
The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 177

The Priority of Rules and the Termination
Analysis Using Petri Nets

Latifa Baba-hamed1 and Hafida Belbachir2
1Computer Science Department, University of Oran Es-Sénia, Algeria

2Computer Science Department, University of USTO, Algeria

Abstract: An active database system is a conventional database system extended with a facility for managing active rules (or
triggers). Rules in active database systems can be very difficult to program, due to the unstructured and unpredictable nature
of rule processing. In this paper, we propose a method of termination analysis of rules in an active database system based on
Petri nets. We consider here the model structure and the model execution of the approach.

Keywords: Active database, ECA rules, termination rules, Petri nets, path, priority.

Received December 4, 2005; accepted June 19, 2006

1. Introduction
An active database system is a traditional database
system and in addition, is capable to react,
automatically, to state changes without the user's
intervention. The active rules are, in general, of the
form Event Condition Action (ECA). The action
describes treatments to achieve when a specific event
happens and some condition holds.

The system of active rule is the most important layer
in an active database system. It is composed of the
three main models that are: The model of rule
specification, the model of representation and the
model of execution. The model of rule specification
permits the specification of the three components
(event, condition and action) of the rule and its
attributes. The model of active rule representation
permits to specify the way in which rules are integrated
in the (relational or object oriented) database taking
into account the features of the data model, the
associated language of data manipulation, and the
model of transaction used. The model of execution
permits to describe the manner in which the set of
triggered rules is treated to be executed. This model
establishes a link between the set of rules defined by
the programmer and the set of transactions of a
database application. It must take into account a certain
number of factors such as: The modes of coupling, the
net effect, the mode of events consumption, the instant
of events consumption, and the multiple rules [8].

The active rule behaviour in such a system is,
however, difficult to predict and require the
development of techniques to analyse properties of a
set of rules automatically. One of these important
properties is the property of the rule termination. The
termination of rules is the property which determines if

for all user-generated operations and initial database
states, rule processing always reaches a point at which
there are no triggered rule to consider. Many works
concerning the active rule analysis developed
techniques that permit, to the programmer of rules, to
predict in advance (to the compilation) the termination
of the execution of a set of rules [1-6, 9, 11-14, 16].
These methods are called static analysis methods.
Other methods called dynamic analysis methods are
pared, they permit to study the active rule termination
at the runtime [4].

We are interested to the rule termination analysis
approach given in [14] which we improve by
considering the impact of the rule priority on the
termination analysis problem. We have chosen this
method because it detects cyclic paths in the base of
ECA rules, can analyse the relationships among ECA
rule components and detects cases of termination
which are not detected by the other approaches.

The remainder of this paper is organised as follows.
Section 2 presents some methods of analysis of the
active rule termination, while section 3 exposes the
chosen method briefly and shows how the priority of
rules can affect their termination. Section 4 gives the
implementation of the termination analyzer. Finally,
section 5 concludes the paper.

2. Termination Methods
Among methods proposed to study rule termination,
some are based on models of graphs, and others use
formal basis as the systems of rewrite or the Petri nets.
Aiken et al. [1] are the first to introduce the notion of
Triggering Graph (TG). In TG, nodes represent rules.
Two rules r1 and r2 are joined by a directed edge r1
toward r2 if the action of r1 contains an event which

178 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

triggers r2. The authors showed that a triggering graph
without cycle determines and guarantees the
termination of rules. However, the authors don't take
into account the rule condition or the effect of the
execution of the rule action on the condition of another
rule. This approach has been proposed in the specific
case of the relational system.

In [5], an approach for a static analysis of the
termination of condition action rule has been
presented. This method is based on a “propagation
algorithm”, which uses an extended relational algebra
to accurately determine when the action of one rule can
affect the condition of another. The termination
analysis is made by building an Activation Graph
(AG). In AG, nodes represent rules, and directed edges
indicate that one rule may activate the other. If there is
no cycle in the graph AG then rule processing is
guaranteed to terminate. The propagation algorithm is
used to decide when an edge (ri, rj) belongs to AG. To
determine if ri may activate rj, the authors apply the
propagation algorithm to rj’s condition C and ri’s
action A. If the propagation algorithm yields insert or
update operations, then the execution of ri may result
in new data satisfying rj’s condition. Thus, ri may
activate rj, and the edge (ri, rj) belongs to the graph. If
only delete operations or no operations are produced
by the propagation algorithm, then the execution of ri
cannot result in new data for rj’s condition, and the
edge is not included in the graph.

