
The International Arab Journal of Information Technology,   Vol. 4,   No. 2,  April 2007 177

The Priority of Rules and the Termination 
Analysis Using Petri Nets

Latifa Baba-hamed1 and Hafida Belbachir2
1Computer Science Department, University of Oran Es-Sénia, Algeria

2Computer Science Department, University of USTO, Algeria
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1. Introduction
An active database system is a traditional database 
system and in addition, is capable to react, 
automatically, to state changes without the user's 
intervention. The active rules are, in general, of the
form Event Condition Action (ECA). The action 
describes treatments to achieve when a specific event 
happens and some condition holds.

The system of active rule is the most important layer 
in an active database system. It is composed of the 
three main models that are: The model of rule 
specification, the model of representation and the 
model of execution. The model of rule specification 
permits the specification of the three components 
(event, condition and action) of the rule and its 
attributes. The model of active rule representation 
permits to specify the way in which rules are integrated 
in the (relational or object oriented) database taking 
into account the features of the data model, the 
associated language of data manipulation, and the 
model of transaction used. The model of execution 
permits to describe the manner in which the set of 
triggered rules is treated to be executed. This model 
establishes a link between the set of rules defined by 
the programmer and the set of transactions of a 
database application. It must take into account a certain 
number of factors such as: The modes of coupling, the 
net effect, the mode of events consumption, the instant 
of events consumption, and the multiple rules [8].

The active rule behaviour in such a system is, 
however, difficult to predict and require the 
development of techniques to analyse properties of a 
set of rules automatically. One of these important 
properties is the property of the rule termination.   The 
termination of rules is the property which determines if 

for all user-generated operations and initial database 
states, rule processing always reaches a point at which 
there are no triggered rule to consider. Many works 
concerning the active rule analysis developed 
techniques that permit, to the programmer of rules, to 
predict in advance (to the compilation) the termination 
of the execution of a set of rules [1-6, 9, 11-14, 16]. 
These methods are called static analysis methods. 
Other methods called dynamic analysis methods are 
pared, they permit to study the active rule termination 
at the runtime [4].  

We are interested to the rule termination analysis 
approach given in [14] which we improve by 
considering the impact of the rule priority on the 
termination analysis problem. We have chosen this 
method because it detects cyclic paths in the base of 
ECA rules, can analyse the relationships among ECA 
rule components and detects cases of termination 
which are not detected by the other approaches.   

The remainder of this paper is organised as follows. 
Section 2 presents some methods of analysis of the 
active rule termination, while section 3 exposes the 
chosen method briefly and shows how the priority of 
rules can affect their termination. Section 4 gives the 
implementation of the termination analyzer. Finally, 
section 5 concludes the paper.

2. Termination Methods
Among methods proposed to study rule termination, 
some are based on models of graphs, and others use       
formal basis as the systems of rewrite or the Petri nets.
Aiken et al. [1] are the first to introduce the notion of 
Triggering Graph (TG). In TG, nodes represent rules. 
Two rules r1 and r2 are joined by a directed edge r1 
toward r2 if the action of r1 contains an event which 
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triggers r2. The authors showed that a triggering graph 
without cycle determines and guarantees the 
termination of rules. However, the authors don't take 
into account the rule condition or the effect of the 
execution of the rule action on the condition of another 
rule. This approach has been proposed in the specific 
case of the relational system.

In [5], an approach for a static analysis of the 
termination of condition action rule has been 
presented. This method is based on a “propagation 
algorithm”, which uses an extended relational algebra 
to accurately determine when the action of one rule can 
affect the condition of another. The termination 
analysis is made by building an Activation Graph 
(AG). In AG, nodes represent rules, and directed edges 
indicate that one rule may activate the other. If there is 
no cycle in the graph AG then rule processing is 
guaranteed to terminate. The propagation algorithm is 
used to decide when an edge (ri, rj) belongs to AG. To 
determine if ri may activate rj, the authors apply the 
propagation algorithm to rj’s condition C and ri’s 
action A. If the propagation algorithm yields insert or 
update operations, then the execution of ri may result 
in new data satisfying rj’s condition. Thus, ri may 
activate rj, and the edge (ri, rj) belongs to the graph. If 
only delete operations or no operations are produced 
by the propagation algorithm, then the execution of ri 
cannot result in new data for rj’s condition, and the 
edge is not included in the graph.

