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Abstract: Retina disorders are among the common types of eye disease that occur due to several reasons such as aging, 

diabetes and premature born. Besides, Optical Coherence Tomography (OCT) is a medical imaging method that serves as a 

vehicle for capturing volumetric scans of the human eye retina for diagnoses purposes. This research compared two 

pretraining approaches including Self-Supervised Learning (SSL) and Transfer Learning (TL) to train ResNet34 neural 

architecture aiming at building computer aided diagnoses tool for retina disorders recognition. In addition, the research 

methodology employs convolutional auto-encoder model as a generative SSL pretraining method. The research efforts are 

implemented on a dataset that contains 109,309 retina OCT images with three medical conditions including Choroidal 

Neovascularization (CNV), Diabetic Macular Edema (DME), DRUSEN as well as NORMAL condition. The research outcomes 

showed better performance in terms of overall accuracy, sensitivity and specificity, namely, 95.2%, 95.2% and 98.4% 

respectively for SSL ResNet34 in comparison to scores of 90.7%, 90.7% and 96.9% respectively for TL ResNet34. In addition, 

SSL pretraining approach showed significant reduction in the number of epochs required for training in comparison to both 

TL pretraining as well as the previous research performed on the same dataset with comparable performance. 
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1. Introduction 

Retina impairment is the most common sight-

threatening disorder that may leads to blindness [37]. 

Retinal damage can result from various conditions such 

as diabetes, premature born and aging. Choroidal 

Neovascularization (CNV) is part of the spectrum of 

retinal abnormalities that leads to retinal swelling and 

disruption. CNV is a typical sign of late-stage Age-

Related Macular Degeneration (AMD) and is 

characterized by abnormal growth of blood vessels on 

the choroid, a connective tissue that provides blood 

supply to the retina [10]. AMD affects mainly patients 

older than 60 years and accounts for about 8% of the 

blindness cases worldwide [45]. 

Age-related ocular signs also include DRUSEN, a 

small deposit of extracellular waste that accumulate 

under the retina, which can seriously impair vision 

[39]. These deposits are composed of lipids, 

carbohydrates and proteins that aggregate between the 

basal lamina and the Bruch membrane of the retina 

leading to visual defects that affect up to 24 per 1000 

population [5]. 

Diabetic Macular Edema (DME) is another retinal 

complication caused by diabetes and affects 

approximately 75,000 patients per year in the United  

 

States [6]. DME results from fluid accumulation in the 

center of the retina or the so-called macula as a result 

of the disrupted blood-retinal barrier [44]. All these 

conditions should be rapidly and precisely diagnosed 

to accelerate the appropriate intervention and prevent 

visual loss. Retinal Optical Coherence Tomography 

(OCT) is a non-invasive diagnostic technique that is 

routinely used to provide cross-sectional images for 

the internal structure of the eye. Retinal OCT enables 

ophthalmologists to easily visualize the retinal 

compartments [9]. However, to interpret and classify 

the retinal abnormality using retinal OCT images, the 

ophthalmologist conducts multiple eye exams that are 

time-consuming and subjective to unreliability [22]. 

These restrictions can be skipped by the computer-

aided diagnosis that reduces the consumed time and 

inter-observer variability in ocular image 

interpretation. 

 Artificial Intelligence (AI) played an important 

role in revolutionizing many fields of science 

including the healthcare sector. Analyzing the 

relationship between the medical approaches and the 

patient outcomes in order to achieve better medical 

service and disease management in terms of time and 

cost in an efficient and effective manner is the primary 

goal of AI in health care [11].  
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Deep learning is a subdivision of AI that enables 

computers to employ a set of mathematical models with 

multiple layers that are able to learn the latent patterns 

in certain types of data in a form of hierarchical 

representation automatically without human 

intervention [14, 23]. One of those deep learning 

models is the Convolutional Neural Network (CNN) 

which is a neural model that deals with data of grid 

representation such as time series data which is a single 

dimension (1D) grid data and images which are two 

dimensional (2D) grid data [14].  

