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Abstract: Traffic sign detection is a key part of intelligent assisted driving, but also a challenging task due to the small size and 

different scales of objects in foreground and closed range. In this paper, we propose a new traffic sign detection scheme: Spatial 

Pyramid Pooling and Adaptively Spatial Feature Fusion based Yolov3 (SPP and ASFF-Yolov3). In order to integrate the target 

detail features and environment context features in the feature extraction stage of Yolov3 network, the Spatial Pyramid Pooling 

module is introduced into the pyramid network of Yolov3. Additionally, Adaptively Spatial Feature Fusion module is added to 

the target detection phase of the pyramid network of Yolov3 to avoid the interference of different scale features with the process 

of gradient calculation. Experimental results show the effectiveness of the proposed SPP and ASFF-Yolov3 network, which 

achieves better detection results than the original Yolov3 network. It can archive real-time inference speed despite inferior to the 

original Yolov3 network. The proposed scheme will add an option to the solutions of traffic sign detection with real-time inference 

speed and effective detection results. 
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1. Introduction 

Intelligent assisted driving technology is committed to 

building a safe, green and comfortable transportation 

system. As a key part of intelligent driving assistance 

technology, traffic sign detection technology needs to 

accurately and real-time locate and classify the traffic 

signs in the scene when the vehicle is running at high 

speed [22]. Traffic sign detection is vital to driving 

safety, as well as 3D object detection [20], stress level 

detection [7] and other safety approaches. 

Traffic sign detection methods can be roughly 

divided into two categories: traditional feature based [3, 

4, 8, 21] method and deep learning based method. The 

former method is mainly divided into two steps: feature 

extraction (using Histogram of Oriented Gradient 

(HOG), Scale Invariant Feature Transform (SIFT), Key 

lines [2], etc.,) and classification (into two categories: 

target and not target). However, the traditional features 

of images are low-level visual features, which are often 

designed for certain objects. Therefore, the traditional 

method suffers from poor robustness and unsatisfying 

accuracy when facing detection tasks with complex 

background. 

The deep learning based method can be divided into 

two categories: candidate region based approaches and 

end-to-end approaches. The detection process of these 

candidate region based approaches [5, 15, 25] is divided 

into two stages. In the first stage, the candidate region is 

generated from the input image, and then the target in 

the candidate region is corrected and classified. The 

candidate region based approaches have high detection 

accuracy, but those approaches have high computational 

complexity and cannot meet the needs of real-time 

detection. The end-to-end detection approaches [18, 24] 

send the image to be detected into the network, and then 

the location coordinates and the probability of the 

category of the target in the image can be obtained. The 

end-to-end detection approaches do not need to generate 

candidate regions, so they can meet the real-time 

requirements. Among the end-to-end target detection 

networks, the object detection method based on Yolo 

[12, 13] attracted researchers due to the superiority of 

real-time processing and high accuracy. At present, 

many studies are based on Yolov3 network to complete 

the task of traffic sign detection. Zhang et al. [22] Add 

the augmented path and data augmentation module to 

the Yolov3 network, and obtain the traffic sign detection 
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effect with faster speed and better accuracy than the 

traditional method. Zhang et al. [23], utilized a modified 

YOLOv2 to design their real-time traffic sign detection 

method. Sichkar and Kolyubin [16] proposed an end-to-

end traffic sign detection algorithm based on Yolov3. In 

[1], different Yolo architectures are used as baseline 

detectors, and several preprocessing methods are 

proposed to meet the real-time requirements of traffic 

signs. 

