
326 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 200 6

Requirements for Client Puzzles to Defeat the
Denial of Service and the Distributed

Denial of Service Attacks
Vicky Laurens1, Abdulmotaleb El Saddik1, and Amiya Nayak2

1Multimedia Communications Research Laboratory University of Ottawa, Canada
2School of Information Technology & Engineering University of Ottawa, Canada

Abstract: Client puzzle protocols represent a promising technique for defeating resource depletion Denial of Service (DoS)
attacks. Practical implementations of client puzzle protocols not only reported positive results in achieving such a challenging
goal (preventing DoS attacks), but also these implementations overcame, up to a certain degree, one of the first disadvantages
of client puzzle protocols: Their interoperability with current Internet communication protocols. However, the question on
whether client puzzle protocols can thwart the Distributed Denial of Service (DDoS) attacks is still under investigation. Due to
the increasing number of DDoS attacks, their prevention has become very important. Based on the puzzle generation and
verification processes, and focusing mainly on forestalling DDoS attacks, this paper classifies and analyzes current proposals
of client puzzle protocols. The paper not only reveals and analyzes their limitations with regards to the prevention of DDoS
attacks, but also outlines a general approach for addressing the identified limitations. We propose a solution based on the
general principle that under attack legitimate clients should be willing to experience some degradation in their performance in
order to obtain the requested service. Our proposal is based on including a puzzle-solution request in different states of a
given connection such that the computational load for solving the puzzles will be noted but the clients’ operations will not be
totally interrupted.

Keywords: Security attacks, distributed denial of service.

Received May 12, 2005; accepted August 3, 2005

1. Introduction
Denial of Service (DoS) and Distributed Denial of
Service (DDoS) attacks are aimed to thwart legitimate
users from having access to shared resources. In
general, on the Internet, DoS/DDoS attacks stop
genuine clients from having access to legitimate
services such as web sites. For instance, when an
attacker overloads a server through several requests,
the server will consume its resources and deny its
services to valid users. In general, there is a great
diversity of DoS/DDoS attacks; in particular, this
project focuses on DoS/DDoS attacks that deplete the
server’s resources such as network bandwidth,
memory, and CPU. The CERT Coordinator Center
web site presents a complete list of resources which
can be depleted by a DoS/DDoS attack [4]. We
consider that the three previously mentioned resources
are the most relevant for our research. Even though
DoS/DDoS attacks have been known for a long time, it
is just recently that they have become widely known to
the general public. In October 2002, the Internet root
servers, the Domain Name Server (DNS), were victims
of a DDoS attack [7]. In one month period, August
2003, Microsoft’s main web site suffered two DDoS
attacks [16]. The list of types of DoS/DDoS attacks’

victims can extend for thousand pages; this is why
preventing DoS/DDoS has become very important. A
DDoS attack differs from a DoS attack in that several
machines are impersonated and used by the attacker to
send a great number of requests to the targeted server
(without the legitimate machines’ users knowing that
their computers are being employed to mount an
attack). In addition, it should be noted that when there
are opportunities to mount a DoS attack, there are also
opportunities to mount a DDoS attack, however, it is
worth-mentioning here that a DoS attact prevention
mechanism may not necessarily work for a DDoS
attack.

For ease of understanding, the DoS attack will be
explained by using the TCP SYN flooding attack
which is a classic example of an attack targeted to
consume the server’s memory. A TCP connection
begins with a three-way handshake: First, the
connection starts with the SYN message sent by the
client which is requesting the server’s services; second,
the server replies with a SYN-ACK message
acknowledging that a SYN message was received; and
third, the client then completes the TCP connection by
sending an acknowledgement message. It is after the
third message that the data communication exchange
starts. When the server sends its SYN-ACK message, a

Requirements for Client Puzzles to Defeat the Denial of Service and the Distributed… 327

slot on the server’s memory is also reserved for the
TCP connection being requested. An attacker, desiring
to consume the server’s memory, only needs to send
several concurrent SYN messages. However, no final
ACK for those SYN messages would be sent. The
server, as usual, will reserve some memory resources
for each of the connections being requested; though, as
the attacker does not complete any of the connections,
the server will exhaust its memory resources [5]. In a
DoS attack, these requests most likely come from the
attacker’s machine (frequently using a spoofed IP
address); on the other hand, in a DDoS attack, the
bogus requests come from the impersonated clients
(using their real IP addresses).