The work in [6] refined and improved the previous
method and considered both condition action and ECA
rules, making their approach widely applicable to
relational active database rule languages. The
inconvenience of this method is that its application is
complex and reserved to the relational databases.

The approach in [4] proposed a technique that
exploits the information of the two graphs TG and AG
to analyse the termination of a set of ECA rules. This
analysis uses an algorithm called algorithm of
reduction. The inputs of the algorithm are a set of rules
R without priority, and the two correspondent graphs
TG and AG. If R is reduced to the empty set at the end
of the algorithm execution, then the termination is
guaranteed. The termination is not guaranteed
otherwise. This approach presented an inconvenience
because it didn't propose method of building the AG
graph which is not obvious. Also, it doesn't detect all
cases of termination.

Lee and Ling [13] proposed a path technique for
reducing the graph TG. The method considers together
the conditions of long triggering sequences called
activation formulas. It is necessary to guarantee that
the execution of rules outside the triggering sequence
cannot unpredictably change the database state. Hence,
only non-updatable predicates can be included in the
activation formula. Since this condition severely limits
the applicability of the technique, the selection of

predicates that can be updated only a finite number of
times by trigger processing, is proposed.

Baralis et al. [3] grouped the active rules into
modules, termination of rule execution, within each
module is assumed and inter-module termination is
analysed. It is the only method that presents a modular
conception of the active rules. Its inconvenience is that
it requires a complementary method to analyse rules
within a module.

Bailey et al. [2] used abstract interpretation for the
termination analysis of active rules. The idea is to
reason about sequences of database states using
“approximate semantics”, and to use the fix point
computation (over a lattice) to handle cycles. This
approach is applicable to a simple and restricted rule
language.

A different approach to active rule analysis is taken
in [11], where ECA rules are reduced to term rewriting
systems, and known analysis techniques for
termination of term rewriting systems are applied. The
analysis is based on an object-oriented data model and
instance-oriented rule execution model. An instance
database is a collection of objects and events. A stable
instance of the database is an instance where there is
no event in waiting of treatment. An intermediate
instance is an instance where there is at least one event
in waiting of treatment. The termination means that a
stable instance is reached. This approach is powerful,
since it exploits the body of work on conditional term
rewriting system, but its implementation appears to be
complex even for small rule applications.

Kokkinaki [12] used Parameterised Petri Nets
(PPNs) to analyse the active rule termination in the
relational model. A PPN is a Petri Net (PN) whose
places are parameterised. Parameters associated to
places correspond to events, to names of relations, to
names of attributes of these relations and expressions
over the names of attributes. Each transition in the PPN
corresponds to an active rule. The firing of the
transition corresponds to the rule execution. If there are
no cycles in the PPN model of an active Data Base
System (aDBS) then the rules in the aDBS must
terminate. The inconvenience of this approach is that,
the use of PPN in modelling complex systems results
in complex graphic representations which are very
difficult to be conceptualised, and handled.

Other PN based method is presented in [16]. To
represent the triggering and activation notions in the
PN, the authors gave for each rule two subnets Ei (for
the triggering) and Ci (for the activation). The authors
detected a non-terminating behaviour of rules using a
Coverability Graph (CG) based on the Reachability
Graph (RG) which contains all the markings (as nodes)
which may reached from the start marking by firing all
the possible transition sequences. To use the CG for
the termination analysis, the authors extended the PN
by introducing for every rule (ri) a counting place (P (i,
cnt)), which counts the number of executions of ri. The

The Priority of Rules and the Termination Analysis Using Petri Nets 179

rule set exhibits a non-terminating behaviour if there is
a rule ri for which the CG of the PN contains a node
which contains an ∞ in the component (p (i, cnt)). In
this approach, the conception of the PN is too complex.
In addition, the presence of a cycle in the PN does not
imply that will occur an infinite rule triggering.

