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Abstract: The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). 
This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique,
that we named the Distributed Vector Quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-
structure and phonetic macro-structure when the estimation of HMM parameters is performed. The DVQ technique is 
implemented through two variants; the first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the 
second variant exploits the benefits of the classification behavior of Neural Networks (NN-DVQ) for the same purpose. The 
proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants 
recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM 
system while maintaining the decoding speed of the models.
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1. Introduction
Automatic Speech Recognition (ASR) can be viewed 
as a successive transformations of the acoustic micro-
structure of the speech signal into its implicit phonetic 
macro-structure. The main objective of any ASR 
system is to realize the mapping between the two 
structures. The Hidden Markov Model (HMM) is 
actually the most used approach to the ASR. Several 
types of HMMs as discrete, continuous and semi 
continuous HMMs [7, 12] have been developed and 
applied to the ASR. The Discrete HMM (DHMM) is 
attractive in terms of algorithmic complexity; that is 
why it has been investigated in several studies [3, 8, 9, 
14]. Recently, in the context of the prodigious growth 
of network applications, discrete HMM-based speech 
recognition systems that use a Vector Quantization 
(QV) front-end process constitute very useful and 
inexpensive solutions [1, 5]. In this scenario, it is 
highly desirable to perform compression of acoustic 
features, but it is crucial that the VQ involved in the 
front-end stage does not introduce noise that degrades 
the recognition accuracy. This is the dilemma. In fact, 
discrete HMM inherently suffers from some problems 
due to the VQ process. The lack of sufficient training 
data involved by the VQ causes poor HMM parameter 
estimation, and this inevitably leads to a degradation of 
recognition performance. 

This paper is dedicated to improving accuracy 
issues of discrete HMM-based ASR systems. It 
proposes a complete discrete statistical framework, 
based on the use of a novel VQ-based front-end 

process. This new approach performs an optimal 
distribution of VQ codebooks on HMM states. This 
technique, which has been named the Distributed 
Vector Quantization (DVQ) of hidden Markov models, 
succeeds in unifying acoustic micro-structure and 
phonetic macro-structure, when the parameter 
estimation of HMM is performed. The DVQ technique 
is implemented through two variants; the first variant 
uses the K-means algorithm (K-means-DVQ) to 
optimize the VQ, while the second variant exploits the 
benefits of the classification behaviour of Neural 
Networks (NN-DVQ) for the same purpose. The 
evaluation is done by focusing on specific Arabic 
consonants:  emphatic and back consonants. The 
characterization of these consonants has captured the 
interest of many researchers, since they are specific to 
the Arabic language [4]. 

The paper is structured as follows. We present in the 
next section the well known statistical paradigm used 
for speech recognition represented by the HMM. In 
section 3, we depict the framework of distributed 
vector quantization. Section 4 reports the comparative 
results of trials that aim to evaluate the proposed 
techniques by focusing on some specific Arabic 
phonemes. Finally, we summarize our major findings 
in section 5.

2. Conventional VQ/HMM System 
To illustrate an application of HMMs for speech 
recognition, we present in Figure 1 our implementation 
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of an isolated word recognition system based on 
discrete hidden Markov models. 

Figure 1. Schematic diagram of the VQ/HMM isolated word 
recognition system.

We have a vocabulary of L words to be recognized, 
and each word is to be modelled by a distinct HMM. 
The training sets consist of  K utterances of each word, 
pronounced by one or more speakers. In order to obtain 
a word recognizer, we performed the following steps:

2.1. Features Extraction
The speech signal, sampled at 10KHz, is pre-
emphasized by a first-order digital filter in order to 
spectrally flatten the signal
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with µ = 0.96. The signal is fragmented into frames by 
using a 25.6 ms Hamming window with 10 ms 
shifting. For each frame, the Mel Frequency Cepstral 
Coefficients (MFCCs) [2], their corresponding first 
and second derivatives, named respectively ∆MFCC, 
∆∆MFCC are computed. Each frame is thus 
represented by an acoustic vector xt as follows:

x
t 
= {MFCC(m), ∆MFCC(m), ∆∆MFCC(m)} (1)

The first and second order derivatives of cepstral 
coefficients were approximated respectively by 
equations (2) and (3) given as follows:  
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where k and l -frame indexes, m- the MFCC 
component.