It has been mentioned that DoS resource depletion
attacks mainly succeed because the attacks occur
before the authentication process is completed [11].
Therefore, many authentication protocols have been
proposed to prevent the DoS attacks. Nonetheless,
most authentication protocols require that the server
commits its CPU resources by computing costly
encryption/decryption operations. Attackers then only
need to start simultaneous authentication processes
and, as in the TCP SYN flooding attack, abandon the
process at a given point. In general, network security
should satisfy five requirements: Integrity,
authorization, non-repudiation, secrecy, and
authentication. From these elements, not only does the
need for authentication open opportunities for the DoS
attacks, but also the need for communicating in secrecy
raises other possibilities for successfully mounting
DoS connection depletion attacks.

Secrecy is concerned with privacy which means
that, on a given communication channel, only
legitimate participants should be able to access and
understand the information being transmitted. Secrecy
is mainly accomplished by encryption techniques
which could involve costly computational operations.
Due to the computational costs of cryptography
techniques a DoS/DDoS attack can be easily mounted
by sending bogus encrypted messages and forcing
servers to compromise their resources decrypting these
messages.

Authentication, on the other hand, is concerned with
confirming the identities of the entities which are
participating in a given communication. The goal of an
authentication protocol is to establish the legitimacy of
the different parties involved in the communication. In
other words, authentication means to verify the fact
that information or messages really come from the
sender and not from another source (an attacker).
Authentication can be accomplished at different layers
in the protocol stack; depending on the application, one
protocol may be preferred over the others. Due to the
increasing amount of DoS attacks, authentication
protocols’ designers are more concerned with the
prevention of this type of attack at the designing stage,
while this concern was previously left to the

implementation stage [2]. However, authentication
protocols usually employ cryptography which is time
and resource consuming. Consequently, the use of
cryptography makes authentication protocols
vulnerable to those attacks which exploit this fact. The
DoS attacks are an example of this attack. It is also
acknowledged that public key algorithms are
considerably slower than symmetric key algorithms;
therefore, authentication protocols which employ
public key methods are even more vulnerable to
resource consumption attacks. In the case of DDoS
attacks, authentication protocols are even less effective
because attackers use the real IP addresses of the
impersonated machines, and most authentication
protocols are based on validating the IP addresses of
the parties involved in a given communication.

The DoS/DDoS resource depletion attacks are as
difficult to prevent as they are easy to mount. A
relatively recent trend to defeat DoS attacks is based
on the broad principle that a client, requesting a given
service, should first compromise its resources before
the server’s resources are compromised [1]. These
techniques are called client puzzles. A number of
practical implementations of client puzzle protocols
reported positive results in preventing DoS attacks [6],
[17]. This paper focuses on analyzing current client
puzzle protocols for counteracting the DoS/DDoS
resource depletion attacks. In particular, the analysis is
aimed to identify weaknesses of current client puzzle
protocol proposals for preventing the DDoS. Based on
the puzzle generation and verification processes, and
focusing mainly on forestalling DDoS attacks, this
paper classifies and analyzes current proposals of
client puzzle protocols and not only reveals and
analyzes their limitations with regards to the
prevention of DDoS attacks, but also outlines a general
framework for addressing the identified limitations.

The remainder of this paper will be organized as
follows. Section 2 introduces the client puzzle
approaches. Section 3 analyzes current client puzzle
solutions and proposes extensions to improve today’s
client puzzle protocols. Section 4 presents the
conclusions.

