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Abstract: Various studies use numerous probabilistic methods to establish a cause-effect relationship between a drug and a disease. However, 

only a limited number of machine learning studies on establishing cause-effect relationships can be found on the internet. In this study, we 

explore machine learning approaches for interpreting large quantities of multivariate patient-based laboratory data for establishing cause-effect 

relationships for critically ill patients. We adopt principal component analysis as a primary method to capture daily patient changes after a 

medical intervention so that the causal relationship between the medical treatments and the outcomes can be established. Model validity and 

stability are evaluated using bootstrap testing. The model exhibits an acceptable significance level with a two-tailed test. Moreover, results show 

that the approach provides promising results in interpreting large quantities of patient data and establishing cause-effect relationships for 

making informed decisions for critically ill patients. If fused with other machine learning and probabilistic models, the proposed approach can 

provide the healthcare industry with an added tool for daily routine clinical practices. Furthermore, the approach will be able to support clinical 

decision-making and enable effective patient-tailored care for better health outcomes. 
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1. Introduction  

Researches show that Randomized Controlled Trials 

(RCT) have long been accepted as the gold standard 

for medical research in establishing causal 

relationships. This process simply amasses a large 

number of subjects and randomly divides them into 

two groups, one exposed to the treatment under the 

study and the other one used as a control group. This 

process is performed repeatedly to prove exposing the 

patients to a certain treatment result in a better or 

alternate outcome. However, as Ketchersid [7] in his 

work, big data in nephrology: friend or foe? points out, 

there is an abundant number of demerits to this 

approach; the process is expensive, takes a long time to 

complete, and frequent exclusion of patients with some 

attributes, which in turn makes it difficult to generalize 

the results of the study. Moreover, the study also 

reveals that there is a strong urge for personalized 

healthcare these days, rather than applying clinical 

guidelines to every unique patient. In addition to the 

aforementioned drawbacks, the study [1] mentions that 

the randomization process makes patients and 

physicians uncomfortable. And this is where the 

possibility of using big data analytics and machine 

learning models becomes vital. The healthcare industry 

is starting to adopt machine learning and data analysis  

 
tools to push the boundaries. This effort primarily 

involves data analysis using a vast amount of 

healthcare data such as x-ray results, vaccinations, 

blood samples, vital signs, DNA sequences, current 

medications, past medical history, and much more. 

Artificial Intelligence (AI) and Machine Learning 

(ML) tools are expected to help in this regard and 

enhance healthcare quality and are believed to add 

further value to the healthcare industry. Furthermore, 

more researchers agree that machine learning is 

making healthcare smarter. 

Numerous challenges remain in the advancement 

and improvement of machine learning tools in 

healthcare. Moreover, little or no observational study 

has been conducted to design ML tools to establish 

causal inferences from clinical laboratory data. The 

study by Stern and Price [14], states that this is due to 

the generalizability of ML model results remain 

questionable mainly in situations where ML fails to 

demonstrate causality due to the nature of the 

algorithms, and discover predictive patterns rather than 

causal relationships. Moreover, an ML model 

developed in one hospital setting might not be 

appropriate in different hospital settings unless causal 

inference tools were used in the development. The 

study [13] points out that multiple disciplines have 
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benefitted from the advancement of machine learning, 

however, the application of these tools has not been 

widespread in some areas such as causal inference. 

This is because sample sizes in RCT pose major 

limitations. However, if proper control of confounding 

and other matters is handled, observational data may 

reveal hidden insights. Moreover, the study also 

advocates using the mixture of both RCT and 

observational data for establishing causal inference.  

Causality plays an important role in monitoring 

adverse drug events as well as risk factors for diseases 

with the help of Electronic Medical Records (EMR). A 

review study by Kleinberg and Hripcsak [8], presents 

graphical models and Granger causality as convenient 

frameworks for causal inference. The study also points 

out that more recent approaches such as temporal logic 

methods address some of the limitations of the above 

models. Also, the study denotes that we cannot fully 

automate causal inference from observational data 

without human involvement in the process. Numerous 

factors affect the cure or improvement of disease [11]. 

This is why multiple experiments need to be conducted 

to make meaningful statements regarding cause-effect 

relationships. Little or no exhaustive study has been 

conducted using ML models for causal inference. For 

instance, the study [9] extends Optimal Discriminant 

Analysis (ODA) for causal inference by framing the 

treatment-outcome relationship as a classification 

problem. The study concludes that ODA offers several 

benefits. Furthermore, the work [12] presents a patient-

level ML method for causal inference for decision 

support for critically ill patients. Advances in data 

technology open new opportunities for more targeted 

queries regarding patient treatment for better patient-

centered outcomes. In this paper, we explore the use of 

Principal Component Analysis (PCA) as a principal 

method for establishing causal relationships from 

longitudinal clinical laboratory data in Intensive Care 

Unit (ICU) settings. PCA is applied to capture daily 

changes from medical laboratory data and present 

results along with daily prescriptions so that cause-

effect relationships can be established by healthcare 

practitioners.  