 Medical image processing has benefited from 

CNNs, this benefit can be viewed as shifting the 

classical medical image processing operations such as 

classification, segmentation, localization, registration 

and detection from the manual mode into automated 

mode by developing dedicated models that are able to 

handle these tasks [19]. Among this spectrum of 

medical image processing tasks is the classification 

which aims at determining whether a medical image 

contains a certain medical condition or not. CNN can 

act as Computer-Aided Diagnosis (CAD) tool that 

makes image interpretation by radiologist easier and 

robust by supporting it with a second computerized 

opinion [38]. 

 In the same vein, Transfer Learning (TL) is another 

important aspect that comes with CNN models and 

their applications. Transfer learning is the process 

conveying and generalizing the knowledge that has 

been learned in a certain task to another task from the 

same domain in a supervised fashion in order to 

improve the learning scheme in the latter task [14, 15, 

33]. Technically, this means using a pretrained weights 

for a certain model to initialize the training of another 

model. As an example, ImageNet dataset [8] which 

contains approximately 14 million images and 22,000 

visual categories is mainly used as a reference dataset 

for building pretrained models for various computer 

vision tasks such as image classification, objects 

detection, image reconstruction and semantic 

segmentation. 

Typically, there are four options when using transfer 

learning. These are determined by the dataset size and 

its similarity with the source data (on which the model 

was originally trained): 

1. Retrain only the output layer in the case the dataset 

is small and very similar to the source data.  

2. Retrain all layers with initial weights taken from 

pretrained model when the dataset is large and very 

similar to the source data.  

3. Retrain the last layers and freeze early layers when 

dataset is small and less similar to the source data.  

4. Train the model from scratch if the dataset is large 

and very different from the source data [18]. 

By comparison, Self-Supervised Learning (SSL) is 

another pretraining approach which aims at learning the 

representation features for a certain task in an 

unsupervised manner by relaying only on the input 

data [7]. More clearly, the main intuition behind SSL 

approach is to learn the representative features in the 

target task by initially developing a pretext predictive 

task using the input data of the target task. The pretext 

task applies certain transformations to the input data, 

such as rotation, to get pseudo labels automatically. 

Then, a classifier is trained on this input data with 

pseudo labels. Consequently, the learned features are 

transferred from the pretext task to the target task to 

accomplish it with respect to the true labels. 

Comparatively, SSL approach is susceptible to have 

less discrimination power than TL approach as it does 

not rely on the actual labels, however; it has lower 

probability to be biased toward the class labels in the 

original task at which the pretrained model was trained 

on such as in the case of TL approach [46]. 

In regard to the pretext tasks, a variety of methods 

have been developed which can be mainly divided into 

three categories including generative learning whose 

main purpose is to (learn to reconstruct), contrastive 

learning whose main purpose is to (learn to compare) 

and adversarial learning which is a combination of 

generative and contrastive approaches [29]. 

This research aims at building a computer aided 

diagnosis tool for retina abnormalities classification by 

comparing the performance of two pre-training 

strategies including SSL and TL. ResNet34 

architecture is employed for experimenting the 

research questions in two training schemes. The first 

scheme employs convolutional auto-encoder as a self-

supervised pre-training approach for ResNet34 

architecture followed by supervised training for 

classification purposes, while the second scheme 

employs ResNet34 model pretrained on ImageNet 

Dataset according to the third transfer learning 

scenario. The research efforts are accomplished using 

dataset reported in [27] which contains 109,309 OCT 

images with three medical condition CNV, DME, 

DRUSEN in addition to the NORMAL condition. 

 To the best of our knowledge, this is the first 

attempt to compare the effect of both self-supervised 

learning and transfer learning approaches on the 

performance of ResNet34 model for classifying retina 

disorders using the same dataset. Comparatively, SSL 

pretraining approach achieved better performance than 

TL training approach in terms of accuracy, sensitivity 

and specificity. Furthermore, employing SSL showed 

considerable reduction in the computational efforts 

required to achieve the optimum performance in 

comparison to both TL pretraining as well as the 

previous research works on the same dataset. The 

research code and all programming implementations 

are available on the following GitHub repository: 

https://github.com/SaeedShurrab/OCT-Scans-

Classification. 