2. Defeating DoS/DDoS Through Client
Puzzles

The DoS/DDoS resource depletion attacks are aimed to
exhaust the servers’ resources. A key factor for the
success of DoS/DDoS attacks is the fact that, in open
networks such as the Internet, the authenticity of the
entities requesting services is uncertain. Therefore,
servers compromise their resources processing bogus
messages. By the time the bogus messages are
identified, the attacker has most likely already
succeeded. It should be concluded that any solution
aimed to defeat the DoS/DDoS resource depletion
attacks must avoid compromising the server’ resources

328 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 200 6

before the clients have proven their legitimate interest
of obtaining the server’s services. It is important to
note that we have referred to the need of clients
proving their genuine interest of obtaining the
requested services and not to the need of the clients
providing proof of their legitimate identities.

Verifying clients’ identities involves the use of
authentication protocols that would force the servers to
employ their computational power in different stages
of the protocol. Whereas, asking clients to confirm
their legitimate interest for receiving the requested
services can be done by compromising the clients’
resources before the servers’ resources are committed.
Client puzzles follow the principle that the clients must
commit their resources before a server does [1]. A
puzzle is a cryptographic problem that the servers
might ask the clients to solve in order to provide the
requested service. Even though client puzzles are not a
new concept, the use of client puzzles to defeat the
DoS/DDoS attacks is a relatively new idea.

The idea of puzzles was introduced as early as 1978,
and Merkle was the first to incorporate the concept of
cryptographic puzzles into authentication protocols.
Merkle’s proposal was intended for key exchange in
the presence of an eavesdropper [12]. Merkle
introduced the idea that, in a given communication,
one legitimate participant sends several cryptographic
problems that would be broken by the other
participant. The security against an eavesdropper is
based on the fact that the attacker is forced to solve all
the puzzles whereas the legitimate participant only
needs to choose and solve one puzzle. Although
Merkle did not name his technique “client puzzles”,
generally speaking, current proposals of client puzzles
apply some of Merkle’s ideas. Nevertheless, at the time
of this writing, no practical implementation of
Merkle’s suggestion was found.

A more recent trend of the applications of client
puzzles involves their use to defeat DoS resource
depletion types of attacks [1, 3, 6, 8, 9, 10, 14, 17].
Client puzzle proposals could be divided by the
manner in which puzzles are built and verified.
Another possible classification could be based on what
the client puzzle protocol is trying to protect (for
example, an authentication protocol). Since we are
interested in addressing whether or not client puzzle
protocols can thwart DDoS attacks, the first
classification method is the most appropriate and will
be used. Current client puzzle proposals can be divided
into two groups based on:

• Finding the missing bits of a pre-image of a hash
function whose output is given. In other words,
given part of z1 and all z2, find the missing bits of
z1 such that z2 = hash (z1), where z1 = hash
(connection dependant parameters). Clients must
reverse the hash function by applying brute-force

search. We refer to this method as multiple-hash
puzzles.

• Finding a pre-image of a hash function fulfilling a
given number of zeros on the output, and knowing
part of its pre-image as well. In this case, the output
of the hash is not relevant as far as its first “k” bits
are zero. More precisely, the puzzle is based on
finding X such that hash (Client Id | Server Nonce |
Client Nonce | X) = 01…0kY; where Y can take on
any value. We call this technique single-hash
puzzles.

Table 1 illustrates the above described methods. As it
can be seen on Table 1, both methods are based on
reversing only one hash function; however, in the
multiple-hash puzzle technique, two hash functions are
required to build puzzles, and this is why we called this
method multiple-hash puzzles. To our knowledge,
Juels and Brainard [9] were the first in proposing the
multiple-hash puzzle method; then, Lee and Fung [10]
proposed an improved version of this technique. The
first proposal using the single-hash puzzle method is
from Aura, Nikander, and Leiwo [1]; Dean and
Stubblefield [6] reported a practical implementation of
this technique; Moskowitz et al. [14] proposed the
Host Identity Protocol (HIP), an Internet draft, which
uses single-hash puzzles as its first phase; and Wang
and Reiter [17] reported another practical
implementation of the single-hash puzzles. The client
puzzle techniques will be explained by the previous
classification, and the differences between proposals
will be pointed out when required. Nevertheless, two
aspects are shared by all the authors examined: The
message flow and the puzzles’ characteristics are
greatly similar to one another.

Table 1. Classifications of puzzle mechanisms.

