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Abstract: Multicomputer Operating System for Unix (MOSIX) is a cluster-computing enhancement of Linux kernel that 
supports preemptive process migration. It consists of adaptive resource sharing algorithms for high performance scalability by 
migrating processes across a cluster. Message passing Interface (MPI) is a library standard for writing message passing 
programs, which has the advantage of portability and ease of use. This paper highlights the advantages of a process migration 
model to utilize computing resources better and gain considerable speedups in the execution of parallel and multi-tasking 
applications. We executed several CPU bound tests under MPI and MOSIX. The results of these tests show the advantage of 
using MOSIX over MPI. At the end of this paper, we present the performance of the executions of those tests, which showed 
that in some cases improvement in the performance of MOSIX over MPI can reach tens of percents.
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1. Introduction
In recent years, interest in high performance computing 
has increased [4, 7, 17]. Also, many computer systems 
supporting high performance computing have emerged. 
These systems are classified according to their 
processing power, and their processors interconnection 
with memory subsystems. In a Network Of 
Workstations (NOWs) system, where many users need 
to share system resources, the performance of 
executing multiple processes can significantly be 
improved by process migration. Such system can 
benefit from process migration through initial 
distribution of processes, to redistribute processes 
when the system becomes unbalanced or even to 
relieve a workstation when its owner wishes so. With 
the increased interest in Linux Clusters [2, 3, 12, 15, 
20], which can be in the form of a NOWs, as a cheap 
solution for high performance and general purpose 
computing, it becomes a necessity to examine how we
can improve the overall utilization of such systems and 
allow flexible use of idle nodes/workstations. Two 
models can be used to achieve these goals, process 
migration and message passing [5, 6, 7, 8, 16, 18, 19].

Process migration model is a model in which a live 
process is transferred from one system to another. For 
efficiency reasons, most of the process migration 
implementations are done in the operating system 
kernel rather than user space. MOSIX is an example of 
this model, which will be discussed later in this paper 
[15].

Message passing model; on the other hand, is 
mostly implemented in the user space as a group of 
libraries that application developers link with. This 

model requires application developers to write their 
code according to set of standards. Message passing 
Interface (MPI) and Parallel Virtual Machine (PVM) 
are two examples of this model. Throughout this paper, 
we will only discuss MPI as an example of the 
Message passing model.

MOSIX developers claim in [15] that “in a Linux 
cluster running MOSIX kernel, there is no need to 
modify or link applications with any library, or even 
assign processes to different nodes, just fork and 
forget, MOSIX does it automatically like an SMP”. 
MOSIX can allow any size Linux cluster of x86 
workstations and servers to work as single system, 
which should simplify job submission and system 
administration [15]. MPI in contrast requires the 
involvement of application developers to write their 
code in a way that can utilize all cluster resources. 
Furthermore, the user is responsible of assigning 
processes to different nodes. Until now, 9 versions of 
MOSIX have been developed. We used the latest 
version of MOSIX that is compatible with LINUX 2.4. 
The previous 8 versions are as follows: 

• First version was started in the year 1977 and 
finished in 1979 with the name “UNIX with satellite 
processors”. It was compatible with Bell lab’s Unix 
6. 

• Second version was developed in the year 1983 with 
the name “MOS”. It was compatible with Bell lab’s 
Unix 7. 

• Third version was started in 1987 and developed in 
the year 1988 with the name “NSMOS”, it was 
compatible with Bell lab’s Unix 7 with some BSD 
4.1 extensions.
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• Fourth version was developed in the year 1988 with 
the name “MOSIX” and was compatible with 
AT&T Unix system V release 2.

• Fifth version was developed in the same year (1988) 
with the name MOSIX and it was compatible with 
AT&T Unix system V release 2.

• Sixth version appeared in the year 1989. It was 
compatible with AT&T Unix system V release 2 
running on the machine NS32532. 

• Seventh version was developed in the year 1993 and 
was compatible with BSD/OS.