2.2. VQ Codebook
In discrete HMM system, the continuous feature space 
is subdivided by a vector quantizer into J non-
overlapping subsets and each subset is represented 
with a codeword mj (1 ≤ j ≤ J). The set of available 
code words is termed the codebook. The VQ codebook 
is constructed by an unsupervised cluster algorithm, 
the Linde–Buzo-Gray (LBG) algorithm [11].

2.3. Re-Estimation of HMM
For each word of the vocabulary, we built a HMM, that 
is, we estimated the model parameters that optimize 
the likelihood for the training set of observation 
sequences. There are many criteria that can be used to 
this problem. We have used for this problem the 
Baum-Welch algorithm [13] developed by Baum 
which is one of the most successful optimization 
methods.

2.4. Recognition 
For each unknown word to be recognized, we 
calculated the model likelihood for all possible models, 
and selected the model with the highest likelihood. The 
probability calculation was performed using the Viterbi 
algorithm [6], more precisely the logarithm of the 
maximum likelihood.

The system developed can be applied not only for 
word recognition, but also for recognition of other 
speech segments. In this work it is used as a phonetic 
recognizer. Experiments performed with this system 
will be discussed in section 5.

3. Distributed VQ/HMM System
The main weak point of conventional VQ/HMM, in the 
field of ASR, resides in the fact that they inherently 
suffer from some problems linked to the quantization 
error induced by the limited number of clusters of 
input vectors, and the lack of sufficient training data 
that causes poor estimation of HMM parameters. In 
order to limit the effect of this insufficiency, we 
propose the use of a new technique (DVQ) based on 
the principle of optimally distributing the codebook 
components, issued from a vector quantization, over 
the HMM states. This approach will allow a model 
parameter initialization based on the expected 
unification of acoustic and phonetic sources. Two 
hybrid implementations of this approach are presented: 
the K-mean DVQ and the neural network NN-DVQ. 
The synoptic of a DVQ-based system dedicated to 
isolated word or phoneme recognition is given in 
Figure 2.
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3.1. Overview of the DVQ Approach
For recognition systems that use HMMs, it is important 
to be able to estimate probability distributions of the 
computed feature vectors preferably over a high multi-
dimensional space. To reach this goal, it is often easier 
to start by quantizing each feature vector to one of a 
relatively small number of template vectors.  In fact, 
DVQ aims to make probability distributions estimation 
over this finite set of templates more effective by tying 
this set of templates to a corresponding HMM state.  
The training phase of DVQHMM is illustrated in 
Figure 3.

Figure 2. Overview of DVQ approach applied to a word 
recognition process.

The observation sequence labeling, and evaluation, 
are done simultaneously. For each sequence X1

T, we 
have the sequence {Y1

T(j) , 1 ≤ t ≤ T and 1 ≤ j ≤ N}. To 
compute the probability P (X1

T, λ), probability of 
generating the sequence by the model, we use the 
modified logarithm of the maximum likelihood :
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where:

1 ≤ t ≤ T    and   1 ≤ i ,  j ≤ N

Two hybrid techniques are used to optimally 
distribute code vectors over the HMM states: K-
means- and neural networks-based techniques.

3.2. The Hybrid K-Means DVQ
In the K-means DVQ variant, we use the K-means 
algorithm [10] to generate the codebook. From the 
codebook distribution, the model parameters are re-
estimated. Different steps are required in order to 
generate codebooks that are optimally distributed over 
HMM states, including:

1. Take several realizations of utterances, spoken 
several times by many speakers.

2. Determine the optimal state sequence of each 
utterance (Viterbi).

3. Put the whole observations belonging to each state 
from all versions of the spoken words into separate 
cells.  Each cell contains the population of a given 
state.

4. Apply VQ to split the population of each cell into M 
classes within each state.

5. Re-estimate the discrete output probability by using 
the following formula:

j

k
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N
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with    1 ≤ j ≤ N    and   1 ≤ k ≤ Lj

where N- the number of HMM states, Nk - the   
number of prototype in the class k, Nj - total number 
of  prototypes in state j.