Multiple-Hash Puzzles
([9, 10])

Single-Hash Puzzles
([1, 6, 14, 17])

Puzzle
Generation

Puzzle
Solution Puzzle Generation Puzzle

Solution

Se
rv
er

z1 = hash (Client
Id | Server Secret |
Timestamp)
z2 = hash (z1)

Server Nonce

C
lie

nt

Receive:
z1 < k + 1,
L>, z2, t, k
Find:
z1 <1, k>
such that
hash (z1) =
z2

Find X such
that
hash (Client
Id | Server
Nonce |
Client Nonce
| X) =
01…0kY

 In general, the client puzzle message flow is as
follows: First, the client sends a message asking for the
provision of a given service. Second, if the server is
under attack, a puzzle must be sent to the client. Third,

Requirements for Client Puzzles to Defeat the Denial of Service and the Distributed… 329

the client sends the puzzle’s solution. After verifying
that the submitted puzzle’s solution is correct, the
server can commit its resources when providing the
requested service. It should be noted that in the second
message no puzzle will be included if the server is not
under attack.

Before going into detail of client puzzle solutions,
the puzzles’ characteristics will be presented in the
next section.

2.1. Puzzle Characteristics
To prevent DoS attacks, puzzles should have the
following characteristics:

• The computational costs employed by the server in
generating and verifying the puzzles must be
significantly less expensive than the computational
costs employed by the client in solving the puzzles.

• The puzzle difficulty, which depends on the server’s
resources availability, should be easily and
dynamically adjusted during attacks.

• Clients have a limited amount of time to solve
puzzles.

• Pre-computing puzzle solutions should be
unfeasible.

• Having solved previous puzzles does not aid in
solving new given puzzles.

• Before a correct puzzle solution is submitted, the
server does not keep a record of the connection’s
state.

In addition, Feng [8] suggests three more factors to be
taken into account when implementing client puzzles.
First, the server’s ability for generating puzzles must
not be able to be flooded by the attacker; in other
words, the server should be able to handle several
concurrent requests from clients. Second, when a
puzzle is delivered to a given client, the client must not
be able to circumvent the puzzle mechanism. Third, the
concept of fairness is introduced which consists of
making puzzles’ difficulty dependable on the clients’
hardware. More precisely, the author suggests that a
“thin client” (cell-phone, PDA, etc.) should be given
less difficult puzzles to solve. Nevertheless, we
believe that this idea of puzzle fairness should be
carefully handled otherwise it could open opportunities
for DoS/DDoS attacks.

It should be noted that Bencsáth et al. present an
analysis, using game theory of client puzzle protocols
[3]. They first present an abstract model of client
puzzle approach which consists of several steps to
carry out before the server can compromise its
resources. In other words, this abstract description is
what we have referred to as the client puzzle’s message
flow. The authors suggest two different puzzle
generation/solution methods, but there is no detail on
how to choose between these two levels of difficulty.
The most remarkable difference between these authors’

proposal and the others is that Bencsáth et al. propose
to implement puzzles with different computational
costs for the server and obviously for the client as well.
To choose the puzzle difficulty, the server needs to
keep measures of attacks. Evidently, this
differentiation makes the process of generating and
verifying puzzles more complex because it implies
combining different solutions, and the more complex
the system is, the more chances to open opportunities
for DoS/DDoS attacks. The authors point out that they
are planning to extend the Internet Key Exchange
(IKE) protocol using the proposed puzzles.
Nonetheless, at the time of this writing, no further
work was reported.

3. Client Puzzles Analysis
Analyzing client puzzle protocols is still a difficult task
due to the fact that these protocols have not been
widely implemented yet. Therefore, most of these
techniques’ flaws have been pointed out by the authors
themselves, or for others developing their proposals.
Before some of the practical implementations were
reported, one of the major weaknesses of using client
puzzles was the interoperability with current
communication protocols. However, as Dean and
Stubblefield [6], and Wang and Reiter’s [17] solutions
showed, it is possible to achieve some degree of
interoperability. In the first case, the authors’ solution
remains compatible with all clients when the server is
not under attack. When an attack is running, only
clients able to solve puzzles will be given the requested
service. Ideally, all legitimate clients should receive
the server’s services, but if no client puzzle protocol
were implemented, any client would receive the
server’s services under attack. In the case of Wang and
Reiter, the authors’ implementation not only remains
full compatible with the existing TCP protocol, but
also legitimate clients that do not have the ability to
solve puzzles might receive the server’s services. Both
of these practical implementations showed that it is
possible to overcome the interoperability concerns. In
addition, if future client puzzle protocols’
implementations keep achieving more positive results,
there will be more incentive to develop any required
client-side-software for solving puzzles.