Traffic sign detection networks [9, 11, 14, 17, 19], 

including Yolov3, have pyramid network structures. 
When detecting traffic signs, this network structure will 

face two challenges: small in size, and different scales 

of objects in foreground and closed range. The former 

may cause the detection network to miss the detailed 

features in the detection scene, and then lead to the 

missed detection of traffic signs. The latter may lead to 

the problem that in the pyramid structure of the 

detection network, the corresponding features of traffic 

signs of different scales conflict with each other and 

interfere with gradient back propagation. In order to 

recognize traffic signs more accurately, many studies [9, 

11, 14, 17, 19] focus on how to better use deep neural 

network to extract the features of traffic signs. Because 

the proportion of traffic signs in the detection scene is 

small, the characteristics of traffic signs are the details 

of the scene. Only when the detail features in the scene 

are combined with the overall environmental context 

features of the scene can it be more helpful for the 

successful detection of traffic signs. Moreover, the 

traffic sign detection methods based on pyramid 

detection network [9, 11, 14, 17, 19] did not consider the 

problem of different scale traffic sign features 

interfering with the network gradient back propagation 

process. In order to solve the above two challenges in 

the process of traffic sign detection, in this paper, a new 

traffic sign detection scheme: Spatial Pyramid Pooling 

and Adaptively Feature Fusion based Yolov3(SPP and 

ASFF-Yolov3) is proposed. Our main contributions are 

as follows: 

1. Three Spatial Pyramid Pooling modules are added in 

the feature extraction stage of Yolov3 network to 

integrate the detailed features of traffic signs and the 

global environment semantic information of traffic 

signs. 

2. Three Adaptively Spatial Feature Fusion modules are 

added in the target detection stage of Yolov3 network 

to solve the problem that different scale features 

affect gradient calculation in the training process. 

3. Experiments on Tsinghua-Tencent 100K traffic sign 

database show that the proposed traffic sign detection 

method based on SPP&ASFF-Yolov3 is effective and 

feasible. 

The rest of this paper is arranged as follows. Section 2 

gives a briefly introduce about the structure of the 

Yolov3, Spatial Pyramid Pooling and the Adaptively 

Spatial Feature Fusion. Section 3 introduces the 

proposed SPP and ASFF-Yolov3 traffic sign approach in 

details. In section 4, we evaluate the SPP&ASFF-

Yolov3 on Tsinghua-Tencent 100K traffic sign detection 

database, and section 5 concludes the paper. 

2. The Network Structure of Yolov3 

Figure 1 illustrates the overall work flow of our 

proposed network. SPP modules are introduced into the 

feature extraction network, and there are three scales in 

the detection network with ASFF modules integrated. 

 Image

 

Feature Extraction 

Network with SPP 

modules

 Detection Network 

with ASFF modules

 Predicts

 

Figure 1. Work flow of SPP&ASFF-Yolov3. 

The network structure of Yolov3 can be roughly 

divided into two parts: a bottom-up feature extraction 

network (the part surrounded by yellow dotted line in 

Figure 2) and a top-down multi-scale detection network 

(the part surrounded by purple dotted line in Figure 2). 

The feature extraction network with depth of 75 layers 

consists of a DBL module and five residual blocks: res1, 

res2, res8, res8, res4. DBL is the most basic part of 

Yolov3, including convolution layer, Batch 

Normalization (BN) operation and Leaky ReLU 

activation function. 
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Figure 2. Network structure of SPP&ASFF-Yolov3. 

The feature extraction network can be divided into 

three stages: the first stage is the gray DBL module and 

the following three residual modules, the second stage 

is the yellow res8 module and the third stage is the 

orange res4 module. The feature maps generated in the 

three stages are C1, B1, and A1. The feature map 

generated in each stage not only propagates upward to 

continue to extract higher-level features, but also 

propagates directly to the corresponding scale of the 

detection network. From the dimensions of feature map 

C1, B1, and A1 shown in Figure 2, we can see that 

Yolov3 network is a network with pyramid structure. 

The original Yolov3 network did not contain the dotted 

line in Figure, three white DBL rectangles, SPP and 

ASFF modules in Figure 2. 

3. SPP&ASFF-Yolov3 

3.1. SPP Modules In Yolov3 Network 

Due to the small proportion of traffic signs in the scene, 

the traffic signs related features extracted by the feature 

extraction algorithm are the detailed features of the 

scene. Only when the detail features are combined with 

the context reflecting the overall scene of the image, can 

they have better feature expression ability and play a 

better role.  

