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Abstract: Gas-liquid two-phase flow is widely involved in many scientific and technological fields, such as energy, electricity, 

nuclear energy, aerospace and environmental protection. In some fields, extracting the accurate position of bubbles in space 

can not only accurately capture the characteristics of bubbles in two-phase flow, but also plays an important role in the 

subsequent research like bubble tracking. It has got some progresses to use Convolutional Neural Network (CNNs) to identify 

bubbles in gas-liquid two-phase flow, while accurate pixel segmentation map in the bubble identification problem is more 

desirable in many areas. In this paper, VGG16-FCN model and U-Net model are utilized to identify bubbles in two-phase flow 

images from the perspective of semantic segmentation. LabelMe is used to label the images in the experiment, which can remove 

the noise in the original image. In addition, bubble pixels with low ratio relative to the background affects the loss function value 

tinily which cause the irrational evaluation for the recognition in traditional semantic segmentation, thus, Dice loss is used as 

the loss function for training to improve the recognition effect. The research results show that the two deep learning models have 

strong feature extraction ability and accurately detect the bubble boundary. 
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1. Introduction  

In nature and industrial processes, multiphase flow is 

often involved, among which gas-liquid two-phase flow 

is the most common. The most basic flow form of gas-

liquid two-phase flow is gas-liquid two-phase bubble 

flow. Bubbles participate in the enhanced mass transfer 

between liquid and gas phases. In addition, the bubble 

jet generated by some types of hydraulic equipment 

during operation will lead to serious consequences 

closely related to cavitation. Based on the importance of 

gas-liquid two-phase bubble flow in many fields, such 

as geophysics [3, 17, 39], chemical engineering [12], 

biopharmaceutics [23] and wastewater management [4], 

it is necessary to better understand the interaction 

between two-phase flows and especially develop high-

precision methods to process and analyze two-phase 

flows based on the increasing experimental data [38].  

There are mainly two kinds of measurement 

techniques for two-phase flow. the Probe-based 

invasive (contact) method and non-invasive (non-

contact) method. The advantage of invasive is that it 

may use sensors to evaluate some physical quantities in  

 
that are difficult to reach in a certain river basin. 

Examples are based on conductivity probe [24], 

impedance probes [18] and wiremesh sensors [36]. Non-

invasive method includes many optical methods and 

computer methods, such as laser Doppler anemometer 

[25] and image processing technology [1, 7, 22, 26]. 

Since the invasive method makes the probe directly 

contact with the dispersed bubbles, the flow near them 

is disturbed, which increases the uncertainty of 

experimental measurement. Non-intrusive do not 

interfere with the flow studied and avoid most of the 

shortcomings of intrusive methods, so they usually 

show higher spatial resolution [9].  

There are many traditional methods based on 

extracting the “manual configuration” feature to find 

and identify the target in the image, such as SIFT 

descriptors [30] or histograms of oriented gradients [14]. 

ImageJ analysis software was used for bubble detection 

and bubble size calculation of experimental images [29]. 

Akhmetbekov [2] proposed two bubble identification 

methods. The first method is to sketch the boundary of 

bubbles in the image, and then determine the geometric 
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center and size of bubbles by searching the relevant 

regions. The second technique uses related methods to 

compare the scanned image part with the pre-generated 

mask image, so as to determine the existence or absence 

of bubbles in the image. The normal operation of these 

two methods requires a large number of adjustable 

parameters. The Planar Fluorescence for Bubbles 

Imaging (PFBI) method [15] can be used to determine 

the parameters of gas-liquid two-phase flow, such as the 

average velocity of continuous phase, local gas 

concentration, flow characteristics and their fluctuations 

in the dispersed phase.  

In recent decades, with the rapid development of 

computer technology and the huge growth of available 

data, it has become possible to use neural network for 

image classification or target detection and other 

applications [37]. Nowadays, Convolutional Neural 

Network (CNN) is one of the most successful examples 

in machine learning applications. In the classical CNN 

model, an image block composed of a pixel and its 

adjacent pixels is input into the network to extract 

features, and then it is used for image classification [20]. 