Table 2 shows the steps involved in the processes of
puzzle generation, puzzle solution, and puzzle
verification for current client puzzle protocols.
Comparing client puzzle protocols based on the way
puzzles are generated and verified rises the following
concerns (see Table 2).

The single-hash puzzle based protocols use the
simplest puzzles generation and verification processes
but there is a trade-off: Puzzles could not have
solutions [10, 14]. On the one hand, due to the
simplicity of puzzle generation, the same “puzzle”
could be given to several different clients since the

330 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 200 6

puzzle solution will depend on the clients’ identities. It
should be recalled that in the Aura proposal the server
periodically generates a nonce and the puzzle consists
of the nonce plus some other client-dependant
parameters. On the other hand, as puzzles are not
verified during their generation, a given puzzle could
not have solution. In other words, there is not
guarantee that a given client will find a pre-image that
will provide the required number of zeros on the output
of the hash function. Overcoming this problem is a
challenging task because puzzle generation and
verification should be kept fast to avoid resource
depletion attacks; thus, the puzzles’ solutions could not
be verified during the generation phase; it is also not
possible to pre-compute puzzles since they could be
pre-computed by attackers as well. In addition, most of
the pre-computation security seems to rely on the
server nonce, if the mechanism for generating the
nonces is not carefully designed, the client puzzle
protocol could be compromised.

The multiple-hash puzzles based proposals do not
have the problem of puzzles not having solutions
because the generation and verification processes are
more complex. At the time of this writing, no practical
implementation was found and, therefore, the costs
associated to the complexity of the suggested method
have not been measured. In particular, we consider that
the Lee and Fung’s proposal have some weaknesses
mainly because the authors integrate the client puzzle
protocol with their authentication protocol. The
problem is that to shorten the run of the proposed
authentication protocol, some information needed for
the authentication process is included in the third
message. However, if the submitted puzzle solution is
not correct, the message will be discarded but more
bandwidth will have been consumed for no reason.
Depending on the type of network, the extra bandwidth
consumption would be negligible, but in a high traffic
network this solution might not be convenient. In fact,
attackers could alternately submit correct and wrong
solutions and combine other techniques for attaining
the exhaustion of the network bandwidth. Moreover,
for the proposed authentication protocol even when the
server does not need to send a puzzle (k = 0), the bit-
string z1 should be built because z1 will be used later
on in the protocol for validating messages freshness
and preventing replay attacks. Therefore, attackers
could take advantage of this extra load for exhausting
the computational power of the server. It should be
recalled that at the beginning of a given attack, the
puzzles will be less difficult to solve, and by
combining different techniques the attacker could
succeed. For example, for k equal zero, the server
needs to do some extra work and the attacker will
easily get to the step where the server needs to
compromise its computational power for the
authentication process; for small values of k, the
attacker can allow clients to compute valid answers

and sends also some wrong answers to force the server
to do some extra verifications; for higher values of k,
some pre-computed solutions will be submitted
(whenever possible) and wrong solutions will be
submitted as well for forcing the server to do some
extra work. Combining all of these techniques might
allow the attacker to succeed. For these reasons, it is
highly recommended to implement the client puzzle
protocol as an initial phase, where all the required
computations should only be related to the client
puzzle protocol.

As can be seen in Table 2, all puzzle mechanisms
need to determine a value for k, the puzzle difficulty.
However, determining the values of the puzzle
difficulties when the server is under attack has not
been completely addressed. Paradoxically, this open
issue comes from one of the best properties of client
puzzles: Its optional character. This is an important
point because the puzzle difficulty will depend on the
server’s resources availability. If the procedure to
determine this availability is not carefully designed, the
hardness of puzzles could be wrongly set.
Consequently, legitimate clients could experience a
harmful degradation of services, or even worst more
attackers could succeed.