Li and Marin [14] presented an approach based on
coloured Petri nets named Conditional Coloured Petri
Net (CCPN) for modelling the active database
behaviour. Incidence matrix of PN theory is used to
find cyclic paths existing in the CCPN. Cycles which
satisfy some theorems given by the authors are deleted.
If there is no cycle in the CCPN, the termination of the
corresponding set of rules is guaranteed. Nevertheless,
this approach did not consider the priority of rules.

3. Proposed Method
Our approach is inspired of [14] based on coloured
Petri nets to describe and analyse ECA rules. We
improve this method by adding the notion of rules
priority and showing how the termination analysis can
be affected by this notion. PN is a graphical and
mathematical tool and may be applied in various areas.
Active database is a promising application area of PN.
Up to now, few researches have used PN as ECA
specification language [12, 14, 16]. In SAMOS [10],
PN is partially used for composite event detection and
termination analysis.

3.1. Rule Modelling
In our model, named Extended Colored Petri Net
(ECPN), the rule event is represented by a place p1, the
condition c and the priority pr of the rule are attached
to a transition t, and the rule action a is represented by
a place p2. Relationships between the rules can be
viewed in the same graph as shown in Figure 1.

Figure 1. Relationships between two rules r1 and r2.

3.2. Formal Definition of an ECPN
An extended coloured Petri net ECPN is defined as
follows:

ECPN = {E, P, T, A, N, C, Con, Action, D, τ, I}

Where:

• E: Is a finite set of non-empty type, called colour
sets. It determines all the data value, the operations

and functions that can be used in the net
expressions.

• P: Is a finite set of places. It is divided into four
subsets: Pprim, Pcomp, Pvirt and Pcopy. Pprim represents
the set of primitive places and correspond
graphically to a single circle. Pcomp represents the set
of composite events. The notion of composite event
is aborted in [7, 8, 10, 15] with more details. Pcomp
includes the following events: Negation, sequence,
closure, last, history, and simultaneous. They
correspond graphically to a double circle. Pvirt
represents the set of composite events which
includes the conjunction, disjunction and any. They
correspond graphically to a single dashed circle.
Pcopy is the set of places which are used when two or
more rules are triggered by the same event. They
correspond graphically to a double circle where the
interior circle is a dashed one.

• T: Is a finite set of transitions; it is divided into three
subsets: Trule, Tcopy and Tcomp. Trule corresponds to the
set of rules. Each transition of rule type is
represented graphically by a rectangle. Tcopy is the
set of transitions of copy type. They are represented
graphically by a single bar. A copy transition is used
when one event e can trigger two or more rules. A
copy transition will produce n same events where n
is the number of rules which are triggered by the
same event e. Tcomp is the set of transitions of
composite type. They are represented graphically by
a double bar. A composite transition is used for
generating a composite event from a set of primitive
or composite events.

• A: Is a finite set of arcs. It is divided into two
subsets: The input arcs which are defined from P to
T, and the output arcs which are defined from T to
P. Inhibitor arcs are used to represent the negation
composite event.

• N: Is a node function. It maps each arc into a pair,
where the first element is the source node and the
second is the destination node (N: A → P x T ∪ T x
P).

• C: Is a color function. It maps each place p to a type
C (p) (i. e., C: P → E).

• Con: Is a condition function. It is defined from
either Trule or Tcomp into expression such that:

∀ t ∈ Trule: Type (con (t)) = B, where Con
function evaluates the rule condition.

∀ t ∈ Tcomp: Type (con (t)) = B, where Con
function evaluates the time interval of t
against tokens timestamp.

B is used to denote the boolean type containing
the values false and true.

• Action: Is an action function. It maps each rule type
transition t ∈ Trule into a type C (p) which will be
deposited into its output place.

180 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

• D: Is a time interval function. It is defined from
Tcomp to a time interval [d1 (t), d2 (t)], where t ∈
Tcomp, and d1 (t), d2 (t) are the initial and the final
interval time, respectively. The interval is used by
the Con function to evaluate transitions t ∈ Tcomp.

• τ: Is a timestamp function. It assigns each token in
place p a timestamp.