The random changes of specific location, light and 

environment will make it difficult to identify the target 

of the two-phase flow data obtained. In traditional 

image processing methods, feature selection is 

subjective and artificial, and feature extraction is not 

comprehensive [8]. In order to solve the above problems, 

CNN model with excellent performance is used in the 

task of visual object recognition. Poletaev et al. [33] 

compared the methods based on CNN and PFBI. The 

author used a sliding window method, three 

independent CNN to classify the probability of bubbles 

in some images, filtered the images through an 

automatic encoder, and found the possible bubble center, 

finally achieving superior accuracy compared with the 

latter. Haas et al. [21] proposed the use of Region based 

CNN (R-CNN) to identify possible bubble positions, 

where each bubble is identified, marked and surrounded 

by a rectangular box [16]. However, the CNN models in 

the above research use the full connection layer at its 

end to complete the classification task, so what they 

finally get is the classification probability of the input 

image, rather than the output semantic level pixel 

segmentation map. As for the bubble recognition of gas-

liquid two-phase flow, the research expects more 

accurate image segmentation of bubbles and 

background, and CNN may not achieve the bubble 

recognition effect required in most industrial 

experiments [13]. 

In this paper, Fully Convolutional Networks (FCN) 

and U-Net with different fusion methods are applied to 

bubble identification in the field of gas-liquid two-phase 

flow. FCN, proposed by Shelhamer et al. [35], accepts 

images of any size as input, extracts features through 

convolution layer. Deconvolution upsampling is then 

performed to output a segmented image of the same size 

as the label image. At present, FCN model has been 

widely used in image segmentation [5, 18, 25, 31, 32, 

40]. Many subsequent image segmentation models 

further extend the concept of FCN. Representative 

models include SegNet [6], U-Net [34], DeepUNet [27], 

Y-Net [28] and DeepLab [10, 11].  

2. Materials and Methods 

2.1. Convolutional Neural Network 

In Convolutional Neural Networks, both input images 

and feature response maps generated by convolution 

layer processing are usually multi-channel. A typical 

convolution network is composed of convolution layers, 

down-sampling layers and full connection layers. A 

convolution block is a continuous M convolution layers 

and b down-sampling layers. In a convolution network, 

N continuous convolution blocks can be stacked, and K 

full connection layers are connected behind. The overall 

structure of convolutional network is shown in Figure 1. 

In convolutional neural networks, parameters are 

weights and biases in convolution kernels. Similar to the 

fully connected feedforward network, the convolutional 

neural network can also carry out the back propagation 

through the error term of each layer, and further 

calculate the gradient of each layer’s parameters to 

realize the parameter learning. 

 

Figure 1. General structure of convolution network. 

2.2. Feature Fusion 

The purpose of image semantic segmentation 

technology is to label the semantic information of each 

pixel in the image, so as to divide the image into several 

regions with different properties and categories, which 

is a basic research content in the field of computer vision. 

In the feature extraction stage, a large number of down-

sampling and pooling operations lead to the loss of 

image space and detail information, so the feature 

recovery and feature fusion of semantic segmentation 

are introduced. Feature recovery restores the resolution 

of the feature map by up-sampling the feature map. The 

commonly used up-sampling methods include bilinear 

interpolation and deconvolution. Feature fusion 

optimizes the output through the addition fusion and 

splicing fusion of feature maps to improve the 

segmentation accuracy. The two most commonly used 

feature fusion methods are Concat and Add. 

Concat is the addition in the number of channels, and 
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the combination in the channel dimension (Figure 2). 

The advantage of Concat is that only the feature 

information is spliced without changing the content, 

thus preserving the integrity of the feature information. 

Concat is often used for multi-feature information 

fusion to increase the number of channels to maintain 

the integrity of information, so that network 

performance is greatly improved. 

 

Figure 2. Concat fusion method in convolution layer. 

Add is the sum of information that describes the 

characteristics of the image, and the number of channels 

is the same as the image dimension (Figure 3). This 

fusion method saves parameters and computation, 

which is also beneficial to the final image classification. 

 

Figure 3. Add fusion method in convolution layer. 

Each channel of Concat and Add corresponds to a 

separate convolution kernel. So the single output 

channel for Concat and Add are described in 

Equations )1) and (2) respectively. 
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Where, Xi and Yi are characteristic information of 

channel i, Ki is convolution kernel of channel i, c is the 

number of convolution kernels.  

