
The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023 293

Estimation Model for Enhanced Predictive Object

Point Metric in OO Software Size Estimation Using

Deep Learning

Vijay Yadav

Department of Computer Science and

Engineering, Dr A. P. J Abdul Kalam

Technical University, India

vijayyadavuiet@gmail.com

Raghuraj Singh

Department of Computer Science and

Engineering, Harcourt Butler Technical

University, India

raghurajsingh@rediffmail.com

Vibhash Yadav

Department of Information

Technology, Dr A.P.J Abdul

Kalam Technical University, India

vibhashds10@gmail.com

Abstract: The Software industry’s rapid growth contributes to the need for new technologies. PRICE software system uses

Predictive Object Point (POP) as a size measure to estimate Effort and cost. A refined POP metric value for object-oriented

software written in Java can be calculated using the Automated POP Analysis tool. This research used 25 open-source Java

projects. The refined POP metric improves the drawbacks of the PRICE system and gives a more accurate size measure of

software. This paper uses refined POP metrics with curve-fitting neural networks and multi-layer perceptron neural network-

based deep learning to estimate the software development effort. Results show that this approach gives an effort estimate closer

to the actual Effort obtained through Constructive Cost Estimation Model (COCOMO) estimation models and thus validates

refined POP as a better size measure of object-oriented software than POP. Therefore we consider the MLP approach to help

construct the metric for the scale of the Object-Oriented (OO) model system.

Keywords: Effort estimation, functional size measurement, object orientation predictive object point, software metrics, software

measurement.

Received June 6, 2020; accepted August 29, 2022

https://doi.org/10.34028/iajit/20/3/1

1. Introduction

Software size is critical to the process of the software

development process. During the implementation of a

software project, the estimated size of the software is

used in various ways for effective project planning and

control purposes. It is essential to calculate the

development process’s efficiency after the project has

ended. Software size is also a necessary factor for

estimating software effort and cost.

Estimating software size before the actual

development is a very challenging task. Over the years,

various approaches have been proposed to estimate the

software size. However, no metrics seem to be the

“silver bullet” that addresses all drawbacks and fits all

commitments.

Typically, software size metrics are utilized under a

specific development environment and paradigm. A

range of contending software size estimation

approaches used for cost and effort estimation are

available in the literature.

This conception is contradictory to the Object-

Oriented (OO) model. OO methods distinguish data and

processes, while OO designs associate them. Here are

several extents to that an OO metric requires accurately

calculating effort or efficiency monitoring. Calculating

the amount of underdone methodology for software

delivery is essential.

Some methods like Function Point Analysis (FPA),

original regression, and the Constructive Cost

Estimation Model (COCOMO) model are unsuccessful

because they are unsuitable for all software developed

using different development paradigms. Thus, software

size estimation models that give outstanding results for

one type of software may not be appropriate for other

software applications. For example, FPA Developed for

traditional software and gave excellent results could not

be extended for the OO software.

Traditional software size, cost, and effort estimation

techniques vigorously failed in the case of new software

development paradigms. Metrics like Source Lines of

Code (SLOC) and FPA were developed in a period that

involved programming to divide the resolution space

into data and processes.

This concept contradicts the OO model, which

distinguishes between the data and processes and

associates them with OO designs, Minkiewicz [24].

Thus, good estimation models for OO software are

required to provide accurate metrics for effort or

efficiency monitoring.

Wittig and Finnic [29] used the Artificial Neural

Network (ANN) to estimate the Effort needed for

traditional software and found that it produces

consistent results. Khoshgoftaar et al. [22] presented the

ANN procedure for calculating software quality.

mailto:husnu.bayramoglu@emu.edu.tr
https://doi.org/10.34028/iajit/20/3/1

294 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Kanmani et al. [19] used ANN to predict the Effort for

OO applications based on the class points.

In this paper, we Estimate the Effort for OO software

through the Refined POP metrics and compare it with

actual Effort.

We improved the Effort for OO software by applying

Deep Learning. Two different types of Deep -learning

methods are designed with training models. The

estimation of Effort by CFNN and MLP shows very

high accuracy. CFNN and MLP with Bayesian

Regularisation (BR) demonstrated a correlation of

98.95 % and 99.85 %, respectively. Figure 1 briefly

details various metrics used to measure the software’s

size.

Figure 1. Measuring the size of software.

2. Literature Survey

Enough research on the size, cost, and effort estimation

for OO software has been done over the last two decades.

There are two major research approaches related to

predicting software development effort: developing the

size metrics that can be utilized for predicting Effort and

developing predictive techniques and models for effort

estimation. Lines of Code (LOC) and feature points are

the most commonly used size metrics for estimating

software effort. Maybe LOC is one of the oldest,

Albrecht and Gaffney [5]. Several LOC variants,

including Non-Commented lines of code (NCLOC) or

Non-Blank Lines Of code (NBLOC), Efficient Lines of

code (ELOC), and the number of executable

declarations, are introduced and used in industry Fenton

and Bieman [10].

