
62 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

MOSIX Evaluation on a Linux Cluster
Najib Kofahi1, Saeed Al Zahrani2, and Syed Manzoor Hussain3

1Department of Computer Sciences, Yarmouk University, Jordan
2Saudi Aramco, SA

3Dept. of Information and Computer Science, King Fahd University of Petroleum and Minerals, SA

Abstract: Multicomputer Operating System for Unix (MOSIX) is a cluster-computing enhancement of Linux kernel that
supports preemptive process migration. It consists of adaptive resource sharing algorithms for high performance scalability by
migrating processes across a cluster. Message passing Interface (MPI) is a library standard for writing message passing
programs, which has the advantage of portability and ease of use. This paper highlights the advantages of a process migration
model to utilize computing resources better and gain considerable speedups in the execution of parallel and multi-tasking
applications. We executed several CPU bound tests under MPI and MOSIX. The results of these tests show the advantage of
using MOSIX over MPI. At the end of this paper, we present the performance of the executions of those tests, which showed
that in some cases improvement in the performance of MOSIX over MPI can reach tens of percents.

Keywords: High performance computing, performance evaluation, Linux cluster, MOSIX, MPI, process migration.

Received July 28, 2004; accepted September 30, 2004

1. Introduction
In recent years, interest in high performance computing
has increased [4, 7, 17]. Also, many computer systems
supporting high performance computing have emerged.
These systems are classified according to their
processing power, and their processors interconnection
with memory subsystems. In a Network Of
Workstations (NOWs) system, where many users need
to share system resources, the performance of
executing multiple processes can significantly be
improved by process migration. Such system can
benefit from process migration through initial
distribution of processes, to redistribute processes
when the system becomes unbalanced or even to
relieve a workstation when its owner wishes so. With
the increased interest in Linux Clusters [2, 3, 12, 15,
20], which can be in the form of a NOWs, as a cheap
solution for high performance and general purpose
computing, it becomes a necessity to examine how we
can improve the overall utilization of such systems and
allow flexible use of idle nodes/workstations. Two
models can be used to achieve these goals, process
migration and message passing [5, 6, 7, 8, 16, 18, 19].

Process migration model is a model in which a live
process is transferred from one system to another. For
efficiency reasons, most of the process migration
implementations are done in the operating system
kernel rather than user space. MOSIX is an example of
this model, which will be discussed later in this paper
[15].

Message passing model; on the other hand, is
mostly implemented in the user space as a group of
libraries that application developers link with. This

model requires application developers to write their
code according to set of standards. Message passing
Interface (MPI) and Parallel Virtual Machine (PVM)
are two examples of this model. Throughout this paper,
we will only discuss MPI as an example of the
Message passing model.

MOSIX developers claim in [15] that “in a Linux
cluster running MOSIX kernel, there is no need to
modify or link applications with any library, or even
assign processes to different nodes, just fork and
forget, MOSIX does it automatically like an SMP”.
MOSIX can allow any size Linux cluster of x86
workstations and servers to work as single system,
which should simplify job submission and system
administration [15]. MPI in contrast requires the
involvement of application developers to write their
code in a way that can utilize all cluster resources.
Furthermore, the user is responsible of assigning
processes to different nodes. Until now, 9 versions of
MOSIX have been developed. We used the latest
version of MOSIX that is compatible with LINUX 2.4.
The previous 8 versions are as follows:

• First version was started in the year 1977 and
finished in 1979 with the name “UNIX with satellite
processors”. It was compatible with Bell lab’s Unix
6.

• Second version was developed in the year 1983 with
the name “MOS”. It was compatible with Bell lab’s
Unix 7.

• Third version was started in 1987 and developed in
the year 1988 with the name “NSMOS”, it was
compatible with Bell lab’s Unix 7 with some BSD
4.1 extensions.

MOSIX Evaluation on a Linux Cluster 63

• Fourth version was developed in the year 1988 with
the name “MOSIX” and was compatible with
AT&T Unix system V release 2.

• Fifth version was developed in the same year (1988)
with the name MOSIX and it was compatible with
AT&T Unix system V release 2.

• Sixth version appeared in the year 1989. It was
compatible with AT&T Unix system V release 2
running on the machine NS32532.

• Seventh version was developed in the year 1993 and
was compatible with BSD/OS.

• Eighth version was completed in the year 1999 and
was enhanced to be compatible with LINUX 2.2. It
runs on any x86 machines [15].