The work in [6] refined and improved the previous 
method and considered both condition action and ECA 
rules, making their approach widely applicable to 
relational active database rule languages. The 
inconvenience of this method is that its application is 
complex and reserved to the relational databases. 

The approach in [4] proposed a technique that 
exploits the information of the two graphs TG and AG 
to analyse the termination of a set of ECA rules. This 
analysis uses an algorithm called algorithm of 
reduction. The inputs of the algorithm are a set of rules 
R without priority, and the two correspondent graphs 
TG and AG. If R is reduced to the empty set at the end 
of the algorithm execution, then the termination is 
guaranteed. The termination is not guaranteed 
otherwise. This approach presented an inconvenience 
because it didn't propose method of building the AG 
graph which is not obvious. Also, it doesn't detect all 
cases of termination.

Lee and Ling [13] proposed a path technique for 
reducing the graph TG. The method considers together 
the conditions of long triggering sequences called 
activation formulas. It is necessary to guarantee that 
the execution of rules outside the triggering sequence 
cannot unpredictably change the database state. Hence, 
only non-updatable predicates can be included in the 
activation formula. Since this condition severely limits 
the applicability of the technique, the selection of 

predicates that can be updated only a finite number of 
times by trigger processing, is proposed. 

Baralis et al. [3] grouped the active rules into 
modules, termination of rule execution, within each 
module is assumed and inter-module termination is 
analysed. It is the only method that presents a modular 
conception of the active rules. Its inconvenience is that 
it requires a complementary method to analyse rules 
within a module.

Bailey et al. [2] used abstract interpretation for the 
termination analysis of active rules. The idea is to 
reason about sequences of database states using 
“approximate semantics”, and to use the fix point 
computation (over a lattice) to handle cycles. This 
approach is applicable to a simple and restricted rule 
language.

A different approach to active rule analysis is taken 
in [11], where ECA rules are reduced to term rewriting 
systems, and known analysis techniques for 
termination of term rewriting systems are applied. The 
analysis is based on an object-oriented data model and 
instance-oriented rule execution model. An instance 
database is a collection of objects and events. A stable 
instance of the database is an instance where there is 
no event in waiting of treatment. An intermediate 
instance is an instance where there is at least one event 
in waiting of treatment. The termination means that a 
stable instance is reached. This approach is powerful, 
since it exploits the body of work on conditional term 
rewriting system, but its implementation appears to be 
complex even for small rule applications.

Kokkinaki [12] used Parameterised Petri Nets 
(PPNs) to analyse the active rule termination in the 
relational model. A PPN is a Petri Net (PN) whose 
places are parameterised. Parameters associated to 
places correspond to events, to names of relations, to 
names of attributes of these relations and expressions 
over the names of attributes. Each transition in the PPN 
corresponds to an active rule. The firing of the 
transition corresponds to the rule execution. If there are 
no cycles in the PPN model of an active Data Base 
System (aDBS) then the rules in the aDBS must 
terminate. The inconvenience of this approach is that, 
the use of PPN in modelling complex systems results 
in complex graphic representations which are very 
difficult to be conceptualised, and handled. 

Other PN based method is presented in [16]. To 
represent the triggering and activation notions in the 
PN, the authors gave for each rule two subnets Ei (for 
the triggering) and Ci (for the activation). The authors 
detected a non-terminating behaviour of rules using a 
Coverability Graph (CG) based on the Reachability 
Graph (RG) which contains all the markings (as nodes) 
which may reached from the start marking by firing all 
the possible transition sequences. To use the CG for 
the termination analysis, the authors extended the PN 
by introducing for every rule (ri) a counting place (P (i,
cnt)), which counts the number of executions of ri. The 
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rule set exhibits a non-terminating behaviour if there is 
a rule ri for which the CG of the PN contains a node 
which contains an ∞ in the component (p (i, cnt)). In 
this approach, the conception of the PN is too complex. 
In addition, the presence of a cycle in the PN does not 
imply that will occur an infinite rule triggering.