The remainder of the article is structured as 

follows: section two discusses the related works, while 

https://github.com/SaeedShurrab/OCT-Scans-Classification
https://github.com/SaeedShurrab/OCT-Scans-Classification


Retina Disorders Classification via OCT Scan: A Comparative Study between ...                                                                     359 

section three presents the research methodology, results 

and findings are presented in section four and whereas 

results discussion and research limitations are discussed 

in section five and finally section six concludes the 

article and suggests future research directions. 

2. Related Works 

Classification of retinal disorders using AI tools had 

been well studied in the previous literature with a 

variety of models that range from using primitive 

models such as statistical machine learning approaches 

along with classical medical image processing 

techniques to more sophisticated models using 

convolutional neural networks which can be briefly 

summarized as follow: 

With respect to statistical machine learning 

approaches, Liu et al. [28] proposed an OCT-based 

image classifier to distinguish three retinal disorders 

including Macular Edema (ME), Macular Hole (MH) 

and AMD from normal retina. Local Binary Pattern 

method was employed as a local feature extractor while 

Support Vector Machine (SVM) was trained in binary 

fashion as normal versus each of the three disorders. 

Another similar study performed by Albarrak et al. [1] 

that integrated oriented gradient histogram with local 

binary pattern histogram to extract features from 3D 

retinal OCT scans to be classified as AMD versus 

Normal retina using Bayesian classification network. 

Similarly, Srinivasan et al. [40] combined oriented 

gradient histogram and SVM to discriminate between 

DME, AMD and normal retina conditions using OCT 

images. 

Venhuizen et al. [42] proposed a methodology for 

discriminating between normal and AMD in retina 

OCT images by combining K-mean clustering with 

Random Forest Classifier (RF). K-means algorithm is 

used for features extraction which outcomes are used to 

develop patch occurrence histogram (Bag of words) 

which in turn is fed into RF classifier. Another work 

that adopted the same previous methodology was 

performed by Lemaitre et al. [25] which aimed to 

discriminate DME OCT images from normal ones. 

Local binary pattern was used as feature extraction 

instead of K-means clustering. They reported better 

performance in term of sensitivity and specificity in 

comparison to [43]. This work had been further 

extended in 2016 by examining different input images 

preprocessing techniques, feature extraction techniques 

as well as classification algorithms [26]. In 2017, 

Venhuizen et al. [43] extended their earlier work 

transforming it from a binary classification problem to 

multi-class classification problem with gradual severity 

levels of AMD disease including no AMD, early AMD, 

intermediate AMD, advanced AMD Geographic 

Atrophy and advanced AMD CNV. The results showed 

relatively comparative performance to the human 

performance in terms of sensitivity and specificity. 

Several similar works had been performed by other 

researchers such as the works accomplished in [3, 17, 

41]. It can be observed that the main theme of these 

researches is oriented toward manually generating 

representative features to be fed into a certain machine 

learning algorithm.  

On the other side, utilizing CNNs in retina 

disorders classification provided a vehicle for better 

performance and less preprocessing. A summary of 

the most recent retina disorders classification using 

CNN are briefly presented as follow: 

One of the earliest works that employed CNNs in 

retina disorder classification is performed by 

Apostolopoulos et al. [4]. They proposed a binary 

classification CNN that distinguishes between AMD 

and normal OCT scans that is called RetiNet. The 

proposed architecture consists of two-phase learning, 

where in the first phase, 2D scans are used to learn 

features representation in the input image using CNN 

(RetiNet-B). While in the second phase, learned 

features are used to train a second network (RetiNet-

C) to classify 3D retinal scans. Their model showed 

better performance in terms of AUC score in 

comparison to VGG16, DenseNet, ResNet and 2DSeg 

architectures. Another study performed by Lee et al. 

[24] developed a CNN model to classify OCT images 

as AMD versus normal. VGG16 architecture with 

Xavier weights initialization was employed.  

Kermany et al. [20] released a relatively large 

retina OCT images dataset [21]. The dataset contains 

(109, 312) OCT images distributed among four classes 

namely CNV, DME, DRUSEN and Normal condition. 