Spatial pyramid pooling network was proposed by 

He et al. [6] in 2015. In the previous convolutional 

neural network, the size of the input image is fixed, so 

it is necessary to cut or stretch the input image. The SPP 

was originally designed to solve the impact of clipping 

and stretching image on feature extraction. The SPP can 

make convolutional neural network accept any size of 

input image. 

If the input image is replaced by feature map, Spatial 

Pyramid Pooling (SPP) can complete the task of fusing 

different scale features. 

We introduce SPP module into the feature extraction 

network of Yolov3, and name it as spatial pyramid 

potential Yolov3 (SPP-Yolov3). The positions of the 

three SPP modules in Yolov3 network are shown in the 

three pink rectangles in Figure 2. In Figure 2, the input 

passes through a DBL module (i.e., the module for 

conv2d+BN+leaky operation) and three residual 

modules (res1, res2, and res8 shown in the gray filling 

block in the figure) and then outputs the feature map L1. 

The L1 enters the SPP-1 module, and the output feature 

map of the SPP-1 network module is E1. The number of 

channels of the feature map E1 is adjusted by a DBL 

module, and the adjusted feature map is C1. The trend 

of the C1 is divided into upward and right branches. In 

the right branch, feature graph C1 is fused with top-

down high-level semantic feature M1 and output feature 

map F1. After the feature map F1 passes through the 

DBL5 module, the DBL5 module outputs the 

feature map C2, and then the feature map C2 is input 

into the branch of predict 3 in the multi-scale detection 

network for the minimum scale traffic sign detection.  

Table 1. detailed parameters of three SPP modules. 

 Dimensions of K. 

M, N and input L 

The size of convolution kernel 

kk mm nn 

SPP-1 5252256 4343 4747 5151 

SPP-2 2626512 1717 2121 2525 

SPP-3 13131024 55 99 1313 

In the upward branch, C1 passes through the res8 

(yellow filling block), and then res8 outputs the feature 

map L2. L2 enters SPP-2 module. The output feature 
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map of SPP-2 module is E2. DBL module adjusts the 

channel number of E2, and the adjusted feature map is 

B1. The trend of B1 is also divided into two branches: 

up and right.  

maxpool k×k,

stride=1

maxpool m×m,

stride=1

maxpool n×n,

stride=1

concatenate

SPP module

L

K M N

E

res n

DBL

L

 

Figure 3. Network structure of SPP module. 

In the right branch, B1 is fused with the top-down 

high-level semantic feature M2, and the fused feature 

map is F2. F2 passes through DBL5 module, and the 

output of DBL5 module is B2. B2 is input into 

predict2 branch of multi-scale detection network to 

detect medium-scale traffic signs. In the upward branch, 

B1 passes through the residual module res4 (orange 

filling block), and the output of res4 is the feature map 

L3. L3 enters SPP-3 module, and the output of SPP-3 

module is E3. DBL module adjusts the channel number 

of E3, and the adjusted characteristic diagram is A1. A1 

passes through DBL5 module, and the output of 

DBL5 module is feature map A2. Then A2 is input 

into predict1 branch of multi-scale detection network 

for large-scale traffic sign detection.  

The structures of SPP-1, SPP-2 and SPP-3 are shown 

in Figure 3. It can be seen from Figure 3 that before the 

SPP module is the residual module, and after the SPP 

module is the DBL module. In Figure 3, the input of SPP 

module is L. The SPP module uses three scale 

convolution kernels to perform the maximum pooling 

operation with stride of 1 and padding and obtains K. M 

and N with the same size as the input L. The K. M and 

N correspond to the detail features and overall features 

of different scales in the detection scene respectively. 

Finally, K. M, N, and L are concatenate in SPP module 

and get the final output E. The detailed parameters of 

SPP-1, SPP-2 and SPP-3 are shown in Table 1. 