FPA is a tool for calculating the size and efficiency

of the software. Metric role points assess projects from

the end-user standpoint by calculating end-user

characteristics, Albrecht [4]. Based on that, FPA

represents the software viewpoint of the customers and

managers, while LOC represents the view of the

developers, Jørgensen [18]. The Java code reviewer tool

JCQR was also proposed. It was developed as a free IDE,

offering more dynamic options to developers. It is based

on Java code standards and can check any piece of Java

code saved as a text file. It uses five categories of code

rules, Abdallah and Alrifaee [1].

 Some of the optimization algorithms performed for

software effort estimation, such as the firefly algorithm,

Ghatasheh et al. [12], Regression fuzzy model, Nassif

et al., [26], Machine Learning for software fault

prediction for OO software metrics Singh et al., [28].

PRICE systems have developed POP, and the metric

POP has been created to prevent efforts needed to build

an OO software system, Minkiewicz [24]. It is based on

the Feature Point (FP) system process counting. POPs

are intended to boost their use in procedural systems

over the FP by building well-recognized metrics in

combination with OO systems, Haug et al. [15].

POP is reflected to be a more reliable display of OO

size than FP, Judge and Williams [20]; Jain et al. [17]

and can also be used to measure the Effort that can be

made to assess the program list and the expense of

project software. POPs are a metric for approximating

the dimensions of OO applications. The increasing class

offers the system high-level inputs that determine the

system’s organization based on behavior. Nonetheless,

there is no reliable POP mapping with the software size.

Various metrics are presented in the review section for

assembling the superiority of OO software design, such

as Aggarwal et al. [2] address specifications and present

a new set of OO software metrics. Two proposed

parameters are calculated, the amount of generosity

contained in the project, and then systematically

calculated alongside the set of 9 axioms by Weyuker.

Chidamber and Kemerer [6, 7] address these

Function

Points

Introduced by
Albrecht

(1979)

Function Points Analysis (FPA)
This method measures the relative size of

software functions based on the no. of

different data types processed by a software

function and evolved into several variants

of functional size measurement methods.

Object Points
Introduced by

Banker et al.,

(1992)

Object Points (OP)

OP measure software size by counting visual

widgets of the 4th generation languages.

Widgets are 1. Logical system components, 2.

Constructs of the 3rd generation language that

is used to supplement 4th generation language

code, 3. User interface screens, 4. User report

and it is adjusted by complexity and reuse

multipliers and summed to total OP count.

Use-case Points

Introduced by

Karner (1993)

Use-Case Points (UCP)

UCP is inspired and based on FPA. Its

instance is evaluated with respect to its

complexity and assigned an appropriate

weight. The UCP count is equal to the

weighted sum of individual counts. The UCP

can be modified using an adjustment factor,

that depend on several technical complexity

factors.

Feature Points

Introduced by

Jones (1996)

Feature Point Method (FPM)

It extended FPA method by additionally

counting algorithms and multiplying this

count by the relative complexity of an

algorithm. This method suffers from the

imprecise descriptions and a lack of reference

applications.

Store Points
Introduced

by Cohn

(2004, 2005)

Store Points (SP)

It used to estimate the size of agile software

projects. SP is an abstract unit of software

size that represents an intuitive mixture of

development effort and complexity. SP is

assigned according to a Fibbonacci number

sequence, where each number is the sum of

the previous two.

Predictive Object Points (POP)

POP is based on counts of classes and

weighted methods per class, with adjustments

for the average depth of the inheritance tree

and the average no. of children per class.

Methods are weighted by considering their

type (constructors, destructors, modifiers,

selector, iterator) and complexity (low,

average and high), giving a no. of POPs in a

way analogous to traditional FPs.

Predictive

Object

Points
Introduced

by

Minkiewicz
(1997)

Estimation Model for Enhanced Predictive Object Point Metric in OO Software Size ... 295

requirements by designing and instigating a new set of

OO interface steps.

Few empirical research is presented on the impact of

object-oriented metrics on software development

quality, such as Chidamber et al. [8]. ML is a subfield

of Artificial Intelligence (AI) that has been applied in

the area Zhang and Tsai [32]; Regolin et al. [27].

Several metrics, including effort estimation, have been

enhanced using deep learning. A rigorous survey of the

software development effort based on Machine

Learning (ML) has been done by Akinsanya et al. [3].

This work is intended to provide a point of entry for

professionals looking to add machine learning to their

toolkits for developing software. It classifies recent

literature, detects trends, and points out its shortcomings.

According to the survey, some writers admit that ML for

SD industrial applications has not been as standard as

the evidence showed. The ML approach automatically

induces information from historical project data in

forms such as models, functions, laws, and patterns.

Regolin et al. [27] have shown how to predict lines of

code from (FP) or several components (NOCs) using

two ML with Genetic Programming (GP) and ANN,

Verner and Tate [30]. The ML algorithms, such as GP

and neural networks, are challenged to understand and

implement, Idri et al. [16].

3. Proposed Effort Estimation Approach

LOC is the most common metric for size estimation, but

it is not easy to estimate the size of software expressed

in LOC before the actual software development. Also,

LOC is a size measure that is dependent on the

programming language in which the software is written.

Here, we propose an effort estimation approach using

refined POP and deep learning through Curve fitting

Neural Network (CFNN) and MLP. Here is a list of

some popular software estimation methods and their

tool in Table 1.