Inception V3 architecture pretrained on ImageNet 

dataset [A8] was evaluated on the same dataset and 

achieved accuracy score of (96.6%). Following that, 

other researches had been performed that examine the 

performance of different CNN architectures on the 

same dataset. Among those researches is the work that 

accomplished by Li et al. [27] who evaluated the 

performance of VGG16 architecture pretrained on 

ImageNet dataset on Kermany et al. [21] dataset. 

Their implementation was able to outperform the 

previous results by achieving accuracy score of 

(98.6%). Rastogi et al. [35] compared the performance 

of four variants of DenseNet architecture namely 

vanilla DenseNet, DenseNet-B, DenseNet-C and 

DenseNet-BC on the same dataset. The best result was 

achieved by DenseNet-BC model with accuracy score 

of (97.65%) on test set of 5415 OCT images created 

by the authors which outperformed [20] results but not 

[27]. Fang et al. [12] developed an Iterative Fusion 

Neural Networks (IFCNN) for classifying retinal 

disorders. The role of iterative fusion strategy is to 

join the feature maps from all previous convolutional 

layers with the present convolutional layer to improve 

the classification accuracy. The performance achieved 

by IFCNN in terms of accuracy is (87.3%) which is 

the least performance achieved on the same dataset. 
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Alqudah [2] combined Kermany dataset [27] with 

Farsiu et al. [13] dataset which contains OCT images 

for both AMD disease and normal condition to increase 

the number of diseases included in the dataset. A 

special CNN architecture, called AOCT-NET, was 

developed which was able to achieve overall accuracy 

of (94.4%).  

 Nugroho [32] compared two manual feature 

extraction methods, namely, Linear Binary Pattern 

(LBP) and Histogram Oriented Gradient (HOG) against 

two convolutional feature extraction DenseNet169 and 

ResNet50 on the same dataset. The extracted features 

from each method were fed into a single perceptron 

classifier. The results showed better performance 

achieved under neural based features extraction 

methods against manual methods. Table 1 summarizes 

the performance measures in terms of accuracy, 

sensitivity, specificity and Receiver Operating Curve 

(ROC). Other similar works that adopted CNNs in 

classifying retinal disorders using different datasets had 

been performed by Schlegl et al. [36], Perdomo et al. 

[34] and Sun and Sun [41]. 

To sum up, it can be observed from the previous 

literature that the main theme of the performed 

researches on Kermany’s dataset is either using 

pretrained models or specific convolutional architecture 

designed specifically for this dataset. This research 

distinguishes itself by comparing the performance of 

ReNet34 model using both self-supervised learning and 

transfer learning which is to the best of our knowledge 

the first attempt to approach retina OCT classification 

via the two strategies. 

Table 1. Performance measures summary of all works performed on 

Kermany et al. dataset. 

Author Model Acc. (%) Sens. (%) Spec. (%) AUC (%) 

Li et al. [27] VGG16 98.6 97.8 99.4 100 

Rastogi et al. [35] DenseNet 97.65 95.57 99.15 97.75 

Kermany et al. 

[20] 
Inception V3 96.6 97.8 97.4 99.9 

Alqudah [2] AOCT-NET 94.4 99.91 98.52 N/A 

Fang et al. [12] IFCNN 87.3 N/A N/A 99.85 

3. Materials and Methods 

3.1. Research Dataset 

The research dataset is publicly available for the 

research community from Mendeley data website since 

January 2018 [27]. The dataset contains (108, 309) 

OCT images from 5319 patients as a training set 

divided into three medical conditions including CNV, 

DME, DRUSEN in addition to the Normal scans. All 

images in the data set comes with (jpeg) format with 

varying dimensions between (496) and (1536) pixels as 

well as gray scale coloring system. In addition, the 

distribution of the images over the four classes is 

imbalanced distribution with Normal having largest 

number of images (51, 140) followed by CNV 

condition (37, 205), while DME and DRUSEN have 

(11, 348) and (8, 616) images respectively. Further, 

additional (1,000) images from 633 patients are 

available as a test set divided as 250 image for each 

label [20]. Figure 1 shows four sample images from 

the research dataset while Tables 2 and 3 summarize 

the dataset properties. 

 

Figure 1. A sample OCT image from the four labels CNV, DME, 

DRUSEN and Normal [20]. 

Table 2. Properties of research dataset.  

Property 
Total 

images 
Extension Resolution Coloring sys. 