This paper will study both high performance-
computing models and will compare their performance
using set of experiments. The paper is organized in six
sections. The next section gives a general idea of
process migration and an overview of MOSIX and its
features as an example of this computing model.
Section 3 gives a short overview of the message
passing Interface model and its main advantages and
disadvantages. Section 4 presents the performance of
several testes under MOSIX and MPI. Related work is
given in section 5. Conclusions and future work are
given in section 6.

2. Process Migration
Process migration is the act of transferring a live
process from one system to another system in the
network. Process migration is mainly used for efficient
management of resources in a distributed system [16].
Process migration has different applications including
load distribution, fault resilience, and resource sharing.
In high performance computing, dynamic process
migration is a valuable mechanism to balance the load
on different processors [10] to maximize the utilization
of resources or to get better program execution
performance [7, 19].

Process migration is needed particularly in high
performance computing because of the following
reasons:

1. Load balancing: Workload will be balanced by
distributing processes across the network.

2. Computation speedup: The total execution
performance of a program can be reduced if a single
process can be divided into sub-processes that run
concurrently on different processors.

3. Data access: If the data being used in the
computation are huge, it can be more efficient to
have a process run remotely, rather than to transfer
all the data locally.

2.1. MOSIX Overview
A more detailed description of MOSIX can be found in
[2, 11, 12, 13, 15]. The overview presented here is
mainly from these references. MOSIX is a distributed
operating system for clusters that can make a cluster of
x86 based Linux nodes run almost like an SMP. It has
the advantage of ease-of-use and near optimal
performance [15]. MOSIX operates preemptively to
the applications and allows the execution of sequential
and parallel programs regardless of where the
processes are running or what other cluster users are
doing [11]. Shortly after the creation of a new process,
MOSIX attempts to assign it to the best available node
at that time. MOSIX then continues to monitor the new
process, as well as all the other processes, and will
move them among the nodes to maximize the overall
performance. This is done without changing the Linux
interface, and users can continue to see and control
their processes as they do while running the process on
their local node. Users can also monitor the process
migration and memory usages on the nodes using
OpenMosixView, a cluster management GUI for
MOSIX. OpenMosixView supports special fields such
as on which node a process was started, on which node
it is currently running, the percentage of memory it is
using and its current working directory.

The MOSIX technology consists of two main parts
[2]: A set of algorithms to allow adaptive resource
sharing, and a mechanism to implement a Preemptive
Process Migration (PPM). The two parts are
implemented at the kernel level in such away that the
kernel interface remains unmodified. Therefore, they
are completely transparent to the application level [2].

In MOSIX, each process has A Unique Home Node
(UHN) referring to the node where the process was
created [2]. This node is normally the login node for
the application user. Processes that migrate to other
nodes use local resources whenever possible, but
interact with the user’s environment through the UHN.
The PPM can migrate any process at any time to any
Available node. Usually, migration of processes is
based on provided information by one of the resource
sharing algorithms. Users, however, can migrate their
processes manually and therefore override any
automatic system decisions. The process can either
initiate a manual migration synchronously or by an
explicit request from another process of the same user.
Manual process migration can be useful to implement a
particular policy or to test different scheduling
algorithms.

The Users can run parallel applications by initiating
multiple processes in one node, and then allow the
system to assign these processes to the best available
nodes at that time. If during the execution of the
processes new resource become available, then the
resource sharing algorithms are designed to utilize
these new resources by possible reassignment of the

The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006 64

processes among the other nodes. The ability to assign
and reassign processes is particularly important for
ease-of-use and to provide an efficient multi-user, time
sharing execution environment. PPM is the main tool
for the resource management algorithms. As long as
the requirements for the resources, such as the CPU or
main memory are below certain threshold, the user’s
processes are confined to the UHN. When the
requirements for resources exceed some threshold
levels, then some processes may be migrated to other
nodes, to take advantage of available remote resources.
The overall goal is to maximize the performance of the
system by efficient utilization of network wide
resources. PPM is also used for hiding system failures
from users to create a view of highly available system.

Unlike the master-slave organization between
nodes, where there is a central control, in MOSIX each
node can operate as an autonomous system. Thus
individual nodes in MOSIX can make all their control
decisions independently. This design allows a dynamic
configuration, where nodes may join or leave the
network with minimal disruptions [2]. The algorithms
of MOSIX are decentralized; that is, each node is both
a master for processes that were created locally and a
server for processes that migrated from other nodes.
These algorithms are geared for maximal performance,
overhead-free scalability, and ease-of-use [2, 9, 13,
15]. MOSIX algorithms use preemptive process
migration and have the following properties:

• Efficient kernel communication: This feature
reduces the overhead of the internal kernel
communications, e. g., between the process and its
home site, when it is executing in a remote site. This
new protocol is specifically useful for a locally
distributed system.