Table 1. Estimation methods with tools comparisons.

METHODOLOGIES TOOLS

Predictive Object Points (POPs) – measured by

metrics: 1) TLC:- top-level classes; 2) DIT:-

average depth in inheritance tree; 3) WMC:-

weighted methods per class; and 4) NOC – an

average of children

PRICE Systems’

True S

Object Metric – projects scope as defined in

Unified Modeling Language (UML): classes,

sub-model components, use cases, and

interfaces, capable by size complexity,

genericity, as well as reuse

TASSC: Estimator

Use Case Points – According to the use of case

diagrams and actors;

Duvessa’s Estimate
Easy Use Case

(EEUC)

Application Points (COCOMO II Level 1) -

Used OP that counts reports, screens, and 3GL

modules, according to weights complexity

Duvessa’s Estimate

Easy Use Case
(EEUC)

Model-Based Sizing – Arrangement of OO

metrics:

Use cases number and complexity, classes and

objects

QSM’s SLIM

Estimate

3.1. Predictive Object Points (POP) Metric

POP introduced by PRICE, Minkiewicz [24],

Minkiewicz and Fad [25], has established the POP

metric and incorporates several standard measures in the

review work to determine the appropriate for predicting

metric the Effort required to create an OO software

system. According to the logic, it’s associated with the

following 4 OO metrics to describe the metric POPs by

Equation (1) Minkiewicz, and Fad [25]; Haug et al. [15];

Jain et al. [17]:

POPs = AvgWMC × TLC ×
{1+[(1+AvgNOC)×AvgDIT]1.01+(|AvgNOC−AvgDIT|)0.01}

7.8

The above equation combines the AvgWMC, TLC,

AvgNOC, and AvgDIT. These parameters have their

own identity. The role of the settings is explained below,

Littlefair [23].

1. TLC: It is the total number of classes rooted in a class

diagram. These classes are connected at the top level

without any parents. All other classes are called the

derived class.

2. AvgDIT: It indicates the average number of Depth of

Inheritance tree (DIT) values for every class presented

in the class diagram. The DIT is a length of

inheritance hierarchy trail for a class in which the

class originated from the root.

3. AvgNOC: It indicates the average number of NOC

values for every class in a class diagram. NOC is the

number of classes which is straight inherited from the

class.

4. AvgWMC: It indicates the average number of a

weighted method for every class, where every type of

arrangement is weighted based on complexity.

The weight of a method calculates the AvgWMC metric

by its category and complexity. The plans are listed as

five method types:

1. Constructor

2. Destructor

3. Modifiers

4. Selector, And an Iterator.

The constructors and destructors are collected into one

form because their complexity is similar, Minkiewicz

[24]. The methods complications in the class are further

divided into low, medium, and high. The types of

method weightings with complexity and complexity

rules are set by inspecting the amount of actual Effort

connected with 100 C++ /Java project methods. Expert

information is also extended during this cycle.

In general, however, AvgWMC is unavailable at the

design stage from the UML class diagram, Minkiewicz,

and Fad [25]; Haug et al. [15]. In this respect, we cannot

use POPs in the early development process to develop a

SLOC prediction model. To tackle this problem,

Minkiewicz proposes that AvgWMC should be

(1)

296 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

determined based on the standard percentage

distributions of methods and complex forms.

AvgWMC is generally unavailable at the design

stage from the UML class diagram, Minkiewicz, and

Fad [25]; Haug et al. [15]. For more details.” Therefore,

POP cannot be used in the early development process to

develop a SLOC prediction model. In particular, the

following steps can be used for calculating AvgWMC

in Figure 2.

Figure 2. AvgWMC calculation steps.

3.2. Refined Predictive Object Points (POP) Metric

In the true OO environment, as in java projects, the level

of reusability through inheritance is always considered

to be high, and hence (|AvgNOC − AvgDIT|)0.01 of

Equations (1) can be omitted while estimating Java

projects, Jain et al., [17]. Thus, the resultant simplified

formula for the refined POP is given in Equation (2).

REFINED_POPs = AvgWMC × TLC ×
{1+[(1+AvgNOC)×AvgDIT]1.01}

7.8

The APA automation tool can measure the refined POP

count by fragmenting the complete project into each

java file and aggregating values as per Equation (2).

Besides, simplification was suggested and validated in

the POP count formula by implementing a modified

object-oriented metric Average Weighted Method

Count (AWC) that can be utilized to replace the WMC

metric Yadav et al. [31], as shown in Equation (3).

WMC = AMC x 10.478

The authors also recognized the relationship between

the original and refined POP counts. This refinement

and relationship are valid only for Java-based software

and may not be applicable in any other development

environment.

3.3. Software Actual Effort Estimation

When the latest technologies grow and the size of the

software is immense, the Judgment calculation does not

accurately foresee. The need for formula-based

evaluation approaches is therefore illustrated. The

Constructive Cost Model (COCOMO-I) is a

mathematics-based estimation model. In COCOMO-I,

the most straightforward calculation is used for Effort in

Equation (4) to estimate the number of Person-Months

needed for project growth. The measurement effort

sequence is described in Figure 3.