• Eighth version was completed in the year 1999 and 
was enhanced to be compatible with LINUX 2.2. It 
runs on any x86 machines [15].

This paper will study both high performance-
computing models and will compare their performance 
using set of experiments. The paper is organized in six 
sections. The next section gives a general idea of 
process migration and an overview of MOSIX and its 
features as an example of this computing model. 
Section 3 gives a short overview of the message 
passing Interface model and its main advantages and 
disadvantages. Section 4 presents the performance of 
several testes under MOSIX and MPI. Related work is 
given in section 5. Conclusions and future work are 
given in section 6.

2. Process Migration
Process migration is the act of transferring a live 
process from one system to another system in the 
network. Process migration is mainly used for efficient 
management of resources in a distributed system [16]. 
Process migration has different applications including 
load distribution, fault resilience, and resource sharing. 
In high performance computing, dynamic process 
migration is a valuable mechanism to balance the load 
on different processors [10] to maximize the utilization 
of resources or to get better program execution 
performance [7, 19].

Process migration is needed particularly in high 
performance computing because of the following 
reasons:

1. Load balancing: Workload will be balanced by 
distributing processes across the network.

2. Computation speedup: The total execution 
performance of a program can be reduced if a single 
process can be divided into sub-processes that run 
concurrently on different processors.

3. Data access: If the data being used in the 
computation are huge, it can be more efficient to 
have a process run remotely, rather than to transfer 
all the data locally.

2.1. MOSIX Overview
A more detailed description of MOSIX can be found in 
[2, 11, 12, 13, 15]. The overview presented here is 
mainly from these references. MOSIX is a distributed 
operating system for clusters that can make a cluster of 
x86 based Linux nodes run almost like an SMP. It has 
the advantage of ease-of-use and near optimal 
performance [15]. MOSIX operates preemptively to 
the applications and allows the execution of sequential 
and parallel programs regardless of where the 
processes are running or what other cluster users are 
doing [11]. Shortly after the creation of a new process, 
MOSIX attempts to assign it to the best available node 
at that time. MOSIX then continues to monitor the new 
process, as well as all the other processes, and will 
move them among the nodes to maximize the overall 
performance. This is done without changing the Linux 
interface, and users can continue to see and control 
their processes as they do while running the process on 
their local node. Users can also monitor the process 
migration and memory usages on the nodes using 
OpenMosixView, a cluster management GUI for 
MOSIX. OpenMosixView supports special fields such 
as on which node a process was started, on which node 
it is currently running, the percentage of memory it is 
using and its current working directory.

The MOSIX technology consists of two main parts 
[2]: A set of algorithms to allow adaptive resource 
sharing, and a mechanism to implement a Preemptive 
Process Migration (PPM). The two parts are 
implemented at the kernel level in such away that the 
kernel interface remains unmodified. Therefore, they 
are completely transparent to the application level [2].

In MOSIX, each process has A Unique Home Node 
(UHN) referring to the node where the process was 
created [2]. This node is normally the login node for 
the application user. Processes that migrate to other 
nodes use local resources whenever possible, but 
interact with the user’s environment through the UHN. 
The PPM can migrate any process at any time to any 
Available node. Usually, migration of processes is 
based on provided information by one of the resource 
sharing algorithms. Users, however, can migrate their 
processes manually and therefore override any 
automatic system decisions. The process can either 
initiate a manual migration synchronously or by an 
explicit request from another process of the same user. 
Manual process migration can be useful to implement a 
particular policy or to test different scheduling 
algorithms.

The Users can run parallel applications by initiating 
multiple processes in one node, and then allow the 
system to assign these processes to the best available
nodes at that time. If during the execution of the 
processes new resource become available, then the 
resource sharing algorithms are designed to utilize 
these new resources by possible reassignment of the 
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processes among the other nodes. The ability to assign 
and reassign processes is particularly important for 
ease-of-use and to provide an efficient multi-user, time 
sharing execution environment. PPM is the main tool 
for the resource management algorithms. As long as 
the requirements for the resources, such as the CPU or 
main memory are below certain threshold, the user’s 
processes are confined to the UHN. When the 
requirements for resources exceed some threshold 
levels, then some processes may be migrated to other 
nodes, to take advantage of available remote resources. 
The overall goal is to maximize the performance of the 
system by efficient utilization of network wide 
resources. PPM is also used for hiding system failures 
from users to create a view of highly available system.