Value 109309 Jpeg 496-1536 Gray-scale 

Table 3. Training and test data distribution. 

Class Normal CNV DME DRUSEN Total 

Train data 51,140 37,205 11,348 8,616 108,309 

Test data 250 250 250 250 1,000 

3.2. Dataset Preprocessing 

In order to make the data ready for modeling, the 

research dataset has undergone the following 

operations: 

1. All images have been resized into (224x224). 

2. All images have been converted from gray-scale 

into RGB to suit the ResNet requirements and 

normalized using the global mean and standard 

deviation of the training datasets with values of 

(0.2003) and (0.2042) respectively.  

3. Further for pretrained models, all images have been 

normalized according to the standard values of the 

mean (0.485, 0.456, 0.406) and standard deviation 

(0.229, 0.224, 0.225) for the ImageNet dataset 

which are the preferred values for the pre-trained 

models. 

3.3. Research Models 

3.3.1. Residual Neural Networks (ResNets) 

Residual neural networks are convolutional 

architecture that had been proposed by He et al. [16] 

in 2015. Standard residual networks have (5) 

architectures with different number of layers including 

(18, 34, 50, 101, 152). ResNet34 is selected to 

investigate the research assumptions for the sake of 

simplicity, however, any other architecture is 

applicable. Further, the performance of this 

architecture has not been investigated on the same 

dataset. ResNet34 architecture consists of initial single 
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convolutional layer, four residual blocks and single 

fully connected layer. The first convolutional layer has 

zero padding and stride values of (3) and (2) 

respectively and followed by a max pooling layer with 

zero padding and stride values of (3) and (1) 

respectively. With respect to residual blocks, each 

block consists of a predefined number of convolutional 

layers with skip connection between each two 

convolutional layers and stride value of (2) for the 

second, third and fourth residual blocks. Ultimately, the 

fully connected layer represents the number of classes 

in the research dataset and preceded by an adaptive 

average pooling layers that convert the input image into 

(1x1) vector. Each convolutional layer is followed by 

batch normalization layer. Further the input dimensions 

are halved after each block while the number of 

channels is doubled.  

3.3.2. ResNet34 Auto-Encoder 

Auto-encoders are neural models that consist of two 

sub-models, namely, encoder and decoder, the encoder 

compresses the input data into a latent dimensional 

space; while the decoder reproduces the input data from 

the compressed latent space [30]. Convolutional Auto-

Encoders (CAE) are special case of the auto-encoders 

that use the convolution layers. Features extraction is 

one of the most significant applications of CAEs where 

an auto-encoder is trained until capturing the features in 

the input data, then the decoder is discarded while the 

encoder is kept to perform its intended function. For 

this research purposes, an auto-encoder is implemented 

to capture the features in the research dataset as a self-

supervised learning technique. The convolutional 

blocks of ResNet34 architecture were employed as the 

backbone (encoder model) of the auto-encoder; while 

the fully connected block was discarded. On the 

decoder side, five convolutional upsampling layers 

were employed each with stride value of (2), batch 

normalization layer and ReLU activation except for the 

decoder output layer where sigmoid activation was 

employed to match the input format. Table 4 depicts 

the detailed structure of the ResNet34 auto-encoder 

architecture. 

3.4. Self-Supervised Pre-Training 

Two stages of training are implemented in a 

consecutive manner. In the first stage, the auto-encoder 

is trained to capture properties of training data until it is 

able to produce images that are relatively similar to the 

input images with no further improvement on the 

validation set. Consequently, as the auto-encoder 

backbone constituted of the convolutional blocks in 

ResNet34 architecture, the encoder weights are 

transferred into the classification model as initial 

weights to start the second stage of training. 

Eventually, the obtained results, via SSL approach, are 

compared with pre-trained ResNet34 on ImageNet 

dataset where the initial layers are frozen while the 

remaining layers are fine-tuned. 