Effort = A ∗ (Size)B

Here A is constant in proportionality, and B is the

economy. Table 2 applies to the values of A and B,

depending on the project category. A project is divided

into three kinds:

1. Organic-projects, including small teams with good

knowledge

2. Semi-detached projects that have medium-sized

organizations with diverse expertise

3. Embedded projects that are built under a set of

restrictions.

Table 2. Shows the A and B values for the COCOMO model.

Software/Project A B

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

Figure 3. The procedure of effort estimation.

At this point, we summarise the size in terms of actual

Effort, KLOC, and estimation through refined POP

metric. Since the size of both the projects considered for

the study is 2-50 KLOC, we felt them as the organic type

and used the formula below for actual effort calculation

in Equation (5):

Actual Effort = 2.4 ∗ (KLOC)1.05

4. Effort Estimation using Refined POP Metric

and Deep Learning

ANN is a computer processing method inspired by an

indigenous neuron network. The Feed-Forward Neural

Network (FFNN) architecture can be divided into two

types: a single layer with adjustable weight and bias and

a multi-layer network that includes input layers, a

hidden neuron layer, and a neural output layer. The

input layer includes self-determining variables

interconnected to the hidden layer. The hidden layer

Step-1
Compute

the

AvgMeth

per Class.

Step-2

Compute

the

AvgMeth

in each

method

type.

Step-3

Compute

the no. of

methods of

each

complexity

type for

each

method

type.

Step-4

Apply

Method

Weighting

rules.

AvgMeth

per

Class=Total

No. of

Methods/Tot

al No. of

Classes

Avg.Constru

ctor/Destruct

or Method

Count=20%

× AvgMeth

per Class.

Low

Complexity

Method

Count=22% ×

AvgMeth

Count.

Compute

AvgWMC

Avg. Selector Method

Count=30%×AvgMeth

per Class.

Avg. Modifier Method

Count=45%×AvgMeth

per Class.

Avg. Iterator Method

Count=5%×AvgMeth

per Class.

Avg. Complexity Method

Count = 45%×AvgMeth

Count.

High Complexity Method

Count = 33% × AvgMeth

Count.

(2)

(3)

(5)

(4)

Estimation Model for Enhanced Predictive Object Point Metric in OO Software Size ... 297

includes activation functions and measures the weights

of the variables to investigate the effects of predictors

on the (dependent) target variables, Haykin [13]. An

ANN consists of three layers: input, hidden layer, and

output layers, which means that a network of three

layers is shown in Figure 4.

Figure 4. The architectures of Neural Networks.

An MLP-based neural network contains neuron

layers with one input/output layer and more than one

hidden layer that are optionally accessible. The MLP is

created on neurons that calculate the non-linear input

vector function and weights of the scalar variables.

Neurons in the same layer interpret a signal concurrently

and pass it from the input to the output layer. In CFNN,

the input and weight vector determine the activation of

a hidden neuron. CFNN with enough hidden neurons

can arbitrarily implement any finite input-output

function. The neural networks for OO application

development effort estimation using MLP are generally

multi-layered FFNN. The input value in the CFNN is

the POP ratio, and the network output is the optimized

value of POP.

This research uses CFNN and MLP to estimate Effort

using POP and advanced POP metrics. The network

input is 1xN, with a 1-dimensional array. The hidden

layer size is 25, and two different training algorithms

employ a back-propagation training feature. Software

development effort is a function of one variable, i.e.,

software size expressed in POP and refined POP. The

enhanced Levenberg-Marquardt (LM), Finschi [11],

Heiat [14], and Bayesian regularisation (BR) algorithms

have been used to train the network and achieve lower

mean squared errors. De Barcelos Tronto et al. [9];

Heiat [14]. The LM algorithm is quicker than the BR

back-propagation algorithm. Along with the LM and

BR back propagation training techniques, we use Mean

Square Error (MSE) and determination coefficient to

produce results suited for calculating software size,

Khalid et al., [21]. The complete implementation has

been done using MATLAB inbuilt function library and

code.

5. Result Analysis

This research used 25 open-source Java projects taken

from http://sourceforge.net/, https://projectsgeek.com/,

and http://www.enggroom.com/Project.aspx. Projects

cover various applications, including core software

development, internet gaming or entertainment, science

or engineering, communications, network, and database.

Java projects containing the project version, the total

Number of Java Files (NJF), and size in SLOC. We used

the Automated POP Analyser (APA) Tool for software

engineering for software metrics and size estimation for

each Java system. The JAVA-language APA platform

and framework function for JAVA-based projects. This

method understands the java files to evaluate their

source code for the details extracted. The POP value is

determined based on every project file. The project

sources used for analysis are summarised in Table 3.

Table 3. Java projects used in a case study.

