
42 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Incremental Genetic Algorithm
Nashat Mansour1, Mohamad Awad1, and Khaled El-Fakih2

1Computer Science Division, Lebanese American University, Lebanon
2Department of Computer Science, American University of Sharjah, UAE

Abstract: Classical Genetic Algorithms (CGA) are known to find good sub-optimal solutions for complex and intractable
optimization problems. In many cases, problems undergo frequent minor modifications, each producing a new problem
version. If these problems are not small in size, it becomes costly to use a genetic algorithm to reoptimize them after each
modification. In this paper, we propose an Incremental Genetic Algorithm (IGA) to reduce the time needed to reoptimize
modified problems. The idea of IGA is simple and leads to useful results. IGA is similar to CGA except that it starts with an
initial population that contains chromosomes saved from the CGA run for the initial problem version (prior to modifying it).
These chromosomes are best feasible and best infeasible chromosomes to which we apply two techniques in order to ensure
sufficient diversity within them. To validate the proposed approach, we consider three problems: Optimal regression software
testing, general optimization, and exam scheduling. The empirical results obtained by applying IGA to the three optimization
problems show that IGA requires a smaller number of generations than those of a CGA to find a solution. In addition, the
quality of the solutions produced by IGA is comparable to those of CGA.

Keywords: Exam scheduling, general optimization, incremental genetic algorithms, optimization algorithms, regression
testing, soft computing.

Received September 28, 2004; accepted December 21, 2004

1. Introduction
Genetic algorithms are based on the mechanics of
natural evolution [4, 7]. They mimic natural
populations reproduction and selection operations to
achieve efficient and robust optimization. Through
their artificial evolution, successive generations search
for beneficial adaptations in order to solve a problem.
Each generation consists of a population of
chromosomes, also called individuals, and each
chromosome represents a possible solution to the
problem. The initial generation consists of randomly
created individuals. Each individual acquires a fitness
level, which is usually based on a cost function given
by the problem under consideration.
Reproduction, survival of the fittest principle, and

the genetic operations of recombination (crossover)
and mutation are used to create new offspring
population from the current population. The
reproduction operation involves selecting, in
proportion to fitness, a chromosome from the current
population of chromosomes, and allowing it to survive
by copying it into the new population. Then, two mates
are randomly selected from this population, and
crossover and mutation are carried out to create two
new offspring chromosomes. Crossover involves
swapping two randomly located sub-chromosomes
(within the same boundaries) of the two mating
chromosomes. Mutation is applied to randomly
selected genes, where the values associated with such
genes are randomly changed to other values within an

allowed range. The offspring population replaces the
parent population, and the process is repeated for many
generations with the aim of maximizing the fitness of
the individuals. In this paper we refer to genetic
algorithms that start with randomly- generated initial
population as Classical Genetic Algorithms (CGA). An
outline of CGA is given in Figure1.

Figure 1. Classical genetic algorithm.

CGAs have been adapted for solving a variety of
engineering, science, economics, and operational
research problems. Some examples of such
applications can be found in [1, 2, 6, 8, 9, 12, 13, 14,
15]. Usually, a CGA starts with random chromosomes
that make up the initial generation. Then, it evolves
until it converges to one (best) solution. A CGA can be
hybridized and augmented with a variety of techniques
to improve its efficiency, to ensure feasibility of final
solution, etc… Examples of such techniques can be
found in [3, 5]. But, all these CGAs are ‘ab-initio’
algorithms. That is, if they are to re-solve a problem

Random generation of initial population, size POP;
Evaluate fitness of individuals;
Repeat
 Rank individuals and allocate reproduction trials;
 For (I = 1 to POP step 2) do

 Randomly select 2 parents from the list of
reproduction trials

 Apply crossover and mutation;
 Endfor
 Evaluate fitness of offspring;
 Until (convergence criterion is satisfied)
 Solution = Fittest