2. Materials and Methods 

The study used a subset of data extracted from the 

publicly available Medical Information Mart for 

Intensive Care III (MIMIC-III) dataset [5, 6]. Some 

studies conducted using the same database include [2, 

4, 12, 15]. The top ten frequent diseases diagnosed in 

the hospital are selected for the study. Table 1 presents 

the selected diagnoses for the study. A total of 50 

patients diagnosed with these diseases were selected 

for analysis proportionally. For instance, 9 and 8 

patients diagnosed with sepsis and pneumonia 

respectively, are selected. Besides, their corresponding 

laboratory test results and available medical treatment 

data such as the prescriptions provided are extracted 

from the original database. We hypothesize that PCA 

can be able to capture the changes after medical 

intervention and a cause-effect relationship can be 

established between the interventions and their 

outcomes by healthcare practitioners. For this 

particular study Principal Components (PCs) that 

explain 99% of the variance in the data are retained. 

The dataset contains laboratory tests conducted over 

a specified period. Numerous laboratory tests were 

conducted during the ICU stay, and in some cases, a 

test is conducted multiple times per day as presented in 

Table 2. Laboratory test dates are de-identified (from 

the source) according to the Health Insurance Privacy 

and Accountability Act (HIPAA) privacy rule i.e., 

9/9/2120 for instance is not an error. It indicates a de-

identified date according to the HIPAA rule not to 

disclose the actual patient laboratory test dates. 

However, date sequences are properly maintained. At 

the end of their hospital stay, the subjects were 

discharged from the hospital alive or dead to home or 

another healthcare unit. 
 

Table 1. Results of the subject selection process. 

Diagnosis Count 
Total Percentage 

(X) 

Selected (X% of 

50) 

Sepsis 63 19 9 

Pneumonia 55 16 8 

Gastrointestinal Bleed 50 15 7 

Fever 39 12 6 

Congestive Heart 

Failure 

26 8 4 

Respiratory Failure 26 8 4 

Coronary Artery 

Disease 

25 7 4 

Abdominal Pain 21 6 3 

Chest Pain 16 5 2 

Pancreatitis 15 4 2 

Total 336 100 50 

Non-numeric and variables with a single measured 

value (no variance) were excluded first. Scikit-Learn 

most_frequent strategy is employed for imputing 

missing values. The strategy replaces the missing 

values with the most frequent (mode) value of each 

variable. This process is applied to each selected 

patient separately. Then the data is standardized for 

analysis. This is followed by grouping daily laboratory 

tests as per the day they are collected and fed to the 

model for analysis. Finally, results were collected and 

model validity and stability are conducted using 

bootstrap testing.  

Fifty percent (50%) of the total data is sampled for 

every bootstrap iteration. For model evaluation Total 

Variance Accounted For (TVAF) is computed as a 

statistic of interest. TVAF is equal to the sum of the 

Eigenvalues of the first n principal components. In our 

case n represents the number of principal components 

that make up 99% of the total variance in the data. This 

is followed by r number of iterations (r=1000) and 

statistical estimates (estimated TVAF) for each 
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iteration are computed. The statistical significance 

between the observed TVAF and the estimated TVAF 

is determined by comparing the p-value to a 

significance level. A significance level of α=0.05 is 

adopted as a rejection rule for this study. The 

alternative hypothesis that there is a statistical 

difference between the observed explained variance vs 

the estimated explained variance is tested against the 

null hypothesis that there is not a statistical difference 

between the observed explained variance and the 

estimated explained variance. A p-value is consulted to 

either accept or reject the null hypothesis. Since we 

used a two-tailed test the significance level α=0.05 will 

be split in half and put on both sides of the distribution 

and we are looking for a p-value of 0.025. 

Table 2. Sample dataset content. 