Li and Marin [14] presented an approach based on
coloured Petri nets named Conditional Coloured Petri 
Net (CCPN) for modelling the active database 
behaviour. Incidence matrix of PN theory is used to 
find cyclic paths existing in the CCPN. Cycles which 
satisfy some theorems given by the authors are deleted. 
If there is no cycle in the CCPN, the termination of the 
corresponding set of rules is guaranteed. Nevertheless, 
this approach did not consider the priority of rules.

3. Proposed Method
Our approach is inspired of [14] based on coloured 
Petri nets to describe and analyse ECA rules. We 
improve this method by adding the notion of rules 
priority and showing how the termination analysis can 
be affected by this notion. PN is a graphical and 
mathematical tool and may be applied in various areas. 
Active database is a promising application area of PN. 
Up to now, few researches have used PN as ECA 
specification language [12, 14, 16]. In SAMOS [10], 
PN is partially used for composite event detection and 
termination analysis.

3.1. Rule Modelling 
In our model, named Extended Colored Petri Net
(ECPN), the rule event is represented by a place p1, the 
condition c and the priority pr of the rule are attached 
to a transition t, and the rule action a is represented by 
a place p2. Relationships between the rules can be 
viewed in the same graph as shown in Figure 1.

Figure 1. Relationships between two rules r1 and r2.

3.2.  Formal Definition of an ECPN
An extended coloured Petri net ECPN is defined as 
follows:

ECPN = {E, P, T, A, N, C, Con, Action, D, τ, I}

Where:

• E: Is a finite set of non-empty type, called colour 
sets. It determines all the data value, the operations 

and functions that can be used in the net
expressions.

• P: Is a finite set of places. It is divided into four 
subsets: Pprim, Pcomp, Pvirt and Pcopy. Pprim represents 
the set of primitive places and correspond 
graphically to a single circle. Pcomp represents the set 
of composite events. The notion of composite event 
is aborted in [7, 8, 10, 15] with more details. Pcomp
includes the following events: Negation, sequence, 
closure, last, history, and simultaneous. They 
correspond graphically to a double circle. Pvirt 
represents the set of composite events which 
includes the conjunction, disjunction and any. They 
correspond graphically to a single dashed circle. 
Pcopy is the set of places which are used when two or 
more rules are triggered by the same event. They 
correspond graphically to a double circle where the 
interior circle is a dashed one.

• T: Is a finite set of transitions; it is divided into three 
subsets: Trule, Tcopy and Tcomp. Trule corresponds to the 
set of rules. Each transition of rule type is 
represented graphically by a rectangle. Tcopy is the 
set of transitions of copy type. They are represented 
graphically by a single bar. A copy transition is used 
when one event e can trigger two or more rules. A 
copy transition will produce n same events where n
is the number of rules which are triggered by the 
same event e. Tcomp is the set of transitions of 
composite type. They are represented graphically by 
a double bar. A composite transition is used for 
generating a composite event from a set of primitive 
or composite events.

• A: Is a finite set of arcs. It is divided into two 
subsets: The input arcs which are defined from P to 
T, and the output arcs which are defined from T to 
P. Inhibitor arcs are used to represent the negation 
composite event.

• N: Is a node function. It maps each arc into a pair,
where the first element is the source node and the 
second is the destination node (N: A → P x T ∪ T x
P).

• C: Is a color function. It maps each place p to a type 
C (p) (i. e., C: P → E).

• Con: Is a condition function. It is defined from 
either Trule or Tcomp into expression such that:

∀ t ∈ Trule:  Type (con (t)) = B, where Con 
function evaluates the rule condition.

∀ t ∈ Tcomp: Type (con (t)) = B, where Con 
function evaluates the time interval of t 
against tokens timestamp. 

B is used to denote the boolean type containing 
the values false and true.

• Action: Is an action function. It maps each rule type 
transition t ∈ Trule into a type C (p) which will be 
deposited into its output place.
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• D: Is a time interval function. It is defined from 
Tcomp to a time interval [d1 (t), d2 (t)], where t ∈
Tcomp, and d1 (t), d2 (t) are the initial and the final 
interval time, respectively. The interval is used by 
the Con function to evaluate transitions t ∈ Tcomp.

• τ: Is a timestamp function. It assigns each token in 
place p a timestamp.

• I: Is an initialization function. It maps each place p 
into a closed expression which must be of type C
(p).