Incremental Genetic Algorithm 43

that has undergone a small modification, they start
again with a random population of chromosomes. Ab-
initio runs take a comparable number of generations
(and time) to the first run of the CGA on the initial
version of the problem prior to its modification. For
example, the modification can be due to a change in a
parameter or in a feasibility constraint. If the problem
size is not small, it may be too costly to spend the same
evolution time for every modification. This would be
particularly costly if such modifications are frequent
and for large problem sizes.
In this paper, we propose a different approach to re-

solving modified problems by genetic algorithms. Our
approach is based on saving chromosomes from the
first CGA run (for the initial problem). The
chromosomes to be saved are the best feasible
chromosomes and the best infeasible ones. We apply
two techniques in order to ensure diversity among
these saved chromosomes. Then, we construct the
initial population of the genetic algorithm from these
chromosomes, in addition to random ones. The
underlying assumption is that a solution to a modified
problem might lie close to that of the initial version,
but it may be on either side of the border of the
feasibility region. Thus, starting with the saved
chromosomes ensures faster convergence to a new
solution. Obviously, the random portion of the
population is included in order to increase diversity.
We refer to genetic algorithms that are based on this
approach as Incremental Genetic Algorithms (IGA),
since they deal with incremental changes.
We empirically explore the IGA approach by

comparing it with CGAs for re-solving modified
optimization problems. The subject problems used are:
Optimal regression testing, general optimization, and
exam scheduling. The empirical results show that the
IGA idea is simple and yet leads to useful results. For
the three problems, IGA takes a smaller number of
generations (and less execution time) than CGA. Yet, it
yields comparable or slightly better solution quality.
This paper is organized as follows. Section 2

describes the IGA. Section 3 presents the empirical
results. Section 4 contains our conclusion.

2. Incremental Genetic Algorithm
The idea of an IGA for optimizing modified problems
is simple. Instead of starting with randomly generated
population of chromosomes, start by using information
saved from running an ab-initio CGA on the initial
problem (before modification). The underlying
assumptions of the IGA idea are:

1. A modification made to a problem does not shift
optimal and good sub-optimal solution points much
in the solution space.

2. The information saved during the application of a
CGA for the initial problem will be useful for

subsequent application of a genetic algorithm to
modified versions of this problem.

The aim is to reduce evolution time, measured in
number of generations, of a genetic algorithm used for
re-optimizing modified problems. This is particularly
useful for complex and large-scale optimization
problems, which take many generations and long
execution times. This approach leads to faster solutions
for incrementally modified problem. Thus, we refer to
genetic algorithms based on this approach as
incremental genetic algorithms.
IGA is based on two phases. In phase 1, we collect

useful information during the execution of a CGA on
the initial version of the problem. Useful information
consists of best feasible and best infeasible
chromosomes in every generation of CGA. To ensure
diversity in these chromosomes, we use two
techniques: Duplication- prevention and FCL-
enriching. In phase 2, we run IGA starting with
chromosomes selected from the useful information
saved, in addition to randomly generated
chromosomes. Figure 2 shows the steps involved in
IGA, which are described in the following subsections.

Create empty best feasible chromosome list (FCL);
Create empty best infeasible chromosome list (ICL);
gen_counter = 0;

Phase 1: In every generation of CGA (run for the initial problem):
Determine best feasible chromosome and apply duplication-
prevention with FCL

If no duplicates found then
 add it to FCL;
 reset gen_counter;
Else increment gen_counter;

Determine best infeasible chromosome and apply duplication-
prevention with ICL

If no duplicate found then add it to ICL;
If gen_counter = 3 then

 apply the FCL-enriching technique and add selected
 chromosomes to FCL;
 reset gen_counter;

Phase 2: IGA (run for the modified problem):
Sort FCL and ICL according to fitness;
Run IGA starting with initial population which is typically

 composed of:
50 % best feasible from FCL
25 % best infeasible from ICL
25 % randomly generated

Figure 2. Incremental genetic algorithm.