Date A-aO2 
Calc. Total 

CO2 

Required 

O2 
Temperature pCO2 pH pO2 

8/12/2166 

23:45 

540 26 88 38.8 47 7.34 137 

8/13/2166 8:47  23  37.5 39 7.37 71 

8/13/2166 

17:19 

590 26 96 38.3 57 7.25 75 

8/13/2166 
22:00 

599 24 97 39.2 40 7.36 83 

8/14/2166 0:19 537 25 88 39.2 40 7.38 72 

8/14/2166 2:52 526 24 87 37.8 39 7.38 84 

8/14/2166 4:01 472 23 79 37.4 37 7.38 68 

8/15/2166 0:45 466 23 78 38.1 40 7.35 74 

3. Results 

A detailed retrospective analysis of the selected ICU 

patients is conducted. The selected target patients were 

diagnosed with different diseases as indicated in Table 

1 and at the end of their stay, the subjects were 

discharged alive or dead. In the PCA analysis, 

principal components that make up to 99% of the 

overall variance in the data are retained in each 

analysis. For example, analysis results for a sample 

patient (diagnosed with coronary artery disease) shows 

the first eight PCs for the first day (9/9/2120-Figure 1-

(a)) and the first seven PCs for the second day 

(10/9/2120-Figure 1-(b)) and the first five PCs for the 

third day (11/9/2120-Figure 1-(c)) that amount 99% of 

the variances explained in the data as depicted in 

Figure 1. Moreover, in most cases, the first principal 

components contain most of the variance. For instance, 

the first PC amounts to approximately 80% of the 

variance in the data on both day two and day three. 

Besides, the results of a visualization and analysis 

environment to understand patient progression over 

time are presented in Figure 2. Through the use of two-

dimensional plots, we allow users to explore how 

patients and their progression change over time (daily). 

Compared to existing techniques, our work provides 

additional flexibility in analyzing patient data and has 

the potential to be used in a real-time hospital setting.  

Figure 2 shows the daily changes after a certain 

medical intervention. To interpret each principal 

component, we can examine the magnitude and 

direction of the coefficients for the original variables. 

Moreover, Table 4 presents the daily medical 

prescriptions given to the patient on the specified 

dates. This will allow the user to be able to establish 

cause-effect relationships. 

In these results, on the first day (9/9/2120) (Figure 

2-(a)), the first principal component has large positive 

associations with Lactate whereas the second principal 

component has large positive associations with Oxygen 

saturation. Also, we see that there is a change on the 

next day (10/9/2120) (Figure 2-(b)) in which the first 

principal component has large positive associations 

with Atypical Lymphocytes, Lymphocytes, and  

 

Neutrophils whereas the second principal 

component has large positive associations with 

Lactate. Moreover, on the third day (11/9/2120) 

(Figure 2-(c)) also shows there are changes. The first 

principal component has large positive associations 

with fibrinogen functional whereas the second 

principal component has large positive associations 

with calculated total CO2 and large negative 

associations with Oxygen saturation. The loading plot 

visually shows the results for the first two principal 

components. 

We can observe that there are changes in magnitude 

and direction both on the second and third days of the 

ICU stay. Similarly, some laboratory tests such as 

Alkaline Phosphatase (ALP), Amylase, and Bands 

have a magnitude/contribution of zero throughout all 

the PCs, which indicates that they are insignificant on 

those dates, with no contribution/changes at all. 

Additional tabular information that describes the labels 

and associated values for Figure 2 is presented under 

Table 3.  

At this point, it is worth mentioning that, the patient 

has been given medical prescriptions on the specified 

dates (see Table 4). This may mean that the condition 

of the patient is either improving or worsening. Or it 

may also show if a medical treatment is working or 

not. Based upon this, a trained physician can be able to 

easily infer the implication and make a causal 

inference. The plots show the comparison and 

progression of successive daily-based contributions 

(negative or positive) of the laboratory tests under 

different PCs for a patient i.e., daily changes. They 

depict what changes happened on a specific day based 

on a treatment applied on the previous day. This can be 

used to decide on further steps that need to be carried 

out. 
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a) Day 1 results. 

  

b) Day 2 results. 

 
c) Day 3 results. 

Figure 1. Principal Component Scree Plot ((a) Day 1 results, (b) Day 2 results and (c) Day 3 results). 
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c) Day 3 results. 

Figure 2. Magnitude and direction of the original variables ((a) Day 1 results, (b) Day 2 results and (c) Day 3 results). 

 

 

 

a) Day 1 results. 

 

b) Day 2 results. 
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Table 3. Three-day principal component analysis results. 