Unlike the master-slave organization between 
nodes, where there is a central control, in MOSIX each 
node can operate as an autonomous system. Thus 
individual nodes in MOSIX can make all their control 
decisions independently. This design allows a dynamic 
configuration, where nodes may join or leave the 
network with minimal disruptions [2]. The algorithms 
of MOSIX are decentralized; that is, each node is both 
a master for processes that were created locally and a 
server for processes that migrated from other nodes. 
These algorithms are geared for maximal performance, 
overhead-free scalability, and ease-of-use [2, 9, 13, 
15]. MOSIX algorithms use preemptive process 
migration and have the following properties: 

• Efficient kernel communication: This feature 
reduces the overhead of the internal kernel 
communications, e. g., between the process and its 
home site, when it is executing in a remote site. This 
new protocol is specifically useful for a locally 
distributed system. 

• Network transparency: For network related 
operations, the interactive user and the application 
level programs see a virtual machine that looks like 
a single machine. The users use the cluster as a 
single machine, and are not aware of the fact that 
some of their processes were migrated to other 
nodes.

• PPM: The essential requirement for a process 
migration is transparency, that is, the functional 
aspects of the system’s behavior should not be 
altered as a result of the migration of processes. 
Achieving this transparency requires that the system 
is able to locate the process and that the process is 
unaware of the fact that it has been moved from one 
node to another. In MOSIX these two requirements 
are achieved by maintaining in the user’s 
workstation a structure called deputy that represents 
the process and interacts with its environment. After 
a migration, there are no residual dependencies 
other than at the home workstation. The process 
resumes its execution in the new site by few page 

faults, which bring the necessary parts of the 
program to that site.

• Dynamic load balancing: The main concept that 
involves initiating process migrations is balancing 
the load across nodes in the cluster. The algorithms 
respond to variations in the loads of the nodes, the 
runtime characteristics of the processes, the number 
of workstations, and their speeds. This feature is 
useful for sharing resources and distributing work 
evenly across nodes to maximize overall system 
utilization.

• Decentralized control: Each workstation makes all 
its own control decisions independently and there 
are no master-slave relationships between the 
workstations.

2.2. Process Migration in MOSIX
MOSIX supports preemptive process migration. The 
migrated process continues to interact with its 
environment regardless of its location. The migrating 
process is divided into two perspectives, the user 
perspective and the system perspective. The user 
perspective can be migrated and the system 
perspective, that is UHN dependent, is not migrated as 
shown in Figure 1.

Figure 1. Process migration in MOSIX.

The user perspective, called the remote, contains the 
program code, data, memory maps, stack and registers 
of the process. The remote encapsulates the process 
when it is running in the user level. The system 
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the resources of the process and a kernel-stack for the 
execution of the system code on behalf of the process. 
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Though the process can migrate many times between 
the nodes, the deputy is never migrated. Figure 1 
shows two processes that share a UHN. The left 
process is a regular LINUX process while the right 
process is divided into two halves; deputy part remains 
there while the remote part is migrated to another node.

In the execution of a process in MOSIX, location 
transparency is achieved by forwarding site dependent 
calls to the deputy at the UHN [2]. The remote site’s 
link layer intercepts all system calls that are executed 
by the process. These system calls are a synchronous 
form of interaction between the remote and the deputy. 
If the system call is site dependent, it will be executed 
by the remote node locally. Otherwise the system call 
is forwarded to the deputy, which executes the system 
call on behalf of the process in the UHN [2].