2.3. Loss Function and Optimizer 

Dice loss training is more inclined to mining foreground 

regions, it can eliminate the impact of unbalanced 

proportions of positive and negative sample on 

classification results. Because the proportion of 

background pixels is larger than that of target bubble 

pixels in our experimental data, Dice loss is introduced 

to evaluate the identification effect in this paper. 

The Dice loss formula is defined as: 

YX

YX
f




2
1

 

Where X and Y represent the real value and predicted 

value of the segmented target, respectively. X Y is the 

intersection of X and Y. Function  denotes the number 

of the set. Dice loss takes the value between 0 and 1, and 

the smaller the value is, the more accurate the predicted 

value of the model is. 

In order to accelerate the training convergence speed 

of the model, this study selects the deep learning Adam 

optimization algorithm. Compared with other 

optimizers, Adam optimizer is computationally efficient 

and suitable for large-scale data and parameter scenarios 

[6]. Adam Combines The Advantages Of Adaptive 

Gradient algorithm (AdaGrad) for sparse gradient 

processing and the root mean square transfer algorithm 

(RMSProp) for non-stationary targets. After bias 

correction, each iterative learning rate has a certain 

range, which reduces the fluctuation of parameter 

update and makes the model converge more smoothly 

[17]. The specific updates of Adam optimizer is as 

follow: 

1 1 1(1 )t t tm m g     

2

2 1 2(1 )t t tn m g     

1

ˆ
1

t
t t

m
m





，

2

ˆ
1

t
t t

n
n





 

1
ˆ

ˆ
t t t

t

m
n


 


  


 

Where, mt and nt are the first-order and second-order 

moment estimates of the gradient at time t; ˆ
tm and ˆ

tn  

are the correction of mt and nt at time t; β1 and β2 are the 

exponential decay rate for the 1st and 2nd moment 

estimates, the default values are β1=0.9 and β2=0.999 gt 

is gradient; 1

t  and 2

t  are the t-th power of 1  and 2 . 

θt+1 is the updated parameter at time t+1; η is the 

learning rate, the default value is 0.001; 810  is set to 

avoid taking 0 as denominator. 

2.4. VGG16-FCN and U-Net 

Different from the traditional CNN, FCN can accept any 

size of the input, and the feature map obtained after the 

last convolution layer is up-sampled by deconvolution. 

This operation can obtain the feature map with the same 

size as the original input image, which can be used for 

pixel-level prediction. At the same time, the spatial 

information in the original input image is retained to 

solve the problem of semantic segmentation. In this 

paper, based on FCN, the network structure is shown in 

Figure 4. The classical network VGG16 is first 

introduced for migration learning to remove the full 

connection layer, retain the convolution base part of the 

network, and use the pre-trained weight on the 

ImageNet dataset for training. Next, the core idea of 

semantic segmentation is introduced, namely 

deconvolution up-sampling and jump structure. Then, 

the skip fusion structure is introduced to make up for the 

lost features of the previous convolution layer and 

pooling layer. Combined with the results of different 

depth layers, the Add fusion method is used for 

upsampling and fusion.  

The U-Net model was first published in MICCAI in 

2015, which combines low resolution information 

(providing object category recognition basis) and high 

resolution information (providing accurate 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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segmentation and positioning basis). The high 

resolution information has an important effect on 

semantic segmentation and target detection. The U-Net 

model can not use classical convolution networks such 

as VGG as pre-training models, and the structure of U-

Net can freely deepen the network depth according to 

the size of the dataset. And when U-Net performs 

shallow feature fusion, it uses Concat fusion. In this 

paper, for images of size 256*256, four down-samplings 

and four up-samplings are carried out. The feature 

information of the down-sampling layer is directly 

transmitted to the up-sampling layer of the same 

dimension to obtain high-resolution information, and 

the underlying information is filled to improve the 

segmentation accuracy. It can provide more fine 

features for semantic segmentation and target detection, 

and achieve accurate segmentation and recognition. The 

structure is shown in Figure 5. 

 

Figure 4. Structure diagram of VGG16-FCN. 

 

Figure 5. Structure diagram of U-Net. 

3. Experimental Results and Discussion 

3.1. Hardware and Data Training 

Our experiments are based on open resource deep 

learning frameworks TensorFlow and Theano ' s Keras. 