Table 2. Comparison of client puzzle protocols.

Puzzle Puzzle
Generation

Puzzle
Solution

Puzzle
Verification

Determine k

M
ul
tip

le
-H

as
h Find z1 <1,k>

such that hash
(z1< 1, k> | z1
<k + 1, L >) =
z2 2 hash 2k hash 2 hash

Determine k

Generate Nonce Generate
Nonce

Find X such that
hash (Client Id |
Server Nonce |
Client Nonce |
X) = 0 1…0kY 2k hash 1 hash

Determine k

Compute 1 MD5 2k MD5 1 MD5

Find x <1,k>
such that MD5
(x < 1, k > | x
<k + 1, L >) =
MD5 (x)

Determine k

Generate Nonce 2(k+2) SHA-1 1 SHA-1

Si
ng

le
-H

as
h

Find X such that
SHA-1(Server
Nonce | Client
Id | Server Id |
X) = 01…0kY

Notes:
1. The term “hash” refers to any collision-free hash

function such as MD5, and SHA-1.
2. It should be noted that SHA-1 computation is

slower than MD5 computation [16].

Concerning the pre-computation attacks, some
practical tests are required for measuring not only how

Requirements for Client Puzzles to Defeat the Denial of Service and the Distributed… 331

feasible pre-computation is, but also what will be the
required storage space for saving the pre-computed
puzzle solutions. Precisely, pre-computing solutions
have the trade-off of saving the solutions. However,
attackers might only pre-compute puzzle solutions for
high values of k to reduce the amount of pre-
computation as well as the amount of information to be
saved. One possible method for counteracting the pre-
computation of puzzle solutions could be established
by incorporating some alternate changes in the puzzle
generation process. Specifically, when a new server
nonce is generated, the hash function used to compute
the puzzles could be also changed. In particular, the
server could alternately use MD5 and SHA-1; even
though computing SHA-1 is slower than MD5, the
server’s workload will not be highly affected whereas
attackers will be forced to pre-compute twice the
amount of information.

3.1. Defeating Client Puzzle Protocols
Even though all the practical implementations have
accounted for positive results in counteracting the DoS
attack by using client puzzles, none of the
implementations have accounted any results for the
DDoS which has become of great concern of study. In
a DDoS attack, the attacker impersonates several
clients (called zombies) and uses their real IP addresses
when mounting the attack. Specifically, the attacker
can send and receive messages from the zombies, and
the legitimate zombies’ owners are not aware that their
clients are being used by the attacker. It has been
mentioned that the tools employed for DDoS are
designed in a way that the zombies’ performances are
not affected and, thus, the legitimate users do not
notice any change in their clients’ behaviours [13, 17].
The strength of client puzzles to defeat a DoS attack is
based on the fact that the attacker will be asked for
solving one puzzle for each service request, and
solving all the puzzles will exhaust the attacker’s
resources. Nevertheless, in a DDoS, the attacker will
use every zombie to compute its own puzzle, and only
when puzzles difficulty get too hard, the impersonated
computers’ operations will be interrupted. Thus,
interrupting zombies’ operations also means that
legitimate clients’ operations will be interrupted since
the server can not distinguish among legitimate clients
and impersonated clients (zombies). The worst
situation will be when the attack is too severe that the
server sends out puzzles that would not be solved
feasibly. If it is not possible for zombies to solve the
puzzles, it would not be possible for legitimate clients
to solve the puzzles either, and as a result, legitimate
clients will receive a denial of service, which will be
caused by the client puzzle mechanism.