2.1. Saving Chromosomes in CGA
In phase 1, we save chromosomes from every
generation of CGA. The candidate chromosomes are
normally the best feasible and the best infeasible,
which have the highest fitness in their feasible and
infeasible regions, respectively. We apply diversity-
assuring techniques, described next, to the candidate
chromosomes and the selected ones are added to the
feasible and infeasible chromosome lists, FCL and
ICL, respectively. For diversity purposes, the candidate
chromosomes may be those other than the best one.

44 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

This is also explained next in the FCL-enriching
technique.

2.2. Duplication-Prevention Technique
To prevent duplication of chromosomes in the FCL
and ICL lists, we find the Hamming distance between a
candidate chromosome and all chromosomes in the
relevant list. The number of bits by which the two
chromosomes differ gives the Hamming distance. If
the Hamming distance is different from zero, the
candidate chromosome is added to the list. Otherwise,
the chromosome is not added. For best feasible
chromosomes, if they fail to be added to the FCL for 3
generations, we apply the FCL-enriching technique,
which aims to ensure that FCL contains sufficient and
diverse chromosomes for IGA. A similar technique to
FCL-enriching is not applied to infeasible
chromosomes, since any shortage in infeasible
chromosomes can be substituted in IGA with
randomly-generated ones without losing useful/feasible
information.

2.3. FCL-Enriching Technique
The best feasible chromosome may fail to pass the
duplication-prevention test in FCL. This means that
FCL may end up with a small, insufficient number of
chromosomes at the end of a CGA run. Equally
important is that the chromosomes to be added to FCL
be as diverse as possible. The FCL-enriching technique
aims to fulfill the diversity objective while enriching
FCL with useful feasible chromosomes. It is applied
only if the duplication-prevention test fails 3
successive times.
The FCL-enriching procedure is composed of the

following steps:

1. Compute fi, the fitness value of every feasible
chromosome i in the current generation.

2. Compute di, the Hamming distance from the local
feasible chromosome i to the best-so-far
chromosome in FCL.

3. Compute the average of both the fitness values and
Hamming distances of the feasible chromosomes,
avf and avd.

4. Add to FCL feasible chromosomes i that satisfy the
following three conditions:

1. Passes the duplication-prevention test in FCL.
2. fi > avf (i. e., i has high fitness).
3. di < avd (i. e., i is close to best-so-far
chromosome).

2.4. Constructing the Initial Population for
IGA

At the end of a CGA run on the initial problem version,
the FCL and ICL lists are constructed. These lists are
then sorted by fitness value. A typical initial

population of IGA, to be run for a modified version of
the problem, is constructed as follows: 50% of the
population size is taken from the best FCL
chromosomes, 25% from the best ICL chromosomes,
and the remaining 25% are generated randomly. In
cases where these typical percentages from FCL and
ICL cannot be achieved, the random component is
increased to compensate for the shortage. Obviously,
these typical percentages are empirically determined.
They emphasize the contribution of the feasible
chromosomes without undermining the possibility that
the solution of the modified problem might lie near
‘good’ infeasible solution points. Further, a random
component is kept in the initial population in order to
increase the level of diversity.

3. Empirical Comparison of IGA and CGA
In order to support our claim about the performance of
IGA, we compare it with CGA for three optimization
problems from software engineering and operations
research: Optimal regression software testing, general
optimization, and exam scheduling. For each problem,
we run CGA and incorporate into it the Phase 1 steps
necessary for IGA. Then, we introduce small
modifications to the initial formulation of the problem.
We compare IGA and CGA by running both for re-
solving the modified problem and counting the number
of generations each algorithm take to converge to a
solution. The quality of the solutions obtained by IGA
and CGA are also recorded to ensure that a reduction
in the number of generations of IGA is not
accompanied by deterioration in the solution quality.