No. Project Name Project Sources NJF SLOC

1 Civilization Game

Project

https://projectsgeek.com/2016

/01/civilisation-game-project-

in-java.html

17 2559

2. MESP 1.0 https://sourceforge.net/project

s/expression-tree/

50 1189

3. Jmol https://sourceforge.net/project

s/jmol/

156 22686

4. JDMP https://jdmp.org/ 92 2684

5. Geometry library (gpcj-

2.1.0)

https://sourceforge.net/project

s/gpcj/

12 2893

6. Geometry library (gpcj-

2.1.2)

https://sourceforge.net/project

s/gpcj/

14 1995

7. Intranet https://projectsgeek.com/2014

/07/intranet-mailing-system-

project-java.html

9 1977

8. JavaCallTracer https://sourceforge.net/proj

ects/javacalltracer/

5 102

9. Java AIMBot -1.4 https://sourceforge.net/project

s/jaimbot/

30 4413

10. javaGeom-0.11.0 https://sourceforge.net/project

s/geom-java/

124 4098

11. javaGeom-0.11.1 https://sourceforge.net/project

s/geom-java/

123 4059

12. Java MP4Box Gui -1.6 https://sourceforge.net/project

s/javamp4boxgui/

10 255

13. Java MP4Box Gui -1.7 https://sourceforge.net/project

s/javamp4boxgui/

15 404

14. Java MP4Box Gui -1.8 https://sourceforge.net/project

s/javamp4boxgui/

16 486

15. JDistlib-0.0.7 http://jdistlib.sourceforge.net/ 44 4578

16. Simplified encryption

(jasypt-1.9.1)

https://sourceforge.net/project

s/jasypt/

115 7264

17. iText® (iText5.4.0) https://sourceforge.net/project

s/itext/

96 3651

18. iText® (iText5.4.3) https://sourceforge.net/project

s/itext/

100 3582

19. JGraphT-0.8.2 https://sourceforge.net/project

s/jgrapht

178 644

20. JGraphT-0.8.3 https://sourceforge.net/proj

ects/jgrapht

180 644

21. HBX Binaural

Player(HBX-1.16)

https://sourceforge.net/project

s/hbxplayer/

11 2837

22. HBX Binaural

Player(HBX-1.16.1)

https://sourceforge.net/project

s/hbxplayer/

11 2837

23. iText® (iText5.3.0) https://sourceforge.net/project

s/jgrapht

37 1276

24. Jaimlib-0.5 https://sourceforge.net/project

s/jaimlib

45 1539

25. HBX Binaural Player

(HBX-1.15)

https://sourceforge.net/project

s/hbxplayer/

9 2308

5.1. Results of POP, Refined POP, and Effort

Assessment

We used the Automated POP Analyser (APA) Tool and

Metric Investigation Tool CCCC by Littlefair [23]. for

the assessment of various metrics and POP values for

every individual java file of each Java project by

following the procedure discussed in section 3.1 and 3.2

and then taking an average of the values for determining

AvgDIT, AvgNOC, and AvgWMC values. The

software effort estimation is done according to the

COCOMO-I model of organic type. Various values,

including that of POP, refined POP, and Effort

calculated, are given in Table 4.

https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://sourceforge.net/projects/expression-tree/
https://sourceforge.net/projects/expression-tree/
https://sourceforge.net/projects/jmol/
https://sourceforge.net/projects/jmol/
https://jdmp.org/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://projectsgeek.com/2014/07/intranet-mailing-system-project-java.html
https://projectsgeek.com/2014/07/intranet-mailing-system-project-java.html
https://projectsgeek.com/2014/07/intranet-mailing-system-project-java.html
https://sourceforge.net/projects/javacalltracer/
https://sourceforge.net/projects/javacalltracer/
https://sourceforge.net/projects/jaimbot/
https://sourceforge.net/projects/jaimbot/
https://sourceforge.net/projects/geom-java/
https://sourceforge.net/projects/geom-java/
https://sourceforge.net/projects/geom-java/
https://sourceforge.net/projects/geom-java/
https://sourceforge.net/projects/javamp4boxgui/
https://sourceforge.net/projects/javamp4boxgui/
https://sourceforge.net/projects/javamp4boxgui/
https://sourceforge.net/projects/javamp4boxgui/
https://sourceforge.net/projects/javamp4boxgui/
https://sourceforge.net/projects/javamp4boxgui/
http://jdistlib.sourceforge.net/
https://sourceforge.net/projects/jasypt/
https://sourceforge.net/projects/jasypt/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jaimlib
https://sourceforge.net/projects/jaimlib
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/

298 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Table 4. The Value of POP metric estimation.