• Network transparency: For network related
operations, the interactive user and the application
level programs see a virtual machine that looks like
a single machine. The users use the cluster as a
single machine, and are not aware of the fact that
some of their processes were migrated to other
nodes.

• PPM: The essential requirement for a process
migration is transparency, that is, the functional
aspects of the system’s behavior should not be
altered as a result of the migration of processes.
Achieving this transparency requires that the system
is able to locate the process and that the process is
unaware of the fact that it has been moved from one
node to another. In MOSIX these two requirements
are achieved by maintaining in the user’s
workstation a structure called deputy that represents
the process and interacts with its environment. After
a migration, there are no residual dependencies
other than at the home workstation. The process
resumes its execution in the new site by few page

faults, which bring the necessary parts of the
program to that site.

• Dynamic load balancing: The main concept that
involves initiating process migrations is balancing
the load across nodes in the cluster. The algorithms
respond to variations in the loads of the nodes, the
runtime characteristics of the processes, the number
of workstations, and their speeds. This feature is
useful for sharing resources and distributing work
evenly across nodes to maximize overall system
utilization.

• Decentralized control: Each workstation makes all
its own control decisions independently and there
are no master-slave relationships between the
workstations.

2.2. Process Migration in MOSIX
MOSIX supports preemptive process migration. The
migrated process continues to interact with its
environment regardless of its location. The migrating
process is divided into two perspectives, the user
perspective and the system perspective. The user
perspective can be migrated and the system
perspective, that is UHN dependent, is not migrated as
shown in Figure 1.

Figure 1. Process migration in MOSIX.

The user perspective, called the remote, contains the
program code, data, memory maps, stack and registers
of the process. The remote encapsulates the process
when it is running in the user level. The system
perspective, called the deputy, contains descriptions of
the resources of the process and a kernel-stack for the
execution of the system code on behalf of the process.
The deputy encapsulates the process when it is running
in the kernel. The interface between the remote and the
deputy is well defined. Therefore, it is possible to
intercept every interaction between the remote and
deputy and forward their interactions across the
network. This is implemented at the link layer. The
deputy holds the site dependent part of the process;
hence it must remain in the UHN of that process.

User
Level

Kernel

Home Node

User
Level

Kernel

Compute Node

Link Layer

Local
Process

Deputy

Local
Process

R
e
m
o
t
e

MOSIX Evaluation on a Linux Cluster 65

Though the process can migrate many times between
the nodes, the deputy is never migrated. Figure 1
shows two processes that share a UHN. The left
process is a regular LINUX process while the right
process is divided into two halves; deputy part remains
there while the remote part is migrated to another node.

In the execution of a process in MOSIX, location
transparency is achieved by forwarding site dependent
calls to the deputy at the UHN [2]. The remote site’s
link layer intercepts all system calls that are executed
by the process. These system calls are a synchronous
form of interaction between the remote and the deputy.
If the system call is site dependent, it will be executed
by the remote node locally. Otherwise the system call
is forwarded to the deputy, which executes the system
call on behalf of the process in the UHN [2].

3. Message Passing Interface
MPI is a standard specification for message passing
libraries. It is designed to provide a consistent model
against which parallel applications can be written for
operation of a cluster of workstations. The MPI is
widely adopted communication library for parallel and
distributed computing [18]. MPI has extremely flexible
mechanism for describing data movement routines. It
also has a large set of collective computation
operations, which allows the users to provide their own
set of operations. MPI also provides operations for
creating and managing groups in a scalable way. MPI
programs can run on network of machines that have
different lengths and formats for various fundamental
data types. MPI also allows dynamic resizing of cluster
nodes. Nodes are allowed to dynamically join and
leave a given cluster. In general, MPI has the following
features, which makes it appealing for high
performance computing:

• Standardization: MPI is the only message-passing
library that can be considered as a standard. It is
supported on virtually all HPC platforms.

• Portability: There is no need to greatly modify the
source code when porting an application to a
different platform, which supports MPI.

• Performance: Vendor implementations should be
able to exploit native hardware features to optimize
performance.

• Availability: Variety of implementations are
available, both vendor and public domain.

In spite of the above features, Message passing codes
are typically very difficult and time consuming to write
efficiently. In addition, MPI lacks processor control for
multiple programs and it does not specify a standard
way of describing the virtual machine upon which an
application operates.