• I: Is an initialization function. It maps each place p
into a closed expression which must be of type C
(p).

3.3. ECPN Execution
In ECPN, a token is a triple (p, c, time) where p ∈ P, c
∈ C (p), and time specifies the natural time when the
token is deposited into the place p. The set of all token
is denoted by TS. A marking is a multi-set over TS.
The initial marking M0 is the marking which is
obtained by evaluating the initialization expressions:

∀ (p, c, 0) ∈ TS: M0 (p, c, 0) = (I (p))(c, τ)

The set of all markings is denoted by M. We note by
• t the set of the input arcs of the transition t, and by t •
the set of the output arcs of the transition t. Transition t
∈ T is enabled at a marking M if and only if:

∀p ∈ • t: | M (p) | = 0, type (t) = Negation
∀p ∈ • t: | M (p) | ≥ 1, else

When a transition t is enabled, an enabled function
is needed to specify what tokens transition t is enabled
about. In ECPN, composite transitions and rule
transitions fire conditionally. A composite transition
fires once it is enabled (by Ccomposite function) and the
temporal condition is satisfied. A rule transition fires
once it is enabled (by Cenabled function) and the rule
condition is satisfied.

A transition t ∈T fires if and only if:

∀ t ∈ Trule, t is enabled and Type (Con(t)) = true
∀ t ∈ Tcopy , t is enabled
∀ t ∈ Tcomp, t is enabled, and ∀ p ∈• t, D (t) =
[d1 (t), d2 (t)]: [d1 (t) ≤ τ (M (p)) ≤ d2 (t)]

When a transition t is enabled in a marking M1, and
it fires, marking M1 changes to marking M2, defined
by:

If t ∈ Trule, ∀ p ∈ P then
M2 (p) = M1 (p) - Cenabled (p, t) + Action (t, p)

If t ∈ Tcopy, ∀ p1, p2 ∈P, p1 ∈• t, p2∈ t• then
M2 (p1) = M1 (p1) - Cenabled (p1, t)
M2 (p2) = M1 (p2) + Cenabled (p1, t)

If t ∈ Tcomp then
If Type (t) = Negation, •t = {p1}, t• = {p2} then
M2 (p1) = M1 (p1)
M2 (p2) = M1 (p2) + Ccomposite (t, p2)

Else ∀p1i ∈ •t, t• = {p2}
M2 (p1i) = M1 (p1i) - Cenabled (p1i, t)

M2 (p2) = M1 (p2) + Ccomposite (t, p2)

When a transition t ∈ Trule ∪ Tcomp is enabled at a
marking M1, but not fired because Type (Con (t)) =
false, marking change still exists, new marking M2 is
defined as following:

∀p ∈ P: M2 (p) = M1 (p) - Cenabled (p, t)

3.4. Example of an ECPN
Let's consider the set of rules R1, R2, R3, and R4
expressed according to the following formalism:

Define rule rule-name
On event
If condition
Then action
Define rule R1
On reduce-salary () (e0)
If employee.salary <1500 (T0)
Then raise-salary () (e1)
Define rule R2
On raise-salary () (e3 a copy of e1)
If employee.children-nbr >5 (T3)
Then send -bonus () (e4)
Define rule R3
On raise-salary () (e2 a copy of e1)
If employee.age >60 (T2)
Then be-retired () (e5)
Define rule R4
On send-bonus () (e4)
If employee.salary <10000 (T4)
Then raise-salary () (e1)

These rules necessitate the class employee which
has the attributes: Id-emp, salary, bonus, children-nbr,
age. The ECPN which corresponds to the rules set
given above is shown in Figure 2. Furthermore, we
consider that R1>pR3>pR2>pR4 where Ri >p Rj means
that Ri has priority than Rj.

Figure 2. The ECPN corresponding to the set of rules given above.

e5

e3

e4

 e1

e2

T0

T1

T4

T3

e0

The Priority of Rules and the Termination Analysis Using Petri Nets 181

3.5. Termination Analysis
Let E = {r1, r2, r3, ..., rn} be a set of rules, when the
action of rule r1 triggers the rule r2, action of rule r2
triggers the rule r3, and so on, and finally, action of
rule rn, triggers the rule r1, this process performs a
cyclic rule triggering and it can produce an inconsistent
state of the database when it executes these rules
infinitely. To study the problem of rules termination
and the impact of rules priority on it, we give an
algorithm which uses the incidence matrix of PN
theory, the notions of paths, cyclic paths and acyclic
paths.