Graphics Processing Unit (GPU) is NVIDIA GeForce 

RTX 2060, 16GB RAM. The Central Processing Unit 

(CPU) is Intel Core i7-10750H, 2.60GHz. In the 

experiment, the initial learning rate is set to 0.001. 

The data originated from the two-phase flow 

experiment simulated closed loop (Figure 6). By 

adjusting the pipeline valve, the vertical rise and down 

of gas-liquid two-phase flow can be controlled. For the 

vertical down two-phase flow, The deionized water in 

the water tank passes through the filter driven by the 
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pump, and then enters the bubble generator and the 

vertical test section respectively. The gas and water are 

separated by the gas-water separator and returned to the 

water tank. Using graphic design, high-speed camera 

can be carried out.  

The image dataset of the two-phase flow contains 

9351 samples obtained by intercepting each frame of the 

video, including. The sample size is 256*256 pixels. In 

order to obtain a clear gas-liquid two-phase flow dataset, 

the brightness and contrast of the image were modified. 

And all samples were normalized by Equation (8) before 

used. Then, 1871 (20%) were randomly selected as test 

samples, and the remaining 7480 (80%) were used as 

training samples to train U-Net model and VGG16-FCN 

model. 

( )
( ) 1

127.5

image input
image output    

Where the image(input) represents the pixel value of the 

image sample in the interval of [0, 255]. 

 

Figure 6. Two-phase flow experimental device with simulated 

closed loop. 

3.2. Experimental Results and Analysis 

According to the evaluation of the classification 

problem, Accuracy, Precision, Recall, Matthews 

Correlation Coefficient (MCC) and Receiver Operating 

Characteristic (ROC) curve are used to evaluate the 

accuracy of bubble identification in gas-liquid two-

phase flow data set.  
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Where True Positive (TP) and True Negative (TN) are 

the the number of pixels correctly classified as bubbles 

and background respectively; FP is the number of pixels 

wrongly classified as bubbles; False Negative (FN) is 

the number of pixels misclassified as background. 

In general, accuracy can directly reflect the 

classification ability of the model for the whole sample. 

Precision refers to the accuracy of bubble targets 

detected by the system. The recall rate refers to the ratio 

of bubbles identified in the detection results to the total 

number of bubble pixels. For the binary classification 

problem, MCC is a comprehensive index that can 

comprehensively consider TP, TN, FP, and FN, 

especially for the model evaluation when there is a large 

gap between the target and the background pixel ratio, 

like in this experiment. One of the great advantages of 

ROC curve for model evaluation is that it can maintain 

good stability when the distribution of positive and 

negative samples changes. Each point on the ROC curve 

reflects sensitivity to the same signal stimulus. Curves 

plotted with True Positive Rate (TPR) as the ordinate 

and False Positive Rate (FPR) as the abscissa, where 




TP
TPR

TP FN

 , FP
FPR

FP TN




 

The experiment is implemented with five-fold cross-

validation used in model training. The experiments are 

conducted with batch_size 4,8,16 respectively, and the 

results are shown in Table 1. It is shown that the U-Net 

and FCN models have a high ability to identify bubbles 

in data sets, and the identification accuracy of U-Net is 

better than that of FCN on the whole. U-Net combines 

shallow detail features with deep abstract features to 

enhance the representation of high-resolution detail 

information and better protect the integrity of features. 

It can ensure the robustness and accuracy of the image 

and repair the restored image.  

Table 1. Indicators of the training results of the two models. 

Model 
Batch 

size 
Precision Accuracy Recall MCC 

VGG16-

FCN 
 

4 95.37 % 98.07% 95.61% 0.9535 

8 95.68 % 98.37% 96.96% 0.9593 

16 91.01 % 95.68 % 92.96 % 0.9204 

U-Net 

 

4 98.09% 99.46% 99.20% 0.9679 

8 98.18% 99.47% 99.81% 0.9788 

16 96.87% 98.34% 96.55% 0.9574 

Figures 7 and 8 show the performance of the FCN 

model and U-Net with batch_size 8 when the 

identification accuracy is the highest. In this condition, 

the accuracy of U-Net model can reach 99.47 %, and the 

accuracy of FCN can reach 98.37 %. The ROC curve of 

U-Net model is shown in Figure 9, the six data points 

are calculated by TPR and FPR after the thresholds are 

selected by equal distance. The Area Under The Curve 

(AUC) is close to 1, indicating that the U-Net model has 

a good classification effect. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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a) Original figure. 

 
b) The image after semantic segmentation. 