3.2. ASFF Modules in Yolov3 Network 

Figure 4 is a schematic diagram of the impact of multi-

scale targets on the detection network. The blue 

parallelogram in the lower half of Figure 4 represents 

the scene to be detected. The upper part of Figure 4 is a 

multi-scale detection network with a pyramid structure. 

There are two targets A and B in the scene. The size of 

target A is larger than that of target B. Suppose that level 

1 of detection network is responsible for detecting target 

A, and level 3 of detection network is responsible for 

detecting target B. The location of target A is a positive 

sample for level 1, but it may be a negative sample for 

levels 2 and 3. Therefore, in the process of back 

propagation, the gradient information about the location 

of target A may be both positive and negative samples. 

The inconsistency of gradient information at the same 

location in the scene on different scale networks will 

interfere with gradient calculation.  

Liu et al. [10] proposed an Adaptively Spatial 

Feature Fusion algorithm. The ASFF solves the 

interference of multi-scale targets on gradient 

calculation by making the network corresponding to 

each level learn how to filter out the conflict information 

of other levels in space adaptively. The ASFF module 

can eliminate the interference information generated by 

negative samples in the process of gradient back 

propagation. 

As shown in the three green squares in Figure 2, three 

ASFF modules are added to the three scale detection 

networks, namely ASFF-1, ASFF-2 and ASFF-3. ASFF-

3 module is at the third level of detection network. In 

Formula 1, the ASFF-3 module adjusts the feature map 

of the other two scales to the same scale as the feature 

map of the third level, and splices them with the feature 

map of the third level. The dotted line in Figure 2 

indicates that the ASFF module of each level accepts 

feature map from other levels. 

3333323313ASFF    XXX  

In Equation (1), X1, X2 and X3 represent the feature map 

from level 1, level 2 and level 3 respectively. X1→3 

means to adjust the size of the feature map of level 1 to 

be the same as level 3, X2→3 meansto adjust the size of 

the feature map of level 2 to be the same as level 3, and 

X3→3 means to adjust the size of the feature map of level 

3 to be the same as level 3, that is, the size of the feature 

map of level 3 remains unchanged. In the process of 

feature fusion, first multiply the adjusted features by 

their corresponding weight parameters α3, β3, and γ3 and 

then add the multiplied results to obtain new fusion 

features. The new fusion features are the output feature 

map of ASFF-3 network module. Weight parameter α3, 

β3 and γ3 are parameters that can be learned through back 

propagation. 
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Figure 4. Impact of multi-scale target on detection network. 

4. Experiment 

There are two most popular traffic sign databases: 

German Traffic Sign Detection Benchmark (GTSDB) 

and Tsinghua-Tencent 100K (TT100K) traffic sign 

detection database. The TT100K database contains 

natural weather factors (such as fog, cloudy and rainy 

weather conditions), partial occlusion and significant 

changes in illumination and perspective. These 

characteristics make TT100K closer to the real scene 

than GTSDB. TT100K traffic sign data set is divided 

into training set and test set. The training set contains 

6105 images and the test set contains 3065 images. The 

dataset is divided into three categories, named 

indicative, prohibitive and warning. In TT100K traffic 

sign data set, the resolution of the image is 2048×2048. 

Implementation Details: SPP&ASFF-Yolov3 is trained 

using the Stochastic Gradient Descent (SGD) optimizer, 

with batch size of 32 and learning rate 0.0001 for 300 

epochs. The operating system version used in this paper 

is Ubuntu 18.04.6, CUDA 10.1, and the model of GPU 

is NVIDIA Tesla T4×4. 

4.1. Traffic Sign Detection on TT100K Datasets 

In this experiment, the performance of SPP and ASFF-

Yolov3 is evaluated by Average Precision (AP) and 

mean Average Precision (mAP). AP is the average 

precision value of each category, which can be 

calculated by 2. The mAP is the average of the average 

precision values of all categories, which can be 

calculated by 3. 
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Where TP is true positives, FP is false positives, and R 

is recall. ASFF&SPP-YOLOv3, SPP-YOLOv3, original 

YOLOv3, traffic sign detection network based on Faster 

R-CNN and traffic sign detection network based on 

RetinaNet on TT100K dataset. 