3.5.1. Incidence Matrix

In incidence matrix, places are represented by its
columns and transitions are represented by its rows, so
it is possible to identify both initial and final nodes of
an ECPN. A place p ∈ Pprim is an initial node of the
ECPN if its column in incidence matrix has zeros
values and only one negative value. A terminal node is
a place p ∈ Pprim which represents an action rule. The
corresponding column to the final node, in incidence
matrix, has only values that belong to {0} ∪ N+,
where N is the set of natural numbers.

As ECA rule components are represented in the
ECPN model, relationships between rules can be found
easily. An ECPN is a directed graph constituted by a
sequence of nodes forming paths, where each node is
either a place or a transition in an alternate way. If a
cyclic path is found, then it may produce an infinite
rule triggering. A path R is a sequence of pairs (r, c)
which are obtained from the incidence matrix of the
ECPN, where r and c are incidence matrix indexes.
The sequence of pairs (r, c) describes the connection
between places and transitions as follows: (t1, p1), (t1,
p2), (t2, p2), · · ·, (tn-1, pn-1), (tn, pn-1), (tn, pn).

The first pair is formed by the transition t1 and its
input place p1, following the path, the next pair is
formed by the same transition t1 and its output place
p2, the third pair is formed by the same place p2 that
now is the input place to transition t2, and so on.

In order to form the paths of the ECPN, first,
columns of incidence matrix that represent initial
nodes should be located, i. e., p1, and by definition of
initial node there is only a negative value in the
column, then the position index of the negative value is
the index of the transition t, i. e., t1.

Paths search starts from the coordinate of (t1, p1),
and then a positive integer is looked for in the row
corresponding to t1, finding the coordinate to (t1, p2).
After, a negative integer is looked for in the column
corresponding to p2, finding the coordinate to (t2, p2).
Then, another positive integer is looked for in the row
corresponding to t2, and so on, until either a terminal
node or an existing node in the path is found. A cyclic
path CP is a path R where the last pair (r, c) has been
already found. An acyclic path AP is a path where the

last pair (r, c) is different from each other in AP. If all
the paths, in the ECPN, are acyclic then the
termination is guaranteed. If there is at least one cyclic
path CP in the ECPN, the rule triggering may not
finish. But it does not mean that whenever there exists
a cyclic path CP, the rule triggering does not terminate,
there are other facts that should be taken into account.
For example, in ECPN model, the priority, the
condition and the composite events of ECA rules are
considered, so they can have an impact on the
termination analysis problem.

We give in the following paragraph, the theorems
(corresponding to the composite events and the
conditions of rules) which affect the termination
analysis.

e0 e1 e2 e3 e4 e5

T0 -1 1 0 0 0 0

T1 0 -1 1 1 0 0

T2 0 0 -1 0 0 1

T3 0 0 0 -1 1 0

T4 0 1 0 0 -1 0

Figure 3. Incidence matrix obtained from ECPN of Figure 2.

3.5.2. Theorems

The composite events that affect the termination
analysis are: Negation, conjunction, any, sequence, and
simultaneous. The theorems 1, 2 and 3 correspond to
them. The theorem 4 concerns the condition of a rule
belonging to a cyclic path.

Theorem 1: If a cyclic path CP contains an inhibitor
arc, i. e., a composite event negation is included in CP,
then CP finishes its rule triggering.

Theorem 2: For composite events conjunction,
sequence, and simultaneous, if any of its constituent
events is not generated by the action of a rule
belonging to CP, then the rule triggering finishes.

Theorem 3: If composite event any (m, e1, e2, ..., en) is
a part of a cyclic path CP, and if k constituent events of
the composite event any are not generated by the
action of a rule belonging to CP and n - k < m, then the
rule triggering finishes.

Theorem 4: If the condition of a transition ti ∈{t | (t, p)
∈ CP} is always false according to the event produced
by the action of previous rule, then the rule triggering
finishes.