3.1. Results for Optimal Regression Software
Testing

Optimal regression software testing aims to select
minimum number of tests from an initial suite of N
tests such that the paths affected by fixing a program
segment are covered. We assume the program is made
up of M segments. Given that program segment k has
been modified, the optimal retesting problem consists
of finding values for (X1, X2, …, XN) that minimize
the cost function:

N21 X+.......+X+X=Z

Subject to the constraints :

∑
=

N

1j
jijXa ≥ bi; i = 1, .., M

Where Xj = 1 (or 0) indicates the inclusion (or
exclusion) of test case j in the selected subset of
retests. The matrix [aij] is derived directly from the
test-segment coverage table, i. e., aij = 1 if segment i
covered by test case j; bi = 1 (or 0) indicates whether
segment i needs to (or need not) be covered by the

Incremental Genetic Algorithm 45

subset of retests due to the modification of segment k,
where the values bi are derived from the segment
reachability information [11].
Tables 1-4 show the number of generations and the

objective function value of the final solution for CGA
and IGA. The different tables show the results for
different problem sizes and for different modifications
made to the initial problem. The modifications are
made to a small number of constraints, specifically to
the values on the right-hand side of the inequalities.
This corresponds to a change in the number of the
affected paths that are required to be covered by the
selected tests.
The results in Tables 1-4 show that:

1. IGA evolves a solution faster (in number of
generations) than CGA in most cases; this
advantage is clearer for larger problem sizes.

2. The solution quality of IGA is comparable to that of
CGA, even where the number of generations is
significantly less (see Table 4).

Further, to give an idea about the actual saving in
execution time, we note that for the 6000x6000
problem with 256 changes, CGA takes 1hour on a
1GHz-Pentium based PC, whereas IGA takes 0.65
hour.

3.2. Results for General Optimization
In general optimization, we minimize:

i

N

1i

1i- X(1)∑
=

Subject to the constraints:

∑
=

N

1j
jijXa ≥ bi; i = 1, .., M

Where bi varies between 0 and 20, or it could be only 0
and 1.
Two optimization problems are used. In the first

problem, the variables can take values in {–1, 0, 1},
and the right-hand values of the constraints range
between 0 and 20. In the second problem, the variables
can be {–1, 0, 1}, and the right-hand side values can be
{0, 1}. The changes for this problem are made to the
values on the right-hand side of the
constraints/inequalities.

Table 1. Results for regression testing, MxN = 1000x1000.

CGA IGA

Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

1000x1000
16 Changes 10 19 10 18

1000x1000
32 Changes 17 18 10 18

Tables 5-8 show the results for different problem
sizes and number of changes. The advantage of IGA is

remarkable over CGA in terms of the number of
generations required to find a solution. Again, the
solution quality of IGA is similar to that of CGA.

Table 2. Results for regression testing, MxN = 2000x2000.

CGA IGA
Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

2000x2000
16 Changes

17 20 10 20

2000x2000
64 Changes

10 21 10 20

Table 3. Results for regression testing, MxN = 4000x4000.
CGA IGA

Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

4000x4000
128 Changes

20 16 20 16

4000x4000
256 Changes

23 16 20 16

Table 4. Results for regression testing, MxN = 6000x6000.
CGA IGA

Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

6000x6000
256 Changes 26 45 16 45

6000x6000
512 Changes 35 44 10 45

Table 5. Results for general optimization, variables {-1, 0, 1} and
constraints {0, 1}.

CGA IGA
Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

1000x1000
16 Changes

36 100 15 99

1000x1000
32 Changes

43 111 32 111

Table 6. Results for general optimization, variables {-1, 0, 1} and
constraints 0..20.

CGA IGA
Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

1000x1000
16 Changes

37 195 10 194

1000x1000
32 Changes

29 199 20 189

Table 7. Results for general optimization, variables {-1, 0, 1} and
constraints {0, 1}.