3.5. Experimental Setup 

Initially, the training dataset was divided into two 

divisions for training and validation with percentages 

of (97477 images, 90% of data) and (10832 images, 

10% of data), respectively. In addition, the original 

test set as indicated in Table (3) is used for testing 

purposes. In regard to the pretrained ResNet34 on 

ImageNet dataset, the parameters of the first four 

blocks including Conv1, Res1, Res2 and Res3 were 

set as frozen (non-learnable) parameters as they 

account for approximately (8) million parameters out 

of (21.28) million parameters while the remaining 

layers have been set unfrozen. Ultimately, each of the 

trained models has its own set of hyperparameter 

values, part of these hyperparameter values are shared 

between the three models while some models may 

have different values. In addition, early stopping 

regularization techniques was employed to avoid 

overfitting. Table 5 summarizes the experimental 

settings for each model. 

Table 4. The architecture of ResNet34 and the Auto-encoder. 

Block 
Number of 

layers 

Kernel 

Size 

in 

channels 

out 

channels 
activation 

Encoder 

Conv1 1 7x7 3 64 ReLU 

Max Pool 1 3x3 64 64 N/A 

Res1 6 3x3 64 64 ReLU 

Res2 1 3x3 64 128 ReLU 

Res2 7 3x3 128 128 ReLU 

Res3 1 3x3 128 256 ReLU 

Res3 11 3x3 256 256 ReLU 

Res4 1 3x3 256 512 ReLU 

Res4 5 3x3 512 512 ReLU 

AVG Pool 1 7x7 512 512 N/A 

FC 1 N/A 512 4 SoftMax 

Decoder 

Block1 1 2x2 512 256 ReLU 

Block2 1 2x2 256 128 ReLU 

Block3 1 2x2 128 64 ReLU 

Block4 1 2x2 64 64 ReLU 

Block5 1 2x2 64 3 Sigmoid 

 

All coding efforts have been accomplished using 

Pytorch3 deep learning framework using NVIDIA 

RTX 2080 TI GPU with (11 GB) RAM and AMD 

Ryzen (9 3950x) CPU with (16 GB) RAM. Further, 

Automatic Mixed Precision (AMP) was activated 

during the training phase to accelerate the training 

process by reducing the training time as well as 

memory requirements as dictated in [31]. Overall 

accuracy, sensitivity and specificity were employed as 

performance measures.  

4. Results 

4.1. Auto-Encoder Performance 

Figure 2 depicts the auto-encoder performance in 

terms of learning curve and images reconstruction. As 
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mentioned previously, the main judgment criterion on 

the auto-encoder performance is its performance on the 

validation set with respect to the development loss and 

the quality of the reconstructed images. It can be clearly 

seen from Figure 2-a) that the development loss began 

to stabilize after the third epoch while the lowest 

development loss was achieved at the fourth epoch and 

the remaining epochs showed no significant 

improvement. On the other side, the quality of the 

reconstructed image as shown in Figure 2-c) is similar 

to the input image as shown in Figure 2-b) to a large 

extent. And thus, having these two criteria satisfied, the 

weights can be transferred from the encoder to the 

classification model. 

Table 5. Hyperparameters of research models. 

Setting 
Auto-

encoder 

SSL ResNet34 

model 

TL ResNet34 

model 

Batch size 16 16 16 

Learning rate 1e-4 5e-5 5e-6 

Weight decay 1e-5 1e-5 1e-5 

LR scheduler StepLR StepLR StepLR 

LR Scheduling factor 0.5 0.5 0.5 

LR Scheduling step 2 1 1 

Loss function MSE CrossEntropy CrossEntropy 

Optimizer Adam Adam Adam 

Max epochs 10 20 20 

4.2. Overall Performance Evaluation 

Figure 3 summarizes the training and validation history 

in terms of losses and accuracy for both models. With 

respect to the SSL pre-trained ResNet34 model, it can 

be observed from Figure 3-a) that the model achieved 

faster convergence on the validation set in which it 

nearly reached the optima after three epochs; while the 

best validation loss was achieved on the fifth epoch 

with approximately (0.0883) cross-entropy loss before 

beginning to stabilize with tiny steps on both training 

and validation sets. In addition, the same behavior is 

nearly held in terms of accuracy measure for both 

training and validation sets as shown in Figure 3-b) 

with highest accuracy score of (97.1%) achieved on the 

validation set. On the other side as shown in Figure 3-c) 

and Figure 3-d), the TL pre-trained ResNet34 model 

began to converge on the validation set right after the 

seventh epoch with a slightly fluctuated behavior 

before achieving the best validation loss at the eleventh 

epoch with nearly (0.176) cross-entropy loss. In regard 

to the accuracy, the maximum accuracy score achieved 

on the validation set is (94%) achieved at the fifteenth 

epoch. 