3. Message Passing Interface 
MPI is a standard specification for message passing 
libraries. It is designed to provide a consistent model 
against which parallel applications can be written for
operation of a cluster of workstations. The MPI is 
widely adopted communication library for parallel and 
distributed computing [18]. MPI has extremely flexible 
mechanism for describing data movement routines. It 
also has a large set of collective computation 
operations, which allows the users to provide their own 
set of operations. MPI also provides operations for 
creating and managing groups in a scalable way. MPI 
programs can run on network of machines that have 
different lengths and formats for various fundamental 
data types. MPI also allows dynamic resizing of cluster 
nodes. Nodes are allowed to dynamically join and 
leave a given cluster. In general, MPI has the following 
features, which makes it appealing for high 
performance computing:

• Standardization: MPI is the only message-passing 
library that can be considered as a standard. It is 
supported on virtually all HPC platforms. 

• Portability: There is no need to greatly modify the 
source code when porting an application to a 
different platform, which supports MPI. 

• Performance: Vendor implementations should be 
able to exploit native hardware features to optimize 
performance. 

• Availability: Variety of implementations are 
available, both vendor and public domain.

In spite of the above features, Message passing codes 
are typically very difficult and time consuming to write 
efficiently. In addition, MPI lacks processor control for 
multiple programs and it does not specify a standard 
way of describing the virtual machine upon which an 
application operates.

4. Evaluation 
In this section we present a preliminary evaluation of 
MOSIX and LAM MPI performance of the execution 
of sets of identical CPU-bound processes. The goal is 
to highlight the advantages of the MOSIX preemptive 
process migration mechanism and its load balancing 
scheme. Several tests were executed, ranging from 
pure CPU-bound processes in an idle system, to a 
system with background load. Threads migration 
performance evaluation was part of what we planned to 
experiment with but unfortunately threads cannot be 
migrated in the current release of MOSIX. The 
granularity of distribution in MOSIX is to the level of 
process. The distribution of threads is not guaranteed 
instead. Applications using shared memory also cannot 
be migrated under the current release of MOSIX.

4.1. Experimental Setup 
The experimental platform consists of three nodes 
based on dual Intel Pentium III processors, total of six 
processors, with 2 GB physical memory and 
interconnected with a Fast Ethernet network. In the 
evaluation experiments, we used openmosix4smp 
kernel level 2.4.18 and LAM MPI version 6.5.6-8.

4.2. Performance of CPU-Bound Processes 
The first test is intended to show the efficiency of 
MOSIX load balancing algorithms. We executed a set 
of identical CPU-bound processes, each requiring 60 
seconds, and measured the total execution times under 
MOSIX (with its preemptive process migration), 
followed by measurements of the total execution times 
under MPI. 

Table 1 summarizes the results of these tests. In the 
table, the first column lists the number of processes. 
The second column lists the measured execution times 
of the processes using the MOSIX load balancing 
algorithm. Column three lists the execution times of 
the same processes under MPI. By comparing column 
2 and 3 of Table 1, you can notice that the execution 
times of MPI (third column) can be significantly 
slower than MOSIX.

Table 1. MOSIX vs. MPI execution times (sec.).
No. of 

Processes
MOSIX
 (sec.)

MPI 
(sec.)

MPI S low 
Down (%)

1 60 60 0.00

2 59.1 60.28 2.00

4 60.2 65.46 8.74

6 59.86 69.34 15.84

8 61.49 75.7 23.11

10 60.59 85.59 41.26

16 60.53 90.5 49.51

24 64.32 140.88 119.03

32 69.77 168.83 141.98
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Figure 2 depicts the results of Table 1. Comparison 
of the measured results shows the average slowdown 
of MPI vs. MOSIX is over 70%, when executing more 
than 6 processes. This slowdown can become very 
significant, e. g., 141.98% for 32 processes.
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Figure 2. MOSIX vs. MPI execution times.