CGA IGA
Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

4000x4000
128Changes

23 163 10 151

4000x4000
192 Changes

56 150 10 151

46 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Table 8. Results for general optimization, variables {-1, 0, 1} and
constraints 0..20.

CGA IGA
Number of
Generations

Objective
Function

Number of
Generations

Objective
Function

4000x4000
128 Changes

31 449 10 440

4000x4000
192 Changes

31 459 10 440

3.3. Results for Exam Scheduling
The exam scheduling problem is a complex
optimization problem. It refers to assigning exams to
periods so that the following quantities are minimized:
The number of students with simultaneous exams
(SSE), the number of students with consecutive exams
(SCE), and the number of students having multiple
exams on the same day (SME). In addition, we have
constraints, such as the total number of exam periods,
total number of available rooms with predetermined
capacities, etc… The objective function is given by a
weighted sum of SSE, SCE, SME, and the number of
room violations [10]. We use three instances of the
exam scheduling problem based on real data for the
semesters S95, F96, F98. The three instances differ in
the number of exams and students.
Table 9 shows the results for the three semesters.

For S95, the modification to the problem instance is
made by forcing the exams of the sections of the same
course to be scheduled to the same period. For F96 and
F98, the modification is made by deleting some
courses (i. e., reducing the number of variables). Table
10 shows the results for S95, where the modification is
made to the maximum number of exam periods
allowed. Figure 3 illustrates the results of Table 10
graphically. All these results clearly show that IGA
yields a solution in a smaller number of generations
than CGA and that its solutions are comparable or
somewhat better. To give an idea about the reduction
in execution time, we note that in Table 10, periods =
40, CGA takes 1.1 hours, whereas IGA takes 0.55
hours (50 % reduction).

Table 9. Results for exam scheduling, 3 semesters, 32 periods.

SSE SCE SME

No. of
Rooms
Used

Violation
of Room
Capacity

Objective
Function

No. of
Generations

S95 CGA 0 344 810 21 0 1154 84

IGA 0 345 802 21 0 1147 62

F96 CGA 0 268 600 21 0 868 43

IGA 0 224 494 21 0 718 32

F98 CGA 0 41 197 21 0 238 59

IGA 0 45 185 21 0 230 33

Table 10. Results for exam scheduling for S95 with different
periods.

CGA Periods = 24 Periods = 28 Periods = 36 Periods = 40
SSE 2 0 0 0
SCE 879 572 231 95
SME 1680 1060 647 422
Room
Violation 0 0 0 0

Objective
Function 2759 1632 878 517

Generations 60 89 72 77
IGA Periods = 24 Periods = 28 Periods = 36 Periods = 40

SSE 2 0 0 0
SCE 804 455 180 91
SME 1477 1109 527 423
Room
Violation 0 0 0 0

Objective
Function 2481 1564 707 514

Generations 40 40 63 34

0
10
20
30
40
50
60
70
80
90
100

20 24 28 32 36 40

Periods

N
um
be
r o
f G
en
er
at
io
ns

0

1000

2000

3000

4000

5000

6000

Co
st

IGA-Generations
CGA-Generations
IGA-Cost
CGA-Cost

Figure 3. Bar chart for the results in Table 10.

4. Conclusion
We have presented an Incremental Genetic Algorithm
(IGA), which is useful for re-optimizing problems that
undergo small changes. Instead of starting with a
randomly generated initial population, as in CGA, IGA
uses information collected from the first run of a CGA
on the initial version of the problem (prior to the
changes).
The empirical results for three subject problems

show that IGA evolves solutions faster than CGA and
that these solutions have similar quality to those of
CGA.

References
[1] Ahmad R. and Bath P. A., “The Use of Cox

Regression and Genetic Algorithm (CoRGA) for
Identifying Risk Factors for Mortality in Older
People,” Health Informatics Journal, vol. 10, pp.
221-236, 2004.