4. Evaluation
In this section we present a preliminary evaluation of
MOSIX and LAM MPI performance of the execution
of sets of identical CPU-bound processes. The goal is
to highlight the advantages of the MOSIX preemptive
process migration mechanism and its load balancing
scheme. Several tests were executed, ranging from
pure CPU-bound processes in an idle system, to a
system with background load. Threads migration
performance evaluation was part of what we planned to
experiment with but unfortunately threads cannot be
migrated in the current release of MOSIX. The
granularity of distribution in MOSIX is to the level of
process. The distribution of threads is not guaranteed
instead. Applications using shared memory also cannot
be migrated under the current release of MOSIX.

4.1. Experimental Setup
The experimental platform consists of three nodes
based on dual Intel Pentium III processors, total of six
processors, with 2 GB physical memory and
interconnected with a Fast Ethernet network. In the
evaluation experiments, we used openmosix4smp
kernel level 2.4.18 and LAM MPI version 6.5.6-8.

4.2. Performance of CPU-Bound Processes
The first test is intended to show the efficiency of
MOSIX load balancing algorithms. We executed a set
of identical CPU-bound processes, each requiring 60
seconds, and measured the total execution times under
MOSIX (with its preemptive process migration),
followed by measurements of the total execution times
under MPI.

Table 1 summarizes the results of these tests. In the
table, the first column lists the number of processes.
The second column lists the measured execution times
of the processes using the MOSIX load balancing
algorithm. Column three lists the execution times of
the same processes under MPI. By comparing column
2 and 3 of Table 1, you can notice that the execution
times of MPI (third column) can be significantly
slower than MOSIX.

Table 1. MOSIX vs. MPI execution times (sec.).
No. of

Processes
MOSIX
 (sec.)

MPI
(sec.)

MPI S low
Down (%)

1 60 60 0.00

2 59.1 60.28 2.00

4 60.2 65.46 8.74

6 59.86 69.34 15.84

8 61.49 75.7 23.11

10 60.59 85.59 41.26

16 60.53 90.5 49.51

24 64.32 140.88 119.03

32 69.77 168.83 141.98

The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006 66

Figure 2 depicts the results of Table 1. Comparison
of the measured results shows the average slowdown
of MPI vs. MOSIX is over 70%, when executing more
than 6 processes. This slowdown can become very
significant, e. g., 141.98% for 32 processes.

MOSIX vs. LAM MPI execution times

0

20

40

60

80

100

120

140

160

180

2 4 6 8 10 16 24 32

No. of Processes

Ti
m

e
(s

ec
.)

MOSIX
MPI

Figure 2. MOSIX vs. MPI execution times.

4.3. Performance of CPU-Bound Processes with
Background Load

The second test compares the execution times of a set
of identical CPU-bound processes under MOSIX and
MPI in a system with a background load. This
additional load reflects processes of other users in a
typical time-sharing computing environment. The
specific background load consisted of 4 additional
CPU-bound processes that were executed in cycles,
where each cycle included an execution period
followed by an idle period. The background processes
were executed independently, throughout the execution
time of the test, and the duration of the execution and
idle periods were random variables, in the range of 0 to
15 seconds. In order to get accurate measurements,
each test was executed 3 times. Table 2 summarizes
the results of these tests and Figure 3 depicts the results
of this table.

Table 2. MOSIX vs. MPI with background load execution times.

No. of
Processes

MOSIX
(sec.)

MPI
(sec.)

MPI S lowness
(%)

2 59.61 60.08 0.79

4 59.93 73.04 21.88

6 60.38 75.62 25.24

8 60.55 75.19 24.18

10 60.57 80.42 32.77

16 61.21 86.06 40.60

24 66.96 131.65 96.61

32 73.62 195.15 165.08

Comparison of the corresponding measured results
shows that the average slowdown of MPI vs. MOSIX
is over 50%, with as much as 165.08% slowdown, in
the measured range, for 32 processes. From these
measurements, it follows that in a multi-user

environment, when it is expected that background
processes of other users are running, execution of
parallel programs under MPI may result in a significant
slowdown vs. the same execution with MOSIX.

ΜΟΣΙΞ ϖσ. ΛΑΜ ΜΠΙ

βαχκγρουνδ λοαδ εξεχυτιον τιµεσ

0

50

100

150

200

250

2 4 6 8 10 16 24 32

No. of Processes

Ti
m

e
(s

ec
.)