In addition, for attackers there is one possible way
to counteract the above mentioned problem, the
attackers could divide all the zombies into different

groups and use each of the groups in an alternating
manner. By using this technique, the attacker is
decreasing the load for each zombie, or at least, the
noticeable computational load will be delayed. To
make things worse, by combining this switching-load
method with some pre-computed solutions, the attacker
is most likely to succeed either by exhausting the
server’s resources or by forcing the server to send out
puzzles impossible to solve. Mirkovic and Reiher
describe and classify a similar technique as a variable
agent set [13]; the authors explain that an attacker
using the variable agent set technique is aiming to
avoid or delay the attack detection due to the high rate
of packets coming from the same sources. Basically,
the attacker switches the set of agents being used in the
attack such that the overall attack rate is constant, but
the packets are coming from diverse impersonated
clients which form part of the attack at different
instants. In the switching-load method, the attacker is
aiming to avoid or delay attack detection due to the
performance decrease of the impersonated clients.

The fact that it is not possible for the server to
distinguish between a legitimate client and an
impersonated client poses a great challenge in client
puzzle protocols as a countermeasure against the
DDoS attacks. On the one hand, puzzles cannot be too
hard because legitimate clients will experience a
harmful degradation on the services. On the other
hand, puzzles cannot be so simple that attackers can
easily solve the puzzles and compromise the server’s
resources. We propose a solution based on the general
principle that under attack legitimate clients should be
willing to experience some degradation in their
performance in order to obtain the requested service
since obtaining the service is preferable than obtaining
a denial of service from the server. Our proposal is
based on including a puzzle-solution request in
different states of a given connection such that the
computational load for solving the puzzles will be
noted but the clients’ operations will not be totally
interrupted. For example, if a client is repeatedly
requesting the server’s resources, at any time that the
server needs to perform a costly computational
operation, the server sends a new and harder puzzle to
solve even if the client has already submitted a correct
puzzle’s solution earlier in the protocol run. The value
of k (puzzle’s difficulty) for the new required puzzle
could be set higher than the actual value (to avoid
saving information related to each connection). Where
to include a client puzzle protocol could be analyzed
by using the framework proposed by Meadows [11].
We are aware that the major drawback of this method
is that legitimate clients are unjustly penalized;
nevertheless, the main goal of continuously providing
the services will be accomplished. In addition, we
consider that client discrimination should be added to
the puzzle characteristics list mentioned in section 2.1.

332 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 200 6

4. Conclusions
By analyzing current client puzzle protocol proposals,
their weaknesses and strengths have been pointed out.
Practical implementations not only reported positive
achievements, but also these implementations
illustrated that interoperability with current protocols is
attainable up to a certain degree. The effectiveness of
client puzzles against the DDoS might be the greatest
unresolved issue, and perhaps, more practical
implementations are required for addressing this
concern as well as for identifying new challenges.
However, as explained before, discriminating between
legitimate clients and impersonated clients is the
biggest challenge that client puzzle protocols face with
regards to forestall the DDoS attacks. We consider that
client discrimination should be added to the list of
characteristics for puzzle mentioned in section 2.1. In
addition, this study has raised three possible extensions
for client puzzle protocols: First, it is highly
recommended to implement the client puzzle protocol
as an initial phase, where all the required computations
should only be related to the client puzzle protocol;
second, to make pre-computation attacks even more
difficult, the hash function used to compute puzzles
could be alternately changed; and third, to counteract
the switching-load technique that attackers might use
to defeat the client puzzles during a DDoS attack, the
server might ask clients to solve more than one puzzle
during the protocol run. Nevertheless, further work is
required for modelling our enhanced client puzzle
protocol.

References
[1] Aura T., Nikander P., and Leiwo J., “DOS-

Resistant Authentication with Client Puzzles,” in
Proceeding of the Cambridge Security Protocols
Workshop'2000, LNCS, Springer-Verlag,
Cambridge, UK, April 2000.

[2] Aura T., Nikander P., and Leiwo J., “Towards
Network Denial of Service Resistant Protocols,”
in Proceeding of the 15Th International
Information Security Conference (IFIP/SEC'
2000), Kluwer, Beijing, China, August 2000.

[3] Bencsáth B., Vajda I., and Buttyán L., “A Game
Based Analysis of the Client Puzzle Approach to
Defend Against DoS Attacks,” in Proceedings of
IEEE Conference on Software,
Telecommunications and Computer Networks
(SoftCom'2003), Split, Dubrovnik, Ancona,
Venice, October 2003.