No. TLC AvgNOC AvgDIT AvgWMC
Total

POP

Total

Refined POP

Effort

Calculated

1 18.0 12.0 5.166 70.88 510.99 318.34 6.02

2. 44.0 44.0 22.0 44.21 707.64 472.85 2.43

3. 165 100.99 46.99 67.08 3611.53 2374.25 50.87

4. 107.0 74.0 33.03 55.04 1870.85 1183.60 5.67

5. 12 8.3 4.0 96.74 449.87 336.18 6.76

6. 10.0 7.5 3.5 66.91 129.97 87.55 4.66

7. 21.0 10.28 3.81 36.09 350.46 231.17 4.56

8. 2.0 2.0 1.0 41.91 20.10 13.43 0.20

9. 33.0 26.5 12.03 81.54 1000.87 674.17 9.78

10. 145.0 84.0 34.25 76.76 4306.95 2645.90 8.61

11. 153.0 87.0 36.37 76.02 4676.44 2850.37 8.70

12. 4.0 3.0 1.33 41.91 44.22 29.55 0.51

13. 8.0 7.0 3.33 48.19 48.24 33.24 0.83

14. 8.0 7.0 3.33 40.16 44.22 29.55 1.01

15. 4.0 2.0 0.75 63.11 265.31 160.86 14.69

16. 86.0 75.0 35.66 68.60 2627.54 1713.99 15.71

17. 75.0 62.0 29.31 60.63 1195.90 791.48 7.72

18. 78.0 64.0 30.28 58.21 1191.87 788.80 7.55

19. 15.0 11.0 4.83 32.08 226.01 143.10 1.33

20. 15.0 11.0 4.83 32.08 226.01 143.10 1.33

21. 12.0 8.0 3.73 94.14 528.20 348.83 6.51

22. 12.0 8.0 3.73 94.14 528.20 348.83 6.51

23. 24.0 23.0 11.33 73.80 385.98 257.92 2.69

24. 44.0 35.0 16.0 48.89 910.79 586.05 3.17

25. 11.0 7.0 3.23 89.64 462.13 304.13 5.30

In the current case study, 25 Java projects used for

the validation process have been maintained in two

different lists based on even and odd projects, as

depicted in Equations (5) and (6), respectively, and

effort assessment through POP and refined POP are

calculated by taking ratios of the respective projects in

the two lists. A comparison of efforts assessment

through POP and Refined POP with the actual Effort is

shown in Table 5.

A = (E1 E2 … … … … … … … … … En)

𝐵 = (O1 O2 … … … … … … … … … On)

Table 5. The Effort estimation measure through POP, Refined POP
comparison with actual.

No. Total POP

Ratio

Total Refined POP

Ratio

Effort Calculated

Ratio

1 1.3848 1.4853 0.4036

2. 0.5180 0.4985 0.1114

3. 0.2889 0.2904 0.6893

4. 0.0573 0.0560 0.0438

5. 4.3032 3.9246 0.8803

6. 0.0094 0.0103 0.0586

7. 0.9166 0.9889 1.2168

8. 9.9036 9.6551 1.0694

9. 0.9968 0.9976 0.9779

10. 1 1 1

11. 1 1 1

12. 2.3596 2.272 1.1784

5.2. Comparison of Results of POP Metrics

The performance evaluation has been designed based on

four different types of POP metric values. POP metric

calculation based on the PRICE system, Minkiewicz

[24], the overall project, each Java file of the project,

and refined POP values. For the POP metric

comparison, two different projects with the smallest and

highest number of Java files depicted in bold in Table 3

have been considered. As per Figure 5, the refined POP

is better than the other POP metrics.

Figure 5. POP Count values based on two different projects.

The actual Effort calculated through COCOMO-I has

a value of 0.1514 for the projects with NJF=5/NJF=180.

The estimated effort values were assessed using

different POP metrics like POP defined by Minkiewicz

[24], POP (Overall), POP (Each Java Files), and POP

(Refined) are 0.3548, 0.1911, 0.088, and 0.0938

respectively. The POP (Refined) value is much closer to

the actual effort, as shown in Figure 6.

(5)

(6)

Estimation Model for Enhanced Predictive Object Point Metric in OO Software Size ... 299

Figure 6. Efforts comparison based on two java projects.

5.3. Analysis and Comparison of Results of Deep

Learning

In the Regression analysis, the R-value calculates the

interplay of outputs and goals. An R-value of 1 implies

a close connection, and 0 is a random relation. The

standard output feature for training feedback neural

networks is the average number of network error

squares. Regression plots for CFNN and MLP-based

Effort comparison using LM and BR training algorithms

have been shown in Figures 7 and 8, respectively.

Figure 7. Regression plot for CFNN generated for Efforts

comparison based on LM and BR, respectively.

The correlation between the actual and predicted

value in both the training and testing phase is depicted

with the correlation coefficient (R2) as 0.90071 (CFNN

with LM), 0.9893 (CFNN with BR), 0.9370 (MLP with

LM), and 0.9985 (MLP with BR) respectively in the

Figures 7 and 8. These figures clearly show that the

Effort estimated based on the refined POP metric is very

close to the actual Effort. The R-value for MLP with BR

has the highest value as 0.9985, indicating that it is

almost 99.85 % closer to real Effort and has only a

0.0015% error in prediction.

The MSE represents the average square difference

between the actual output and the goal. The lowest value

of MSE indicates no error. Figures 9 and 10 display the

average MSE in the prediction of the OO Metric, which

is very low. The deep learning for enhanced OO

software metrics has given outstanding performance

with 99.85% accuracy. Figure 11 gives the performance

comparison of MLP & CFNN based on LM and BR

Figure 8. Regression plot for MLP generated for Efforts comparison

based on LM and BR, respectively.

300 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Figure 9. MSE for CFNN-based Effort comparison using LM and

BR.

Figure 10. MSE for MLP-based Effort comparison based on LM and

BR, respectively.

Figure 11. Performance comparison of MLP & CFNN based on LM

(in blue) and BR (in Yellow).

6. Conclusions and Future Directions

For the 25 open-source Java projects, the original and

refined POP metrics are calculated using the APA tool.