MOSIX
MPI

Figure 3. MOSIX vs. MPI with background load execution times.

4.4. Performance of Matrix-Multiplication
Application

The third test compares the execution times of a real
high performance example, matrix multiplication. In
this test, we have chosen large matrix sizes, which
require each process to do both CPU crunching and
relatively high memory utilization for storing the
matrices. Figure 4 shows the application performance
while running the application using both MOSIX and
MPI for a matrix of size 500x500. Figure 5 shows the
application performance while running the application
using both MOSIX and MPI for a matrix of size
5000x200.

Figure 4. Matrix multiplication 500x500 performance using
MOSIX and MPI.

Figure 5. Matrix multiplication 5000x200 performance using
MOSIX and MPI.

Matrix Multiplication 5000x200
Performance

0
5
10
15
20
25
30
35
40

2 4 6

No. of Processes

Ti
m

e
(s

ec
.)

MOSIX
MPI

Matrix Multiplication 500x500
Performance

0

5

10

15

20

25

30

2 4 6

No. of processes

Ti
m

e
(s

ec
.)

MOSIX

MPI

MOSIX Evaluation on a Linux Cluster 67

5. Related Work
A comparison of the performance of MOSIX versus
other similar systems was carried out by many
researchers including [1].

In the early 80’s process migration was a new
concept and the use of it was considered taboo mainly
because of the cost factor, but in the recent past it has
developed many folds so that process migration has
become an essential part [5, 6, 7, 16, 19]. It is now
used hundreds of times daily to provide substantial
speed-ups for processes open to parallel processing,
such as simulation. However, the usefulness of remote
execution would be restricted if processes are to be
terminated if they behave differently when they run
remotely.

MOSIX provides a transparent process migration
facility to allow user processes to migrate without
requiring to link with special libraries or usage of
system calls. Steve McClure and Richard Wheeler
have made related comparisons on various computing
nodes to find the best hardware platform for handling
Load Balancing through MOSIX [20].

Although many experimental process migration
mechanisms have been implemented, MOSIX is one of
only a few to receive extensive practical use. Others
include SPRITE and LOCUS [5, 6]. SPRITE,
developed at UC Berkeley, provides a transparent
process migration facility to allow noninvasive access
by migrating a remote process during execution if its
host becomes unavailable, thus leaving no residual
dependencies on the remote host after migration [6].

6. Conclusions and Future Work
This paper presented a performance evaluation of
MOSIX as an example of a preemptive process
migration package compared to LAM MPI. The paper
presented the performance of several tests that were
developed and executed under MOSIX, and MPI. We
showed that in many executions, the performance of
applications written in MPI was significantly lower
than those executed on MOSIX. For a multi-user
environment, MOSIX was proven to be better than
MPI in utilizing all system resource because of the
load balancing algorithms implemented in MOSIX.

In the future, the performance of MOSIX can be
compared with other workload management systems
like condor and also one may be interested in running
the performance tests on more processors and include
communication bound processes test to further
compare MOSIX with MPI. Also one can measure the
system load/throughput with and without MOSIX.

References
[1] Aringhieri R., “Open Source Solutions for

Optimization on Linux Clusters,” DISMI

Technical Report 23, University of Modena and
Reggio Emilia, 2002.

[2] Barak A., Oren L, and Shiloh A., “Scalable
Cluster Computing with MOSIX for LINUX,” in
Proceedings of the 5th Annual Linux Expo,
Raleigh, N.C., pp. 95-100, May 1999.

[3] Bohringer S., “Building a Diskless Linux Cluster
for High Performance Computations from a
Standard Linux Distribution,” available at:
http://www.uni-essen.de/~bt0756/publications/20
03-cluster.pdf, April 2003.

[4] Boklund A., Christian Jiresjo, and Stefan
Mankefors, “The Story Behind Midnight: A Part
Time High Performance Cluster,” in Proceedings
of the International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA'03), Las Vegas, USA, vol.
1, pp.173-178, June 2003.

[5] Douglis F. and John Ousterhout, “Transparent
Process Migration: Design Alternatives and the
Sprite Implementation,” Software: Practice and
Experience, vol. 21, no. 8, pp. 757-785, August
1991.

[6] Douglis F., “Experience with Process Migration
in Sprite,” in Proceedings of Workshop on
Experience with Building Distributed and
Multiprocessor Systems, Fort Lauderdale, FL, pp.
59-72, October 1989.

[7] Elleuch A. and Muntean T., “Process Migration
Protocols for Massively Parallel Systems,” in
Proceedings of the 1st International Conference
on Massively Parallel Computing Systems, IEEE
Computer Society Press, pp. 84-95, May 1994.