Figure 7. Identification results of bubbles by FCN model. 

 
a) Original figure. 

 
b) The image after semantic segmentation. 

Figure 8. Identification results of bubbles by U-Net model. 

 

Figure 9. ROC curve of U-Net network. 

Through experiments, we also found that the two 

models can not only identify complete bubbles well, but 

also has a good recognition effect for bubbles that have 

just been generated (Figure 10) and bubbles that are 

about to surface (Figure 11). The bubble diagrams in 

both cases are circled with red boxes. The green box 

circled in the Figures 10 and 11 is a bubble-like particle 

on the outer wall of the experimental instrument in this 

experiment. The two networks used in this paper did not 

recognize the bubbly particles as bubbles, so they can 

well adapt to the experimental equipment and 

environment, and distinguish bubbles from other 

underwater particles and noises. 

 
                             a) Original figure.                b) Identification result of bubbles. 

Figure 10. The original image and the identification result of bubbles 

that have just been generated.  

 
                  a) Original figure.               b) Identification result of bubbles. 

Figure 11. The original image and the identification result of bubbles 

floating out of water.  

3.3. Discussion 

Aiming at the bubble identification problem when the 

target bubble pixel is annihilated by the background 

pixel in the gas-liquid two-phase flow, VGG16-FCN 

model and U-Net model based on semantic 

segmentation are used in this paper. The method of 

semantic segmentation, not like that in the field of 

classical image recognition which only gives rough 

ellipsoidal labels, accurately distinguishes the bubble 

edge from the background to form a binary recognition 

result. To improve the accuracy of bubble recognition, 

Dice loss is proposed as the loss function of the network 

to solve the problem that the background pixel ratio is 

much larger than the target bubble ratio, and the 

recognition accuracy of the network has been greatly 

improved.  

In the comparative experiments, by setting different 

batch_size, the Accuracy, Precision, Recall and MCC of 

the U-Net and VGG16-FCN deep learning models are 

listed in Table 1 to show the performance. It is believed 

that these two models perfom well in the information 

extraction of closed-loop simulation experiments. The 

lowest accuracy of the two models is 95.68 % and 98.34% 

respectively when the parameter batch_size is 16, and 

the accuracy of both models reaches the highest value at 

the same time when batch_size is 8. For U-Net model, 

the ROC curve plots the TPR against the FPR by 



Intelligent Recognition of Gas-Liquid Two-Phase Flow Based on Optical Image                                                                     615 

 

varying a threshold in Figure 9, which illustrates the 

diagnostic ability of a binary classification system, and 

large area( be close to 1) under the curve indicates good 

performance. 

4. Conclusions 

In this paper, we use VGG16-FCN and U-Net models to 

accurately identify bubbles in two-phase flow images 

obtained by simulating closed loop experiments. When 

the background pixel ratio is high and the cross entropy 

loss function cannot accurately segment the image, Dice 

loss is used as the loss function of the model. The 

networks are trained on this dataset and the 

experimental results are compared. The experimental 

results show that the two models used in this paper has 

certain robustness and anti-noise ability, and has good 

application value in the field of bubble identification. 

Determining the spatial location, size and 

distribution of bubbles has always been an area of 

interest to researchers. The gas-liquid two-phase flow 

identification method based on deep learning models 

proposed in this paper can also be applied to the problem 

that the proportion of target pixels is far less than that of 

background pixels, as well as in subsequent fields such 

as bubble tracking. In the samples of this experiment, 

there are single-row and double-row bubble flows, and 

their distribution trends are basically the same, showing 

a linear distribution. However, in practical application 

scenarios, there will be more complex bubble 

distribution in the sample, and more noise or object 

occlusion will interfere with bubble recognition. 

Therefore, in the subsequent work, it is necessary to 

identify the samples with more interference factors and 

dense bubbles in the field of gas-liquid two-phase flow 

identification.  
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