The final result analysis was done based on various

POP-based size metrics and calculating the efforts with

these metrics. The POP metric is a good size measure of

software which can be easily seen from the results.

We used the POP metrics to estimate the

development efforts through deep learning methods

with different training models. The Effort estimated

through the refined POP metric and various other forms

of the POP metrics using deep learning methods was

analysed and compared with the actual Effort calculated

through the COCOMO model.

The highest correlation coefficient value between the

actual Effort and the Effort predicted through refined

POP using MLP with BR, and the minimum MSE value

establishes the deep learning-based approach of effort

estimation through refined POP using MLP with BR

algorithm is the best.

This research used Java programming language-

based projects to calculate POP and refined POP metrics

for effort estimation.

The Refined POP metric was validated by comparing

the effort values estimated through this metric and the

SLOC metric using the COCOMO-I model. The work

can be extended for the object-oriented-based software

written in some other programming language. Also, in

place of the static regression model used by us, the

dynamic Machine learning-based models can be used.

References

[1] Abdallah M. and Alrifaee M., “A Heuristic Tool

for Measuring Software Quality Using Program

Language Standards,” The International Arab

Journal of Information Technology, vol. 19, no. 3,

pp. 314-322, 2022.

[2] Aggarwal K., Singh Y., Kaur A., and Malhotra R.,

“Software Reuse Metrics for Object-Oriented

Systems,” in Proceedings of the 3rd ACIS Int'l

Conference on Software Engineering Research,

Estimation Model for Enhanced Predictive Object Point Metric in OO Software Size ... 301

Management and Applications, Mount Pleasant,

pp. 48-54, 2005.

[3] Akinsanya B., Araújo L., Charikova M., Gimaeva

S., Grichshenko A., Khan A., Mazzara M.,

Okonicha N., and Shilintsev D., “Machine

Learning and Value Generation in Software

Development: a Survey,” in Proceedings of the

International Conference on Tools and Methods

for Program Analysis, Tbilisi, pp. 44-55, 2020.

[4] Albrecht A., Measuring Application Development

Productivity, in Proceedings of the Joint Share,

Guide, and IBM Application Development

Symposium, Monterey pp. 14-17, 1979.

[5] Albrecht A. and Gaffney J., “Software Function,

Source Lines of Code, and Development Effort

Prediction: a Software Science Validation,” IEEE

Transactions on Software Engineering, vol. SE-9,

no. 6, pp. 639-648, 1983.

[6] Chidamber S. and Kemerer C., “Towards a

Metrics Suite for Object-Oriented Design,” in

Proceedings on Object-Oriented Programming

Systems, Languages, and Applications, United

States, pp. 197-211, 1991.

[7] Chidamber S. and Kemerer C., “A Metrics Suite

for Object-Oriented Design,” IEEE Transactions

on Software Engineering, vol. 20, no. 6, pp. 476-

493, 1994.

[8] Chidamber S., Darcy D., and Kemerer, C.,

“Managerial Use of Metrics for Object-Oriented

Software: an Exploratory Analysis,” IEEE

Transactions on Software Engineering, vol. 24,

no. 8, pp. 629-639, 1998.

[9] De Barcelos Tronto I., Da Silva J., and Sant'Anna

N., “Comparison of Artificial Neural Network and

Regression Models in Software Effort

Estimation,” in Proceedings of the International

Joint Conference on Neural Networks, Orlando,

pp. 771-776, 2007.

[10] Fenton N. and Bieman J., Software Metrics: A

Rigorous and Practical Approach, CRC Press,

2014.

[11] Finschi L., “An Implementation of the Levenberg-

Marquardt Algorithm,” Eidgenössische

Technische Hochschule Zürich, 1996.

[12] Ghatasheh N., Faris H., Aljarah I., and Al-Sayyed

M., “Optimising Software Effort Estimation

Models Using Firefly Algorithm” arXiv preprint

arXiv:1903.02079, 2019.

[13] Haykin S., Neural Networks, A Comprehensive

Foundation, Prentice-Hall, 1999.

[14] Heiat A., “Comparison of Artificial Neural

Network and Regression Models for Estimating

Software Development Effort,” Information and

Software Technology, no. 44, vol. 15, pp. 911-922,

2002.

[15] Haug M., Olsen E., and Bergman L., Software

Process Improvement: Metrics, Measurement,

and Process Modelling: Software Best Practice 4,

Springer Science and Business Media, 2011.

[16] Idri A., Khoshgoftaar T., and Abran A., “Can

Neural Networks Be Easily Interpreted in

Software Cost Estimation?” in Proceedings of the

IEEE World Congress on Computational

Intelligence, Honolulu, pp. 1162-1167, 2002.

[17] Jain S., Yadav V., and Singh R., “Assessment of

Predictive Object Points (POP) Values for Java

Projects,” International Journal of Advanced

Computer Research, vol. 3, no. 4, pp. 298-300,

2013.

[18] Jørgensen M., “A Review of Studies on Expert

Estimation of Software Development Effort,”

Journal of Systems and Software, vol. 70, no. 1-2,

pp. 37-60, 2004.