[8] Georg S., “CoCheck: Checkpointing and Process
Migration for MPI,” in Proceedings of the 10th
International Parallel Processing Symposium
(IPPS'96), Honolulu, HI, pp. 526-531, April
1996.

[9] Keren A. and Barak A., “Opportunity Cost
Algorithms for Reduction of I/O and Interprocess
Communication Overhead in a Computing
Cluster,” IEEE Transactions Parallel and
Distributed Systems, vol. 14, no. 1, pp. 39-50,
January 2003.

[10] Kofahi N. and Rahman Q., “Empirical Study of
Variable Granularity and Global Centralized
Load Balancing Algorithms,” in Proceedings of
the International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA'04), Las Vegas, Nevada,
USA, CSREA Press, vol. 1, pp. 283-288, 2004.

[11] LINUX Journal, http://www.linuxjournal.com.
[12] Lior A., Barak A., and Shiloh A., “The MOSIX

Direct File System Access Method for
Supporting Scalable Cluster File Systems,”
Cluster Computing, vol. 7, no. 2, pp. 141-150,
April 2004.

The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006 68

[13] Lior A., Barak A., and Shiloh A., “The MOSIX
Parallel I/O System for Scalable I/O
Performance,” in Proceedings of the 14th IASTED
International Conference on Parallel and
Distributed Computing and Systems
(PDCS'2002), Cambridge, MA, pp. 495-500,
November 2002.

[14] MadhuSudhan R. and Kota S., “Infrastructure for
Load Balancing on Mosix Cluster,” available at:
http://www.cis.ksu.edu/~sada/690_897_report.pd
f, 2004.

[15] MOSIX, http://www.mosix.org, 2003.
[16] Paindaveine Y. and Milojicic D. S., “Process vs.

Task Migration,” in Proceedings 29th Hawaii
International Conference on System Sciences
(HICSS'96), Software Technology and
Architecture, Maui Hawaii, vol. 1, pp. 636-645,
1996.

[17] Rajkumar B., “A Study on HPC Systems
Supporting Single System Image, Techniques
and Applications,” in Proceedings of the
International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA'97), CSREA Publishers,
Las Vegas, USA, 1997.

[18] Ricky K. K. M., Wang C. L., and Francis C. M.
L., “M-Java MPI: A Java-MPI Binding with
Process Migration Support,” in Proceedings of
the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID'02),
Berlin, Germany, pp. 255-263, May 2002.

[19] Roush E. T. and Campbell R. H., “Fast Dynamic
Process Migration,” in Proceedings of the 16th
International Conference on Distributed
Computing Systems (ICDCS'1996), IEEE, pp.
637-645, 1996.

[20] Steve M. and Wheeler R., “MOSIX: How Linux
Clusters Solve Real World Problems,” in
Proceedings of USENIX Annual Technical
Conference, San Diego, California, USA, June
2000.

Najib Kofahi has been an associate
professor at Yarmouk University,
Jordan, since 1987. He received his
PhD from University of Missouri-
Rolla, USA, in 1987. He worked as
a visiting associate professor at King
Fahd University of Petroleum and

Minerals (FUPM) during the academic years 2000 -
2003. While at KFUPM, he led an online course
development team to develop online course material
for algorithms course. He worked extensively in
computer science curriculum development at Yarmouk
University since his appointment and at Philadelphia
University, Jordan in the academic year 1993-1994. At
Philadelphia University, he worked as the chairman of
Computer Science Department, while being on his first

sabbatical leave from Yarmouk University. He worked
as chairman of the Computer Science Department at
Yarmouk University in the years 1990-1992. He has
several journal and conference research publications.
His research interests include operating systems,
computer system security, and computer applications.

Saeed Al Zahrani is a high
performance computing system
administrator working in Dhahran,
Saudi Arabia. He holds a bachelor
degree in computer engineering from
Oregon State University. Currently
he is working for Saudi Aramco. He

has more than 6 years of experience in the area of high
performance computing with specialty in linux
clusters.

Syed Manzoor Hussain is a MSc
student and a research assistant in
the Information and Computer
Science Department at King Fahd
University of Petroleum and
Minerals (KFUPM), Saudi Arabia.
He obtained his BE degree in

computer science from Gulbarga University, India in
2002 and joined KFUPM in February 2003. His
research interests include software metrics,
architectural stability, and operating systems. His
current research projects include package cohesion
metrics.

