducing the selected 
number of ISBSG projects to 66 as detailed in [7]. 
Consequently, several statistical tests, as discussed in 
sections 6.1 and 6.2, have been performed to 
investigate the reliability of the defined FP-OP 
relationship in addressing the research questions.

6.1. Reliability of the Forward FP-OP 
Conversion Approach 

The relationship between the calculated and actual 
ISBSG data attributes has been assessed using both 
Spearman’s correlation coefficients and paired sample 
T-test significance measures [5, 7]. The outcomes from 
investigating the relationship between the forward 
conversion approach estimated effort and ISBSG 
actual effort have shown high correlation and 
significance, 88% and 0.33, respectively. Further 
highly desirable correlation, 87%, has been discovered 
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between the calculated AOP and both FP types; 
unadjusted and adjusted. Having the high correlation 
and significance relationships between the main output 
attributes of the forward conversion approach and the 
ISBSG actual data can be considered as supporting the 
reliability of the defined FP-OP elements mapping and 
consumption schemes.

6.2. FP-OP Relationship Modelling 
The construction of the anticipated FP-OP conversion 
table needs a large volume of historical data to cater 
for the increasing number of programming languages 
and programming language generations. Moreover, it 
should be regularly maintained to consider the 
emerging versions of current and new programming 
languages. Therefore, one could conclude that the 
relationship between FP and OP should be independent 
from any external factors that might limit its stability 
and reliability. Thus, the embedded relationship 
between FP and OP sizing metrics should be modelled
using the converted OP data.

FP effort is calculated as: 

FPEffort = Total AFP/FP Productivity

Similarly, OP effort is calculated as: 

OPEffort = Total AOP/OP Productivity

Having available the completed and delivered ISBSG 
projects, allowed a comparison of the two predicted 
effort estimates with the actual expended effort.  Given 
the high correlation, we can assume that the effort 
estimates can be deemed equal. Hence, equating FP 
and OP effort formulae results in one consolidated 
formula as:

oductivityPrOP
TotalAOP

oductivityPrFP
TotalAFP

=

Re-factoring this formula has resulted in obtaining a 
linear relationship between FP and OP as:

oductivityPrFP
oductivityPrOPTotalAFPTotalAOP ×=  

Hence, the relationship between OP and FP sizing 
metrics is governed by an adjustment factor being the 
ratio between the OP and FP productivities, and vice 
versa. Accordingly, two linear curve fitting statistical 
studies have been conducted to investigate the fitness 
of two specialized productivity factors and FP type 
dependent FP-OP conversion models:

1. Unadjusted FP (UFP) dependent model:
AOP =  (0.66×UFP) + (-0.27×UFP×Z1) 

+ (-0.18×UFP×Z2) + (-0.29×UFP×Z3) 
+ (-0.26×UFP×Z4) + 30.87

2. Adjusted FP (AFP) dependent model:

AOP =  (0.58×AFP) + (-0.28×AFP×Z1) 

+ (-0.13×AFP×Z2) + (-0.27×AFP×Z3) 
+ (-0.23×AFP×Z4) + 33.17

where Z1, Z2, Z3, and Z4 are project size and 
programming language generation indicator 
variables as summarized in Table 10.

Table 10. Specialized FP-OP conversion models productivity 
factors indicators.

Indicator 
Variable Value Productivity 

Factor
Z1 0 or 1 Small Size Project

Z2 0 or 1 Medium Size 
Project

Z3 0 or 1 Third Generation 
Language Project

Z4 0 or 1 Fourth Generation 
Language Project

The fitness of the resulting FP-OP conversion 
models has been measured by R2 statistical fitness 
measure. R2 is the proportion of variation in the 
dependent variable, AOP [5]. The values of R2 range 
from 0 to 1. Small values indicate that the model does 
not fit the data well. Finally, the fitness, R2, of the 
resulting UFP/AFP-OP conversion models is 0.95.

7. Conclusion and Future Work
A novel approach to bridge the relationship between 
FP and OP sizing metrics has been proposed. The 
intension, as per the defined research questions, is to 
investigate the applicability and reliability of inferring 
and reusing the OP information of a software project 
from its available FP information. Hence, the 
relationship between the elements of OP and FP sizing 
metrics has been bridged in two phases. First, a 
mapping scheme between the elements of the two 
sizing metrics has been defined. Then, the second 
phase focused on quantifying the defined FP-OP 
relationship.

A multi-phase forward conversion approach has 
been proposed to infer the OP information for 66 
ISBSG multi-organizational historical projects using 
the defined FP-OP elements mapping and consumption 
schemes. Consequently, the reliability of the defined 
FP-OP relationship has been evaluated by assessing the 
resulting OP attributes against the actual ISBSG FP 
and effort attributes. The evaluation of the conversion 
approach empirical results showed high correlation, 
88%, between the OP estimated and FP actual efforts 
that generally supports the reliability of the defined FP-
OP elements mapping and consumption schemes. 
Furthermore, a high correlation, 87%, has been found 
between the calculated AOP and unadjusted/adjusted 
FP. This confirms the hypothesis that motivated this 
research to reveal the existence of a hidden relationship 
between the two size metrics as defined in the 
proposed FP-OP relationship. The low level 
investigation of the above correlation in the performed 
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statistical studies showed that the lower the underlying 
programming language generation is, the higher the 
correlation between FP and OP size metrics. 

The high AOP and FP correlation has been used to 
relate the FP and OP effort formulae to discover the 
embodied relationship between them. It has been 
demonstrated that the AOP is linearly related to the FP 
by an adjustment factor, and vice versa. Statistically, 
two productivity factors and FP type dependent linear 
models have fit the relationship between FP and AOP 
with high statistical fitness, R2, values, 0.95, for both 
models. 

To facilitate the conversion process, a 3-tier 
architecture [14] FP-OP converter has been developed 
using JAVA due to its diverse features that suite the 
purposes of the current and planned research. Future 
work is being planned to integrate the FP-OP converter 
in a multi-model software cost estimation CASE tool 
that suits the different stages of the software 
development life cycle.

Several requirements elicitation and modelling 
techniques have been used to model and specify 
system requirements [11, 14]. Use case elicitation and 
modelling is one of the techniques that have been used 
extensively in the literature. Subsequently, several use 
case model based software cost estimation models [3,
8] have been developed since use case models capture, 
relatively, an accurate representation of the users’ 
requirements. Therefore, further work is being carried 
out to integrate the resulting FP-OP conversion models 
with earlier work [8] specialized in building a use case 
model and OP based software cost estimation model 
that is applicable at the early stages of the software 
development life cycle. In parallel, reusing the 
generated OP data in building and validating OP based 
software cost estimation models is being evaluated by 
the research team. 
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