[19] Kanmani S., Kathiravan J., Kumar S., and

Shanmugam M., “Neural Network-Based Effort

Estimation Using Class Points for OO Systems,”

in Proceedings of the International Conference on

Computing: Theory and Applications, Kolkata,

pp. 261-266, 2007.

[20] Judge T. and Williams A., “Oo Estimation-An

Investigation of the Predictive Object Points

(POP) Sizing Metric in an Industrial Setting,”

Parallax Solutions Ltd, Coventry, UK, 2001.

[21] Khalid A., Latif M., and Adnan M., “An Approach

to Estimate the Duration of Software Project

through Machine Learning Techniques,” Gomal

University Journal of Research, vol. 33, no. 1, pp.

47-59, 2017.

[22] Khoshgoftaar T., Allen E., Hudepohl J., and Aud

S., “Application of Neural Networks to Software

Quality Modelling of a Very Large

Telecommunications System,” IEEE

Transactions on Neural Networks, vol. 8, no. 4,

pp. 902-909, 1997.

[23] Littlefair T., CCCC Metric Tool, Available from:

http://www.fste.ac.cowan.edu.au/~tlittlef/, Last

Visited, 2022.

[24] Minkiewicz A., “Measuring Object-Oriented

Software with Predictive Object Points,” PRICE

Systems, LLC, pp. 609-866, 1997.

[25] Minkiewicz A. and Fad B, and Lockheed Martin

Corp, “Parametric Software Forecasting System

and Method,” U.S. Patent 6,073,107, 2000.

[26] Nassif A., Azzeh M., Idri A., and Abran A.,

“Software Development Effort Estimation Using

Regression Fuzzy Models,” Computational

Intelligence and Neuroscience, vol. 2019, 2019.

[27] Regolin E., de Souza G., Pozo A., and Vergilio S.,

“Exploring Machine Learning Techniques for

Software Size Estimation,” in Proceedings of the

23rd International Conference of the Chilean

Computer Science Society, Chillan, pp. 130-136,

2003.

[28] Singh A., Bhatia R., and Singhrova A.,

“Taxonomy of Machine Learning Algorithms in

javascript:;

302 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Software Fault Prediction Using Object-Oriented

Metrics,” Procedia Computer Science, vol. 132,

pp. 993-1001, 2018.

[29] Wittig G. and Finnic G., “Using Artificial Neural

Networks and Function Points to Estimate 4GL

Software Development Effort,” Australasian

Journal of Information Systems, vol. 1, no. 2,

1994.

[30] Verner J. and Tate G., “A Software Size Model,”

IEEE Transactions on Software Engineering, vol.

18, no. 4, pp. 265-278, 1992.

[31] Yadav V., Yadav V., and Singh R., “Introducing

New OO Metric for Simplification in Predictive

Object Points (POP) Estimation Process in OO

Environment,” International Journal of

Engineering Sciences and Research Technology,

vol. 5, no. 1, pp. 716-723, 2016.

[32] Zhang D. and Tsai J., “Machine Learning and

Software Engineering,” Software Quality Journal,

vol. 11, no. 2, pp. 87-119, 2003.

 Vijay Yadav he is B.Tech Hons in

(IT) from CSJM University Kanpur

(UIET) and M.Tech Hons in (CSE)

from UP Technical University.

Currently, he is doing a Ph.D. in

(CSE) from Dr. A.P.J. Abdul Kalam

Technical University, Uttar Pradesh.

He has undergone projects like the Online

Entertainment world and Enterprise Resource Planning

System during his B.Tech (IT) curriculum. He has done

his M.Tech (CSE) thesis in Object-Oriented Software

Metrics (POP Automation). He is a meritorious B.Tech

(IT) and M.Tech (CSE) student and has a merit

excellence award. He has 9 papers in International

Conferences/Journals, and two IEEE conferences

attended for paper presentations.

Raghuraj Singh he is a B.Tech.

(CSE), MS (Software Systems) and

PhD in Computer Science and

Engineering from UP Technical

University. He has about 23 years of

experience in teaching. Currently, he

is HOD CSE in HBTU Kanpur. He has guided 7 PhDs

and 17 M.Techs, and several B.E./B.Tech projects. He

is the Chairman of Kanpur Chapter, CSI, Life Member

of ISTE, Member of the Institution of Engineers (India),

Fellow Member of IETE, Professional member of

ACM, and Senior Member of the International

Association of IACSIT. To his credit, he has more than

80 papers in National / International Conferences and

Journals. Currently, 4 students are working for PhD, and

4 are pursuing M.Tech. under his guidance.

Vibhash Yadav He is a B.Tech.

(CSE) from CSJM University,

Kanpur, M.Tech in (CSE) from

Maharshi Dayanand University,

Rohtak, and PhD in Computer

Science and Engineering from

Uttrakhand Technical University,

Dehradun. He has about 10 years of experience in

teaching. He is an Associate Professor and Head in the

IT Dept of Rajkiya Engineering College, Banda. He has

guided 4 M.Techs and several B.E./B.Tech projects. He

is the Member, Kanpur Chapter, CSI. He has more than

15 papers in National / International Conferences and

Journals to his credit. Currently, 4 students are working

for Ph.D. and 4 are pursuing M.Tech. under his

guidance.