With respect to the research models’ performance in 

terms of accuracy, sensitivity and specificity on the test 

set, both models were able to achieve performance 

evaluation metrics greater than (90%) as shown in 

Table 6. More clearly, SSL ResNet34 model achieved 

accuracy, sensitivity and specificity scores of (95.2%), 

(95.2%) and (98.4%), while TL ResNet34 model 

achieved scores of (90.7%), (90.7%) and (96.9%) 

respectively.  

 
a) Learning curve. 

 

 

 

 

 

b) Sample input image. 

 

 

 

 

 
c) The reconstructed image. 

Figure 2. Auto-encoder performance in terms learning curve and 

reconstruction. 

Table 6. Research models’ performance summary on the test set. 

Model Acc. (%) Sens. (%) Spec. (%) 

SSL ResNet34 model 95.2 95.2 98.4 

TL ResNet34 model 90.7 90.7 96.9 

4.3. Per Class Performance Evaluation 

Table 7 shows the sensitivity and specificity of both 

models at the class level. It can be clearly observed 

from Table 7 that both models achieve better 

performance in terms of specificity in comparison to 

the sensitivity measure on the level of the four labels, 

namely, CNV, DME, DRUSEN, and NORMAL with 

specificity scores of (94.4.2%), (99.5%), (99.7%) and 

(100%) respectively for the SSL ResNet34 model as 

well as specificity scores of (91.5%), (98.7%), (100%) 

and (97.5%), respectively, for the TL ResNet34 

model.  

On the sensitivity side, SSL ResNet34 model was 

able to achieve sensitivity scores of (99.2%), (98%), 

(84.4%) and (98.8%) for CNV, DME, DRUSEN and 

NORMAL respectively. On the other side, the TL 

ResNet34 model was able to achieve sensitivity scores 

of (91.5%), (98.7%) (100.0%) and (97.5%) following 

the same previous order. 
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a) SSL learning curve. 

 
b) SSL accuracy curve. 

 
c) TL learning curve. 

 
d) TL accuracy curve. 

Figure 3. Research models performance history in terms of loss and 

accuracy. 

Table 7. Class-specific performance measures evaluation on the test 
set. 

Measure CNV DME DRUSEN NORMAL 

SSL ResNet34 model 

Sensitivity (%) 99.2 98 84.8 98.8 

Specificity (%) 94.4 99.5 99.7 100.0 

TL ResNet34 model 

Sensitivity (%) 99.6 98 66.4 98.8 

Specificity (%) 91.5 98.7 100 97.5 

5. Discussion and Limitations 

This research provided a deep learning based 

framework for classification purposes of four human 

eye retina medical conditions including CNV, DME, 

DRUSEN and NORMAL situation using retina OCT 

scans. The research methodology employs 

convolutional auto-encoder as a self-supervised pre-

training method that is used to initialize the 

classification model, while residual neural network 

(ResNet34) was employed as the research model. 

Further, the obtained results by applying SSL 

approach was compared with ResNet34 model pre-

trained on ImageNet dataset with partially frozen 

weights from the initial layers. 

 Indeed, the nature of the medical images differs 

significantly from any other images category. And 

thus, using pretrained models on dataset such as 

ImageNet may not be a convenient solution in the 

medical sector. This is because working with medical 

problems require achieving higher performance to 

ensure the robustness of the decisions made upon the 

predictive model outcomes. In addition, training a 

convolutional model from scratch requires longer 

training time, large amount of data and more tuning 

efforts until achieving considerable results which is a 

relatively a difficult issue in the medical sector. 

Hence, employing SSL approach as a pre-training 

method played a considerable role in capturing the 

visual features in the retina OCT images as well as 

improving the performance of the predictive model in 

comparison to the transfer learning based model.  