3.5.3. Algorithm of the Priority

The following algorithm shows the impact of the rules
priority on the termination analysis for a set of rules
modelled by an ECPN:

Step 1: Convert a base of ECA rules into an ECPN.
Step 2: Create the incidence matrix from the ECPN.

182 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007

Step 3: Explore the paths in the ECPN one by one
according to the priority of rules and using incidence
matrix:
termine← false
 Repeat for each path R
 If R is acyclic

 Then termine← true
 Else /*R is cyclic*/

If R satisfies the theorems conditions
Then termine← true

End
Until the end of the paths exploration or termine =
true

 If termine = true
 Then the algorithm is stopped and returns

 “The termination is guaranteed”
 Else the algorithm returns
 “The termination is not guaranteed”
 End

3.5.4. Illustrative Example

To show the impact of the rules priority on the
termination analysis in an ECPN, we consider the set
of rules given in the example of section 3.4 and follow
the algorithm steps:

Step 1: Convert the ECA rules set (of section 3.4) into
the ECPN given in Figure 2, where:

e0: Reduce-salary ()
e1: Raise-salary ()
e2: A copy of e1 (e1 triggers two rules R2 and R3)
e3: A copy of e1
e4: Send-bonus ()
e5: Be-retired ()
T0: Corresponds to the rule R1
T1: Is a transition of copy type. It produces

two same events (e2 and e3)
T2: Corresponds to the rule R3
T3: Corresponds to the rule R2
T4: Corresponds to the rule R4

Step 2: Create the incidence matrix corresponding to
this ECPN; it is given in Figure 3.

Step 3: Explore the paths in the ECPN one by one
according to the priority of rules and using incidence
matrix. So we begin with the path constituted by: (T0,
e0), (T0, e1), (T1, e1), (T1, e2), (T2, e2) and (T2, e5)
because R3 (represented by the transition T2) has
priority than R2 (represented by the transition T3) as it
is mentioned in section 3.4. Then we conclude that the
set of rules {R1, R2, R3, R4} terminates because the
explored path is acyclic. It should be noted that the
second path in this ECPN constituted by: (T0, e0), (T0,
e1), (T1, e1), (T1, e3), (T3, e3), (T3, e4), (T4, e4), (T4,
e1), and (T1, e1) is cyclic.

4. Implementation Issues
In order to implement an aDBS, the architecture of a
(passive) DBMS has to be augmented by new
components like an ECA rule editor, an analyzer of
rules, a rule manager, an event detector for primitive
and composite events, and a rule execution component.

ECA rules are defined by ECA rule editor. After
ECA rules are converted into an ECPN, ECPN is saved
into ECPN base as places, transitions and arcs. ECPN
rule base is used by ECPN rule manager which calls
the event detector for detecting events, the rule
execution component for evaluating the condition and
executing the action of rules. It calls also the
termination analyzer component to cheek no-
termination problem in ECPN rule base. The
termination analyzer includes three modules. The first
one is used to generate the incidence matrix
corresponding to a given ECPN, the second searches
the paths in the matrix, and the third one analyzes and
treats these paths according to the algorithm given in
section 3.5.3.

5. Conclusion
The approach presented in this paper, is based on the
Petri nets model to analyse the termination of a set of
rules. In this PN named Extended Coloured Petri Net
(ECPN), the different components of the rules are
presented such as their events, conditions, actions and
priorities. ECPN can model both primitive and
composite events. Furthermore, not only composite
events can affect the active rules termination, but also
the rules priority.

Our approach is better than those presented in
termination methods section because the ECPN is a
good model for modelling, analysing and simulation of
Active Database systems (ADB). It is independent of
the model used in the ADB (relational or object). It
does not perform a simple analysis of cyclic paths but
analyzes each element of the graph to determine if the
rule triggering in a cyclic path finishes or not. This
approach is general and can be applied not only in the
database area but also in others applications which
need event detection.

References
[1] Aiken A., Hellerstein J. M., and Widom J.,

“Static Analysis Techniques for Predicting the
Behaviour of Active Database Rules,” ACM
Transactions on Database Systems, vol. 20, no.
1, pp. 3-41, 1995.