3.3.  ECPN Execution
In ECPN, a token is a triple (p, c, time) where p ∈ P, c
∈ C (p), and time specifies the natural time when the 
token is deposited into the place p. The set of all token 
is denoted by TS. A marking is a multi-set over TS. 
The initial marking M0 is the marking which is 
obtained by evaluating the initialization expressions:

∀ (p, c, 0) ∈ TS: M0 (p, c, 0) = (I (p))(c, τ )

The set of all markings is denoted by M. We note by 
• t the set of the input arcs of the transition t, and by t • 
the set of the output arcs of the transition t. Transition t 
∈ T is enabled at a marking M if and only if:

∀p ∈ • t: | M (p) | = 0, type (t) = Negation
∀p ∈ • t: | M (p) | ≥ 1, else

When a transition t is enabled, an enabled function 
is needed to specify what tokens transition t is enabled 
about. In ECPN, composite transitions and rule 
transitions fire conditionally. A composite transition 
fires once it is enabled (by Ccomposite function) and the 
temporal condition is satisfied. A rule transition fires 
once it is enabled (by Cenabled function) and the rule 
condition is satisfied.

A transition t ∈T fires if and only if:

∀ t ∈ Trule, t is enabled and Type (Con(t)) = true
∀ t ∈ Tcopy , t is enabled
∀ t ∈ Tcomp, t is enabled, and ∀ p ∈• t, D (t) = 
[d1 (t), d2 (t)]: [d1 (t) ≤ τ (M (p)) ≤ d2 (t)]

When a transition t is enabled in a marking M1, and 
it fires, marking M1 changes to marking M2, defined 
by:

If t ∈ Trule, ∀ p ∈ P  then
M2 (p) = M1 (p) - Cenabled (p, t) + Action (t, p)

If t ∈ Tcopy, ∀ p1, p2 ∈P, p1 ∈• t, p2∈ t• then
M2 (p1) = M1 (p1) - Cenabled (p1, t)
M2 (p2) = M1 (p2) + Cenabled (p1, t)

If t ∈ Tcomp then
If Type (t) = Negation, •t = {p1}, t• = {p2} then
M2 (p1) = M1 (p1)
M2 (p2) = M1 (p2) + Ccomposite (t, p2)

Else ∀p1i ∈ •t, t• = {p2}
M2 (p1i ) = M1 (p1i) - Cenabled (p1i, t)

M2 (p2) = M1 (p2) + Ccomposite (t, p2)

When a transition t ∈ Trule ∪ Tcomp is enabled at a 
marking M1, but not fired because Type (Con (t)) = 
false, marking change still exists, new marking M2 is 
defined as following: 

∀p ∈ P: M2 (p) = M1 (p) - Cenabled (p, t)

3.4.  Example of an ECPN 
Let's consider the set of rules R1, R2, R3, and R4 
expressed according to the following formalism:

Define rule rule-name 
On event  
If condition  
Then action
Define rule R1  
On reduce-salary ()                        (e0)
If employee.salary <1500              (T0)
Then raise-salary ()                        (e1)
Define rule R2  
On raise-salary ()                          (e3 a copy of e1)
If employee.children-nbr >5           (T3)
Then send -bonus ()                         (e4)
Define rule R3  
On raise-salary ()                          (e2 a copy of e1)
If employee.age >60  (T2)
Then be-retired ()                            (e5)
Define rule R4  
On send-bonus ()                            (e4)
If employee.salary <10000             (T4)
Then raise-salary ()                         (e1)

These rules necessitate the class employee which 
has the attributes: Id-emp, salary, bonus, children-nbr, 
age. The ECPN which corresponds to the rules set 
given above is shown in Figure 2. Furthermore, we 
consider that R1>pR3>pR2>pR4 where Ri >p Rj means 
that Ri has priority than Rj.

Figure 2. The ECPN corresponding to the set of rules given above.
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3.5.  Termination Analysis 
Let E = {r1, r2, r3, ..., rn} be a set of rules, when the 
action of rule r1 triggers the rule r2, action of rule r2 
triggers the rule r3, and so on, and finally, action of 
rule rn, triggers the rule r1, this process performs a 
cyclic rule triggering and it can produce an inconsistent 
state of the database when it executes these rules 
infinitely. To study the problem of rules termination 
and the impact of rules priority on it, we give an 
algorithm which uses the incidence matrix of PN 
theory, the notions of paths, cyclic paths and acyclic 
paths.