4.3. Performance of CPU-Bound Processes with 
Background Load 

The second test compares the execution times of a set 
of identical CPU-bound processes under MOSIX and 
MPI in a system with a background load. This 
additional load reflects processes of other users in a 
typical time-sharing computing environment. The 
specific background load consisted of 4 additional 
CPU-bound processes that were executed in cycles, 
where each cycle included an execution period 
followed by an idle period. The background processes 
were executed independently, throughout the execution 
time of the test, and the duration of the execution and 
idle periods were random variables, in the range of 0 to 
15 seconds. In order to get accurate measurements, 
each test was executed 3 times. Table 2 summarizes 
the results of these tests and Figure 3 depicts the results 
of this table.

Table 2. MOSIX vs. MPI with background load execution times.

No. of 
Processes

MOSIX
(sec.)

MPI
(sec.)

MPI S lowness 
(%)

2 59.61 60.08 0.79

4 59.93 73.04 21.88

6 60.38 75.62 25.24

8 60.55 75.19 24.18

10 60.57 80.42 32.77

16 61.21 86.06 40.60

24 66.96 131.65 96.61

32 73.62 195.15 165.08

Comparison of the corresponding measured results 
shows that the average slowdown of MPI vs. MOSIX 
is over 50%, with as much as 165.08% slowdown, in 
the measured range, for 32 processes. From these 
measurements, it follows that in a multi-user 

environment, when it is expected that background 
processes of other users are running, execution of 
parallel programs under MPI may result in a significant 
slowdown vs. the same execution with MOSIX.
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Figure 3. MOSIX vs. MPI with background load execution times.

4.4. Performance of Matrix-Multiplication 
Application 

The third test compares the execution times of a real 
high performance example, matrix multiplication. In 
this test, we have chosen large matrix sizes, which 
require each process to do both CPU crunching and 
relatively high memory utilization for storing the 
matrices. Figure 4 shows the application performance 
while running the application using both MOSIX and 
MPI for a matrix of size 500x500. Figure 5 shows the 
application performance while running the application 
using both MOSIX and MPI for a matrix of size 
5000x200.

Figure 4. Matrix multiplication 500x500 performance using 
MOSIX and MPI.

Figure 5. Matrix multiplication 5000x200 performance using 
MOSIX and MPI.
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5. Related Work 
A comparison of the performance of MOSIX versus 
other similar systems was carried out by many 
researchers including [1].

In the early 80’s process migration was a new 
concept and the use of it was considered taboo mainly 
because of the cost factor, but in the recent past it has 
developed many folds so that process migration has 
become an essential part [5, 6, 7, 16, 19]. It is now 
used hundreds of times daily to provide substantial 
speed-ups for processes open to parallel processing, 
such as simulation. However, the usefulness of remote 
execution would be restricted if processes are to be 
terminated if they behave differently when they run 
remotely.

MOSIX provides a transparent process migration 
facility to allow user processes to migrate without 
requiring to link with special libraries or usage of 
system calls. Steve McClure and Richard Wheeler 
have made related comparisons on various computing 
nodes to find the best hardware platform for handling 
Load Balancing through MOSIX [20].

Although many experimental process migration 
mechanisms have been implemented, MOSIX is one of 
only a few to receive extensive practical use. Others 
include SPRITE and LOCUS [5, 6]. SPRITE, 
developed at UC Berkeley, provides a transparent 
process migration facility to allow noninvasive access 
by migrating a remote process during execution if its 
host becomes unavailable, thus leaving no residual 
dependencies on the remote host after migration [6].

6. Conclusions and Future Work
This paper presented a performance evaluation of 
MOSIX as an example of a preemptive process 
migration package compared to LAM MPI. The paper 
presented the performance of several tests that were
developed and executed under MOSIX, and MPI. We 
showed that in many executions, the performance of 
applications written in MPI was significantly lower 
than those executed on MOSIX. For a multi-user 
environment, MOSIX was proven to be better than 
MPI in utilizing all system resource because of the 
load balancing algorithms implemented in MOSIX.

In the future, the performance of MOSIX can be 
compared with other workload management systems 
like condor and also one may be interested in running 
the performance tests on more processors and include 
communication bound processes test to further 
compare MOSIX with MPI. Also one can measure the 
system load/throughput with and without MOSIX.
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