[2] Bailey J., Crnogorac L., Ramamohanarao K., and
Sondergaard H., “Abstract Interpretation of
Active Rules and its Use in Termination
Analysis,” in Proceedings of 6th ICDT, LNCS
1186, Greece, pp. 188-202, 1997.

The Priority of Rules and the Termination Analysis Using Petri Nets 183

[3] Baralis E., Ceri S., and Paraboschi S.,
“Modularisation Techniques for Active Rules
Design,” ACM Transactions on Database
Systems (TODS), vol. 21, no. 1, pp. 1-29, 1996.

[4] Baralis E., Ceri S., and Paraboschi S., “Compile-
Time and Runtime Analysis of Active
Behaviours,” IEEE TCDE, vol. 10, no. 3, pp.
353-370, 1998.

[5] Baralis E. and Widom J., “An Algebraic
Approach to Rule Analysis in Expert Database
Systems,” in Proceedings of the 20th Conference
on VLDB, Santiago, Chile, pp. 475-486, 1994.

[6] Baralis E. and Widom J., “Better Static Rule
Analysis for Active Database Systems,” ACM
TODS, vol. 25, no. 3, pp. 269-332, 2000.

[7] Cakravarty S. and Mishra D., “Snoop: An
Expressive Event Specification Language for
Active Databases,” Data & Knowledge
Engineering, vol. 14, no. 10, pp. 1-26, 1994.

[8] Collet C., “Active Databases: From Relational
Systems to Object-Oriented Systems,” Research
Report, 965-I-LSR-4, IMAG Laboratory,
Grenoble, France, October 1996.

[9] Debray S. and Hickey T., “Constraint-Based
Termination Analysis for Cyclic Active Database
Rule,” in Proceedings of DOOD Conference,
London, pp. 1-15, 2000.

[10] Gatziu S. and Dittrich K. R., “Detecting
Composite Events in Active Database Systems
Using Petri Nets,” in Proceedings of the 4th
International Workshop on Research Issues in
Data Engineering: Active Database System
(RIDE-ADS'94), Houston, Texas, pp. 1-8,
February 1994.

[11] Karadimce A. and Urban S., “Conditional Term
Rewriting as a Formal Basis for Analysis of
Active Database Rules,” in Proceedings of the 4th
Workshop on Research, Issues in Data
Engineering: Active Database System (RIDE-
ADS'94), Texas, pp. 156-162, February 1994.

[12] Kokkinaki A. I., “On Using Multiple Abstraction
Models to Analyse Active Databases Behaviour,”
in Proceedings of Biennial World Conference on
Integrated Design and Process Technology,
Berlin, Germany, pp. 1-8, June 1998.

[13] Lee S. Y. and Ling T. W., “A Path Removing
Technique for Detecting Trigger Termination,” in
Proceedings of 6th EDBT, Valencia, pp. 341-355,
1998.

[14] Li X. and Medina Marín J., “Termination
Analysis in Active Databases: A Petri Nets
Approach,” in Proceedings of the International
Symposium on Robotics and Automation
(ISRA'2004), Querétaro, Mexico, pp. 677-684,
July, 2004.

[15] Li X. and Medina Marín J., “Composite Event
Specification in Active Database Systems: A
Petri Nets Approach,” in Proceedings of the

IEEE International Conference on System, Man,
and Cybernetics, The Hague, Netherlands, pp.
97-116, October 2004.

[16] Zimmer D., Unland R., and Meckenstock A.,
“Rule Termination Analysis Based on Petri
Nets,” Technical Report, University of
Paderborn, Germany, pp. 1-17, 1996.

Latifa Baba-hamed received her
Master degree in computer science
from the University of Oran,
Algeria, in 1994. She is a member of
Database Systems Group at USTO.
Her research interests include
object-oriented, temporal, active

databases, and integration of data.

Hafida Belbachir received her PhD
in computer science from the
University of Oran, Algeria, in 1990.
Currently, she is a professor in the
Department of Computer Science at
the University of USTO, where she
heads the Database Systems Group.

Her research interests include object-oriented, active,
and multimedia databases, and data mining.