3.5.1. Incidence Matrix

In incidence matrix, places are represented by its 
columns and transitions are represented by its rows, so 
it is possible to identify both initial and final nodes of 
an ECPN. A place p ∈ Pprim is an initial node of the 
ECPN if its column in incidence matrix has zeros 
values and only one negative value. A terminal node is 
a place p ∈ Pprim which represents an action rule. The 
corresponding column to the final node, in incidence 
matrix, has only values that belong to {0} ∪ N+, 
where N is the set of natural numbers.

As ECA rule components are represented in the 
ECPN model, relationships between rules can be found 
easily. An ECPN is a directed graph constituted by a 
sequence of nodes forming paths, where each node is 
either a place or a transition in an alternate way. If a 
cyclic path is found, then it may produce an infinite 
rule triggering. A path R is a sequence of pairs (r, c) 
which are obtained from the incidence matrix of the 
ECPN, where r and c are incidence matrix indexes.
The sequence of pairs (r, c) describes the connection 
between places and transitions as follows: (t1, p1), (t1, 
p2), (t2, p2), · · ·, (tn-1, pn-1), (tn, pn-1), (tn, pn).

The first pair is formed by the transition t1 and its 
input place p1, following the path, the next pair is 
formed by the same transition t1 and its output place 
p2, the third pair is formed by the same place p2 that 
now is the input place to transition t2, and so on.

In order to form the paths of the ECPN, first, 
columns of incidence matrix that represent initial 
nodes should be located, i. e., p1, and by definition of 
initial node there is only a negative value in the 
column, then the position index of the negative value is 
the index of the transition t, i. e., t1. 

Paths search starts from the coordinate of (t1, p1), 
and then a positive integer is looked for in the row 
corresponding to t1, finding the coordinate to (t1, p2). 
After, a negative integer is looked for in the column 
corresponding to p2, finding the coordinate to (t2, p2). 
Then, another positive integer is looked for in the row 
corresponding to t2, and so on, until either a terminal 
node or an existing node in the path is found. A cyclic 
path CP is a path R where the last pair (r, c) has been 
already found. An acyclic path AP is a path where the 

last pair (r, c) is different from each other in AP. If all 
the paths, in the ECPN, are acyclic then the 
termination is guaranteed. If there is at least one cyclic 
path CP in the ECPN, the rule triggering may not 
finish. But it does not mean that whenever there exists 
a cyclic path CP, the rule triggering does not terminate, 
there are other facts that should be taken into account. 
For example, in ECPN model, the priority, the 
condition and the composite events of ECA rules are 
considered, so they can have an impact on the 
termination analysis problem.

We give in the following paragraph, the theorems 
(corresponding to the composite events and the 
conditions of rules) which affect the termination 
analysis.

e0 e1 e2 e3 e4 e5

T0 -1 1 0 0 0 0 

T1 0 -1 1 1 0 0 

T2 0 0 -1 0 0 1 

T3 0 0 0 -1 1 0 

T4 0 1 0 0 -1 0 

Figure 3. Incidence matrix obtained from ECPN of Figure 2.

3.5.2. Theorems

The composite events that affect the termination 
analysis are: Negation, conjunction, any, sequence, and 
simultaneous. The theorems 1, 2 and 3 correspond to 
them. The theorem 4 concerns the condition of a rule 
belonging to a cyclic path.

Theorem 1: If a cyclic path CP contains an inhibitor 
arc, i. e., a composite event negation is included in CP, 
then CP finishes its rule triggering.

Theorem 2: For composite events conjunction, 
sequence, and simultaneous, if any of its constituent 
events is not generated by the action of a rule 
belonging to CP, then the rule triggering finishes.

Theorem 3: If composite event any (m, e1, e2, ..., en) is 
a part of a cyclic path CP, and if k constituent events of 
the composite event any are not generated by the 
action of a rule belonging to CP and n - k < m, then the 
rule triggering finishes.