[2] Celeste A. B., Suzuki K., and Kadota A.,
“Genetic Algorithms for Real-Time Operation of
Multipurpose Water Resource Systems,” Journal
of Hydroinformatics, vol. 6, pp. 19-38, 2004.

[3] Davis L. (Ed), Handbook of Genetic Algorithms,
New York: Van Nostrand Reinhold, 1991.

Incremental Genetic Algorithm 47

[4] Goldberg D. E., Genetic Algorithms in Search,
Optimization and Machine Learning, Boston,
Addison-Wesley, Reading, 1989.

[5] Haupt R. and Haupt S., Practical Genetic
Algorithms, New York, Wiley & Sons, 1998.

[6] Hicks C., “A Genetic Algorithm Tool for
Designing Manufacturing Facilities in the Capital
Goods Industry,” International Journal of
Production Economics, vol. 90, no. 2, pp. 199-
211, 2004.

[7] Holland J. H., Adaptation in Natural and
Artificial Systems, Cambridge, Mass., MIT Press,
1992.

[8] Iuspa L., Scaramuzzino F., and Petrenga P.,
“Optimal Design of an Aircraft Engine Mount
via Bit-Masking Oriented Genetic Algorithms,”
Advances in Engineering Software, vol. 34, no.
11-12, pp. 707-720, 2003.

[9] Li F., Zhang X., and Dunn R. W., “Development
of an Optimal Contracting Strategy Using
Genetic Algorithms in the UK Standing Reserve
Market,” IEEE Transactions on Power Systems,
pp. 842-847, May 2003.

[10] Mansour N. and El-Fakih K., “Simulated
Annealing and Genetic Algorithms for Optimal
Regression Resting,” Journal of Software
Maintenance, vol. 11, pp. 19-34, 1999.

[11] Mansour N. and Timany M., “Soft Computing
Algorithms for Exam Scheduling,” Submitted for
publication, 2003.

[12] Michalewicz Z. and Fogel D., How to Solve it,
Modern Heuristics, Berlin, Springer, 2000.

[13] Ombuki B. and Ventresca M., “Local Search
Genetic Algorithm for the Job Shop Scheduling
Problem,” Journal of Applied Intelligence, vol.
21, no. 1, pp. 99-109, 2004.

[14] Saleh A. H. and Chelouah R., “The Design of the
Global Navigation Satellite Surveying Networks
Using Genetic Algorithms,” Journal of
Engineering Applications of Artificial
Intelligence, vol. 17, no. 1, pp. 111-122, 2003.

[15] Schulze-Kremer S., “Genetic Algorithms for
Protein Tertiary Structure Prediction,” in Manner
R. and Manderick B. (Eds), Parallel Problem
Solving from Nature, North Holland, pp. 391-
400, 1992.

Nashat Mansour is an associate
professor at the Lebanese American
University, Lebanon. He received
his BE and MS degrees in Electrical
Engineering from the University of
New South Wales, Australia, and
MS in Computer Engineering and

PhD in computer science from Syracuse University,
USA. Currently, he is an executive member of the
Arab Computer Society. His research interests include
software testing, applications of soft computing
algorithms, and data/web mining.

Mohamad Awad received his BSc
and MSc degrees in computer
science from the Lebanese American
University, Beirut, in 1988 and 2001,
respectively. Currently, he is
working on his PhD in signal
processing at Rennes University,

France. He has also been working as a research
assistant at the Lebanese National Council for
Scientific Research since 1996.

Khaled El-Fakih received the BSc
and MSc degrees in computer
science from the Lebanese American
University and the PhD degree in
computer science from the
University of Ottawa in 2002. He
worked as a graduate fellow at IBM

Toronto Laboratory in 1997 and as a Verification
Engineer at Cambrian Systems Corporation in 1998.
He joined the American University of Sharjah in 2001,
where he is currently an assistant professor. His
research interests are in testing of communication
protocols, fault diagnosis and synthesis of distributed
systems, formulation of optimization problems and
application of natural optimization heuristics.