 To gain a clear vision, SSL ResNet34 model was 

able to achieve better performance in terms of the 

overall accuracy, sensitivity and specificity with 

values of (95.2%), (95.2%), and (98.4%) respectively 

in comparison to the TL ResNet34 model which 

achieved performance scores of (90.7%), (90.7%), and 

(96.9%) respectively. 

Additionally, from a computational perspective, 

employing SSL pretraining approach helped 

significantly in reducing the total number of training 

epochs in which it required only (20) epochs to 

achieve its optimum performance for training both 

auto-encoder as well as the classification model. 

Whereas the pretrained model on ImageNet dataset 

which is trained for (90) epochs on the ImageNet 

dataset in addition to additional (15) epochs on the 

retina OCT dataset which in total accounts for (105) 

epochs. The main point to mention here is that SSL 

approach enabled training relatively large model from 

scratch with limited amount of data with better 

performance than transfer learning approach as well as 

less computations. 

With respect to the model performance on the level 

of medical condition in terms of sensitivity and 

specificity, SSL ResNet34 model achieved higher 

scores than the TL ResNet34 model, thus, it will be 

considered for further interpretation. In regard to the 

specificity scores, NORMAL and DME DRUSEN 

conditions achieved the highest specificity scores with 

percentage of (100%) and (99.7%) respectively 

followed by DRUSEN medical condition with 

percentage of (99.5%) and finally CNV medical 

condition with percentage of (94.4%). Technically, 

Specificity score with respect to a certain class refers 

to the percentage of cases not belonging to the same 

class and were correctly identified. Equally important, 

having a high specificity score with respect to a certain 
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class indicates less chance of false positive occurrence. 

As an example on CNV medical condition, out of all 

cases which do not actually have CNV disorder only 

(5.6%) were identified as having CNV whereas in 

reality those cases belong to DME (0.67%) and 

DRUSEN (4.93%). 

On the other side, sensitivity score is an interesting 

measure in the medical field that represents the 

percentage of cases that belong to a certain medical 

condition which has been correctly identified. More 

clearly, less false negative occurrence is associated with 

higher sensitivity score. Pertaining the SSL ResNet34 

model performance in terms of sensitivity scores, CNV 

condition achieved the highest sensitivity of (99.2%) 

followed by NORMAL and DME with percentages of 

(98.8%) and (98.0%) respectively, while the least 

sensitivity score was attributed to DRUSEN medical 

condition with percentage of (84.8%). To elaborate 

more, (0.8%) out of all CNV cases were incorrectly 

classified as DME. Similarly, (2%) out of all DME 

cases were incorrectly classified as CNV (0.69%). In 

addition, (15.2%) out of all DRUSEN cases were 

incorrectly classified as CNV (14.8%) and DME 

(0.4%). Lastly, (1.2%) out of all NORMAL cases were 

incorrectly classified as DME (0.2%) and DRUSEN 

(0.8%). 

6. Conclusions 

This research has compared the performance of SSL 

and TL approaches to train ResNet34 architecture. The 

proposed approach was tested on an OCT dataset that 

contains (109, 309) images with three medical 

conditions including CNV, DME, DRUSEN and 

NORMAL condition. Further, the research 

methodology employs convolutional auto-encoder as an 

SSL pretext task. The main research outcomes showed 

that: 

1. SSL pretraining approach proved its effectiveness in 

training relatively a large model such as ResNet34 

from scratch. 

2. The performance of the SSL ResNet34 model 

outperformed TL ResNet34 model pretrained on 

ImageNet dataset. 

3. The overall accuracy, sensitivity and specificity on 

the test set achieved by SSL ResNet34 model are 

(95.2%), (95.2%) and (98.4%) respectively, while 

the TL ResNet34 model was able to achieve scores 

of (90.7%), (90.7%) and (96.9%) respectively. 

4. SSL pretraining approach achieved the best 

performance from a computational perspective in 

which it required only (20) epochs to reach the 

optimum performance which is not achieved by the 

other methodologies on the same dataset. 
 

As a future research direction, this research can be 

further improved by employing the same pre-training 

approach to different convolutional architectures such 

as residual neural networks variants (50, 101, 152), 

DenseNet Variants and InceptionNet variants to 

ensure its capability for generalization with respect to 

the model.  
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