Theorem 4: If the condition of a transition ti ∈{t | (t, p) 
∈ CP} is always false according to the event produced 
by the action of previous rule, then the rule triggering 
finishes.

3.5.3. Algorithm of the Priority

The following algorithm shows the impact of the rules 
priority on the termination analysis for a set of rules 
modelled by an ECPN:

Step 1: Convert a base of ECA rules into an ECPN.
Step 2: Create the incidence matrix from the ECPN.



182 The International Arab Journal of Information Technology,   Vol. 4,   No. 2,   April  2007

Step 3: Explore the paths in the ECPN one by one 
according to the priority of rules and using incidence 
matrix:
termine← false
  Repeat for each path R
         If R is acyclic

 Then termine← true
         Else /*R is cyclic*/

If R satisfies the theorems conditions 
Then termine← true

End
Until the end of the paths exploration or termine =
true

 If termine = true
 Then the algorithm is stopped and returns

           “The termination is guaranteed”
  Else the algorithm returns
           “The termination is not guaranteed”
   End 

3.5.4. Illustrative Example

To show the impact of the rules priority on the 
termination analysis in an ECPN, we consider the set 
of rules given in the example of section 3.4 and follow 
the algorithm steps:

Step 1: Convert the ECA rules set (of section 3.4) into 
the ECPN given in Figure 2, where:

e0: Reduce-salary ()
e1: Raise-salary ()
e2: A copy of e1 (e1 triggers two rules R2 and R3)
e3: A copy of e1
e4: Send-bonus ()
e5: Be-retired ()
T0: Corresponds to the rule R1
T1: Is a transition of copy type. It produces 

two same events (e2 and e3)
T2: Corresponds to the rule R3
T3: Corresponds to the rule R2
T4: Corresponds to the rule R4

Step 2: Create the incidence matrix corresponding to 
this ECPN; it is given in Figure 3.

Step 3: Explore the paths in the ECPN one by one 
according to the priority of rules and using incidence 
matrix. So we begin with the path constituted by: (T0, 
e0), (T0, e1), (T1, e1), (T1, e2), (T2, e2) and (T2, e5) 
because R3 (represented by the transition T2) has 
priority than R2 (represented by the transition T3) as it 
is mentioned in section 3.4. Then we conclude that the 
set of rules {R1, R2, R3, R4} terminates because the 
explored path is acyclic. It should be noted that the 
second path in this ECPN constituted by: (T0, e0), (T0,
e1), (T1, e1), (T1, e3), (T3, e3), (T3, e4), (T4, e4), (T4,
e1), and (T1, e1) is cyclic. 

4. Implementation Issues
In order to implement an aDBS, the architecture of a 
(passive) DBMS has to be augmented by new 
components like an ECA rule editor, an analyzer of 
rules,  a rule manager, an event detector for primitive 
and composite events, and a rule execution component.

ECA rules are defined by ECA rule editor. After 
ECA rules are converted into an ECPN, ECPN is saved 
into ECPN base as places, transitions and arcs. ECPN 
rule base is used by ECPN rule manager which calls 
the event detector for detecting events, the rule 
execution component for evaluating the condition and 
executing the action of rules. It calls also the 
termination analyzer component to cheek no-
termination problem in ECPN rule base. The 
termination analyzer includes three modules. The first 
one is used to generate the incidence matrix 
corresponding to a given ECPN, the second searches 
the paths in the matrix, and the third one analyzes and 
treats these paths according to the algorithm given in 
section 3.5.3.

5. Conclusion
The approach presented in this paper, is based on the 
Petri nets model to analyse the termination of a set of 
rules. In this PN named Extended Coloured Petri Net 
(ECPN), the different components of the rules are 
presented such as their events, conditions, actions and 
priorities. ECPN can model both primitive and 
composite events. Furthermore, not only composite 
events can affect the active rules termination, but also 
the rules priority.

Our approach is better than those presented in 
termination methods section because the ECPN is a 
good model for modelling, analysing and simulation of 
Active Database systems (ADB). It is independent of 
the model used in the ADB (relational or object). It 
does not perform a simple analysis of cyclic paths but 
analyzes each element of the graph to determine if the 
rule triggering in a cyclic path finishes or not. This 
approach is general and can be applied not only in the 
database area but also in others applications which 
need event detection.
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