6. Refine model parameters using standard re-
estimation formulas.

The K-means algorithm is based on the minimization 
of a distortion criterion. Thus, the phonetic 
classification of the acoustic vectors is not taken into
account during the design of codebooks, and therefore, 
this information is missing in the acoustic processor of 
a discrete HMM system. In order to take in account the 
phonetic information contained in the input vectors, the 
use of a neural network-based configuration to 
generate the codebook is proposed to perform the 
DVQ.

Figure 3. Description of the training phase involved in the DVQ-
HMM-based system.

3.3. The Hybrid Neural Network DVQ
In this method, the standard LBG algorithm is replaced 
by a neural network VQ algorithm trained on 
unsupervised mode using the principles of the mutual 
information theory. Before describing the neural 
network that is used, and its training algorithm, 
definitions related to the mutual information theory are 
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briefly recalled in what follows. The mutual 
information (M.I) is a measure of the information 
content that one variable contains with respect to 
another random variable. This means a reduction in the 
uncertainty of one random variable, i. e., Y, due the 
knowledge of another variable, i. e., W as described by 
equation (5): 
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H (Y) represents the entropy Y = {y1, y2, ….., yM}. It 
is given by equation (6):
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H (Y|W) represents the conditional entropy: 
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This conditional entropy is interpreted as the 
average incertitude on symbols ym when symbols Wn
are observed. The mutual information MI(Y, W) can 
then be expressed as follows:
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The topology of the network used as vector 
quantizer is given in Figure 4. It is a network with two 
layers. The input layer contains D neurons. D is the 
number of components of the feature vector X = {x1, 
x2,…, xD} and the output layer with M neurons. M is 
equal to the desired codebook size. 

The same steps 1 to 3 of the K-means DVQ training 
algorithm are used. The difference begins from step 4 
described below. 

At the beginning of the learning procedure, the 
weights of the neural network are initialized. Each 
presentation of a feature vector X (k), with k = 1,…,K, 
will result in the activation for each of the M neurons 
in the output layer, denoted Zm (k), m = 1, ….. , M. 
The Euclidean distance between the weights and the 
input values has been used for computation of the 
activation. This distance is calculated as follows:
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For each presentation k, the activation of the neuron of 
output layer with the smallest distance is set to 1.0, and 
all other activations are set to 0.0.

The conditional probabilities )( nmWyP of the label 
m in the label stream Y resulting from the presentation 
of all feature vectors of word Wn can be computed as 
follows:

∑
=

=
nL

l
m

w
nm lZLWyP

1
)(1)(    (10)

The probabilities )( myP of the label m in the label 
stream Y resulting from the presentation of all features 
vector K with ∑

=
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 where N is the number of 

vocabulary words (phonemes), can be computed as 
follows:
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These probabilities and the probability 
)( nWP which is the a priori probability of word Wn

can now be used for the computation of Mutual 
Information (M.I) by using equation (8). 

The training procedure iteratively modifies the 
weights gdm*, where m* denotes the label with the 
largest frequency by using:

gjdmgjdmg ∆+−= )1(*)(*         (12)

The computation of the change in activation for label 
m* is computed according to:

( ))(*(2)(* kdxdmgggkmZ −+∆∆=∆                (13)

Equations (10) and (11) permit the computation of 
both the label stream, and the change in the 
probabilities of labels. The resulting changes in the 
mutual information (∆F) can also be computed. If this 
change is positive, the modification of weight 
according to equation (12) is accepted. If not, the 
procedure is repeated with the negative value of ∆g. If 
this does not lead to a positive value of (∆F), the 
weight remains unchanged and the next weight is 
modified in the same way. The network training is 
stopped once all weights have been visited. At the end 
of the learning procedure, the weights of connections
of the cells represent the prototypes of the codebook 
and the probabilities )( myP  represent the discrete 
output probabilities initials bjk.