From the results in Table 2, we can draw the 

following conclusions: 

Table 2. Performance of different detection algorithms on TT100K 
dataset. 

Method indicative prohibitory warning mAP 

Faster R-CNN 64.8 66.8 60.4 64.0 

RetinaNet 63.3 64.7 67.5 65.2 

YOLOv3 77.3 68.0 77.4 74.2 

SPP-YOLOv3 78.9 68.9 78.6 75.5 

Cascaded network 80.2 69.2 79.9 76.4 

ASFF&SPP-YOLOv3 79.8 69.9 80.1 76.6 

1. The proposed ASFF and SPP-YOLOv3 achieves the 

highest AP value and the highest mAP value in three 

traffic sign categories of TT100K dataset, which 

shows the effectiveness of the proposed method. 

2. The AP value of SPP-YOLOv3 in three traffic sign 

categories of TT100K is about 1% higher than that of 

YOLOv3. The mAP value of SPP-YOLOv3 is 1.3% 

higher than that of YOLOv3. This shows the 

effectiveness of SPP module in the network. The AP 

and mAP values of ASFF and SPP-YOLOv3 are 

similar to those of Cascade network. 

3. The AP value and mAP value of the network with 

ASFF module (ASFF and SPP-YOLOv3) are higher 

than SPP-YOLOv3. This shows the effectiveness of 

ASFF module in the network. 

4.2. Inference Time 

As shown in Table 3, YOLOv3 has the fastest reasoning 

speed. Due to the addition of SPP and ASFF modules, 

the number of parameters in the network increases and 

the inference speed decreases. However, the inference 

speed of the proposed ASFF and SPP-YOLOv3 can 

reach 30 FPS, which still meets the real-time 

requirements. Although the mAP value of cascaded 

network is similar to our ASFF and SPP-YOLOv3, its 

inference speed is slower than our network in the table. 
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Table 3. Number of parameters and inference time of different 
detection algorithms. 

Method parameter FPS 

Faster R-CNN — 7.4 

RetinaNet — 22.1 

YOLOv3 61534432 50.8 

SPP-YOLOv3 63896288 32.3 

Cascaded network 84987968 28 

ASFF&SPP-YOLOv3 72473592 30 

4.3. Pictures of traffic sign detection results 

Detection results of ASFF and SPP-YOLOv3 are shown 

in Figure 5. As shown in Figure 5, the traffic signs in the 

scene account for a small proportion of the whole scene. 

The two traffic signs in Figure 5-a) are of the same size, 

but the traffic signs Figure 5-c) are of different sizes. 

The traffic signs in Figure 5-b) are disturbed by 

deformation and uneven illumination. Although there 

are many challenges for the successful detection of 

traffic signs in the scene shown in Figure 5, the proposed 

ASFF and SPP-YOLOv3 algorithm accurately detects 

all traffic signs in the scene. 

   
a) Traffic signs of the same size. b) Deformation and uneven 

illumination. 

       
c) Traffic signs of different sizes. 

Figure 5. Detection results of ASFF&SPP-YOLOv3 on TT100K 

dataset. 

5. Conclusions 

This paper presents the Spatial Pyramid Pooling and 

Adaptively Spatial Feature Fusion based Yolov3 (SPP 

and ASFF-Yolov3) network and applies it to traffic sign 

detection. We conducted experiments on TT100K 

dataset and compared the proposed SPP&ASFF-Yolov3 

with the state of the art methods, which shows the 

proposed network can archive better mAP than Faster 

R-CNN, RetinaNet and the original YOLOv3 network, 

with 12.6%, 11.4% and 2.4 increase respectively. 

Despite the decrease of inference speed compared to 

YOLOv3 network, the inference speed is still 

reasonable and much faster than candidate region-based 

methods (1.5-3 times faster), and our proposed network 

can meet the real-time performance of traffic sign 

detection. 
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