[4] CERT Coordination Center, “Denial of Service
Attacks,” Tech Tips, June 2001.

[5] CERT Coordination Center, “TCP SYN Flooding
and IP Spoofing Attacks,” Tech Tips, November
2000.

[6] Dean D. and Stubblefield A., “Using Client
Puzzles to Protect TLS,” in Proceedings of the
l0th USENIX Security Symposium, August 2001.

[7] Duffy Marsan C., and Garretson C., “Net
Security Gets Root-Level Boost,” Network World
Fusion, October 2003.

[8] Feng W., “The Case for TCP/IP Puzzles,” in
Proceedings of ACM SIGCOMM 2003
Workshops, August 2003.

[9] Juels A. and Brainard J., “Client Puzzles: A
Cryptographic Defense Against Connection
Depletion Attacks,” in Proceedings of Networks
and Distributed Security Systems (NDSS'99), pp.
151-165, 1999.

[10] Lee M. C. and Fung C. K., “A Public-Key Based
Authentication and Key Establishment Protocol
Coupled with a Client Puzzle,” Journal of the
American Society for Information Science and
Technology, vol. 54, no. 9, pp. 810-823, 2003.

[11] Meadows C., “A Formal Framework and
Evaluation Method for Network Denial of
Service,” in Proceedings of the 12th IEEE
Computer Security Foundations Workshop,
Mordano, Italy, 1999.

[12] Merkle R. C., “Secure Communications Over
Insecure Channels,” Communications of the
ACM, vol. 21, no. 4, pp. 294-299, April 1978.

[13] Mirkovic J., and Reiher P. “A Taxonomy of
DDoS Attack and DDoS Defense Mechanisms,”
in ACM SIGCOMM Computer Communications
Review, vol. 34, no. 2, April 2004.

[14] Moskowitz R., Nikander P., Jokela P., and
Henderson T., “Host Identity Protocol,” Network
Working Group Internet Draft, available at:
http://www.ietf.org/internet-drafts/draft-ietf-hip-
base-01.txt, 2004.

[15] Roberts, P., “Microsoft.com Falls to DoS
Attack,” Network World Fusion, available at:
http://www.nwfusion.com/news/2003/0815micro
falls.html, August 2003.

[16] Stallings and William, Cryptography and
Network Security, Principles and Practices,
Upper Saddle River, NJ, Prentice Hall, 2003.

[17] Wang X., and Reiter M. K., “Defending Against
Denial-Of-Service Attacks with Puzzle
Auctions,” in Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May 2003.

Vicky Laurens is a Master’s
candidate at the Univeristy of
Ottawa. She holds a certificate in
Internet technologies from the
University of Ottawa and a
Bachelors of engineering degree in
electronics from Simon Bolivar

University in Venezuela. She has 7 years of experience
in television engineering working with HBO Latin
America Group. She is also a research volunteer at the

Requirements for Client Puzzles to Defeat the Denial of Service and the Distributed… 333

Canadian Internet Policy and Public Interest Clinic
(CIPPIC). Her research interests include computer and
Internet security.

Abdulmotaleb El Saddik is an
associate professor at the School of
Information Technology and
Engineering (SITE) at the University
of Ottawa, and the director of the
Multimedia Communications
Research Laboratory (MCRLab). He

has authored and co-authored two books and more than
80 publications in the area of software engineering
development of multimedia artefacts and collaborative
virtual environments. He is a senior member of IEEE
and the recent winner of the prestigious Canadian
Premier's Research Excellence Awards (PREA).

Amiya Nayak is an associate
professor at the School of
Information Technology and
Engineering (SITE) at the University
of Ottawa since 2002. He received
his BSc in Mathematics from
University of Waterloo in 1981, and

PhD in computer engineering from Carleton University
in 1991. He has over 16 years of industrial experience
in software engineering, real-time software
development, simulation and system level performance
analyses, avionics and navigation systems,
telecommunication protocols, network traffic analysis.
His research interests are in the area of fault tolerance,
distributed systems, and mobile ad hoc networks, with
over 70 publications in refereed journals and
conference proceedings.