Figure 4. Topology of the neural network used in the hybrid NN-
DVQ configuration.
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4. Experimental Results
Various sets of experiments have been carried out in 
order to assess the improvement involved by the 
proposed methods. In the case of the Arabic language, 
one important issue that needs to be addressed is the 
characterization of the particular phonemes such as 
back consonants and emphatic consonants. Standard 
Arabic is distinct from Indo-European languages 
because of its consonantal nature. It is characterized by 
the presence of back consonants. There are four back 
consonants in Arabic: two glottal /?/ and  /h/  classified 
respectively as plosive and fricative and two 
pharyngeal /h /and /ε/ classified as unvoiced fricative 
and sonorant. The emphasis aspect is a phonetic 
feature that characterizes the consonants in the Semitic 
language. There are also four emphatic consonants in 
the Arabic language: two plosive consonants 

−
//t and 

−//d and two fricative consonants −//s and −∂// . Table 1 

gives the set of these consonants with their Arabic 
symbols, names and the International Phonetic 
Alphabet (IAP) representations. Designers of systems 
dedicated to the Arabic language have unanimously 
observed that pharyngeal, emphasis, germination, and 
vowel lengthening1 constitute the main root of failure. 
It is the reason why we focus our experiments on these 
consonants.

Table 1. Emphatic and back consonants, their Arabic symbols, 
names and API code.

Arabic Symbol Name IPA
ء hamza /?/

ع ain /ε/

ح ha /h /

هـ ha /h/

ض daad −//d

ص saad −//s

ط tta
−
//t

ظ tha −∂//

4.1. Speech Material
We conducted our tests on a local database. This 
database is composed of words containing the back and 
emphatic consonants in different phonetic contexts. 
These words were pronounced by 80 Algerian male 
speakers and repeated five times each, the consonants 
segmentation being realized automatically. Each 
consonant is available in more than 600 variants. For 
the speaker-independent mode, the utterances of 50 
speakers served as training data, and the utterances of  
30 speakers served as test data. For the multi-speakers 

1 In Arabic, the vowel duration is semantically relevant.

mode the utterances of 50 speakers, three times each, 
served as training data and the rest of utterances served 
as test data. 

4.2. Evaluation of Implemented Systems 
In order to evaluate the DVQ, a set of experiments in 
both multi-speakers and speaker-independent mode has 
been carried out. For each consonant we trained with 
the re-estimation formulas the corresponding models, 
DVQHMM, with 3 states, as well as the CVQHMM. 
The acoustic vector used is a 33-dimensional vector 
{MFCC(11), ∆MFCC(11), ∆∆MFFC(11)}. In the NN-
based front-end technique, the value of ∆g retained for 
the modification of network weights, is 0.05. Various 
sizes of codebooks varying from 8 to 128 were used in 
a comparison between the conventional (CVQ), the K-
means-DVQ and NN-DVQ. Figure 5 and Figure 6
show the comparative results in multi-speakers mode 
and speaker-independent mode, respectively. As 
expected, in the speaker independent mode, more 
errors have been observed. We can see that the 
difference between the two modes in the DVQ 
approach is not noticeable, which confirms that the 
DVQ scheme leads to more robustness of the 
recognition process. We must note that NN-DVQ 
exhibits better performance at all codebook sizes 
higher than 16.
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Figure 5. Error rate of proposed DVQ/HMM methods compared to 
conventional discrete HMM in multi-speakers mode.
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Figure 6. Error rate of proposed DVQ/HMM methods compared to 
conventional discrete HMM in speaker independent mode.
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5. Conclusion
In this paper, a strategy is proposed to improve discrete 
HMM- based automatic speech recognition systems 
dedicated to the Arabic language. A new approach of 
discrete HMM (Distributed Vector Quantization: 
DVQ), based on the tying between Markovian states 
and the conventional vector quantization, was 
presented. Two implementation schemes of this 
approach, namely the K-means DVQ and the NN-
DVQ, were tested in both multi-speakers and speaker-
independent modes. Results suggest that this new 
approach particularly the NN-DVQ variant is more 
effective in terms of error reduction. Based on the 
obtained improvements, we consider the DVQ/HMM a 
promising solution in speech recognition when 
decoding speed is crucial. One practical advantage of 
the DVQ/HMM system compared to the continuous 
hidden Markov model is the speed of the model 
computation. We currently attempt to apply this new 
approach in more difficult tasks like a multiple 
codebooks large vocabulary speech recognition system 
for better insights.
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