  

9/9/2120 10/9/2120 11/9/2120 

PC1 PC2 PC1 PC2 PC1 PC2 

Anion Gap 0.01 -0.07 0.00 -0.09 0.03 -0.01 

Atypical 

Lymphocytes 0.00 0.00 0.71 0.12 0.00 0.00 

Base Excess 0.03 0.03 0.01 -0.15 0.03 0.21 

Bicarbonate 0.02 -0.12 -0.08 0.11 -0.11 0.02 

Calcium, Total 0.00 0.00 -0.08 0.05 0.00 0.00 

Calculated Total 

CO2 0.07 0.07 0.04 -0.44 0.09 0.57 

Chloride -0.02 0.14 0.02 -0.02 0.01 0.00 

Creatinine 0.00 0.00 0.03 -0.06 0.07 -0.01 

Eosinophils 0.00 0.00 0.07 0.01 0.00 0.00 

Fibrinogen, 

Functional 0.00 0.00 0.00 0.00 0.86 -0.13 

Free Calcium 0.01 0.01 0.00 -0.02 -0.01 0.06 

Glucose 0.00 0.12 0.02 -0.11 0.03 0.15 

Hematocrit 0.04 -0.23 0.03 0.01 0.02 0.09 

Hemoglobin 0.06 -0.29 0.02 0.01 0.00 0.05 

INR(PT) 0.00 0.00 0.00 0.00 0.19 -0.03 

Lactate 0.98 0.02 -0.06 0.78 0.00 0.00 

Lymphocytes 0.00 0.00 0.57 0.10 0.00 0.00 

MCH 0.03 -0.18 -0.06 0.00 -0.11 -0.16 

MCHC 0.00 0.02 0.06 -0.02 0.04 0.01 

MCV -0.02 0.16 0.00 -0.03 0.00 0.04 

Magnesium 0.00 0.00 0.14 -0.17 0.13 -0.02 

Neutrophils 0.00 0.00 0.23 0.04 0.00 0.00 

Oxygen 

Saturation 0.15 0.53 0.03 0.19 0.04 -0.49 

PT 0.00 0.00 0.00 0.00 0.18 -0.03 

PTT 0.00 0.00 0.00 0.00 0.03 -0.01 

Phosphate 0.00 0.00 0.11 -0.14 0.15 -0.02 

Platelet Count -0.06 0.40 0.07 -0.04 0.10 0.16 

Potassium -0.01 0.09 0.01 -0.01 0.00 0.00 

Potassium, 

Whole Blood -0.05 0.00 0.01 0.02 -0.01 0.41 

RDW 0.06 -0.42 -0.10 0.06 -0.13 -0.11 

Red Blood Cells 0.01 -0.08 0.09 -0.02 0.11 0.18 

Sodium 0.04 -0.28 -0.13 0.13 -0.20 0.03 

Urea Nitrogen 0.02 -0.11 -0.03 0.02 -0.03 0.00 

White Blood 

Cells -0.04 0.16 0.06 -0.05 0.14 0.16 

pCO2 -0.01 0.00 0.01 -0.06 0.02 0.16 

pH -0.01 0.00 0.00 0.01 0.00 -0.03 

pO2 0.02 0.01 0.01 -0.03 -0.02 -0.13 
 

It can be seen from Table 4 that similar medicines 

have been used on different dates. The usage of some 

of the medicines listed also extends beyond the dates 

presented as a reference in the plots. The drugs were 

used as a base or main drug type as indicated in the 

table. Finally, the dimensionality suggested by the 

scree plots (Figure 1) of the analysis is variant 

depending on the number of variables and samples in 

the dataset, corresponding to 99% of the explained 

variance in the data. Furthermore, bootstrapped p-

values are reported as a measure of statistical 

significance. Since we used a two-tailed test, if our p-

value is less than or equal to our anticipated 

significance level, our Null hypothesis will be rejected. 

The logic is that the p-value is the likelihood of us 

getting a random result outside of our 95% confidence 

interval. If the p-value is smaller than our alpha, which 

means it is unlikely that the result outside of our 95% 

was random, meaning that it was significant and 

shouldn’t be ignored as an error. Whereas if the p-

value is higher than our alpha, it means it is likely that 

the result outside of our 95% interval is random, so we 

shouldn’t freak out and will fail to reject our null 

hypothesis. In this study since our mean p-value is 0.27 

that means we are going to accept the null hypothesis 

and conclude that there is no statistical difference 

between the observed explained variance vs the 

estimated explained variance. This posits the stability 

and validity of the proposed model.  

4. Discussion 

Many factors must be considered when interpreting the 

results of any clinical laboratory test. Healthcare 

practitioners use normal reference ranges as guidelines 

for what is normal or abnormal. However, we believe 

that even if minor changes in successive measurements 

of patient vital signs are within normal reference 

ranges, fused with other vital signs, they may provide 

significant information for critically ill patients. The 

study presented a novel non-disease-specific model 

that can observe daily clinical changes and provide 

non-disease-specific analysis of patient progress over 

time. Moreover, by providing the daily prescriptions 

along with the analysis results a professional can be 

able to establish cause-effect relationships. Given these 

facts, the results can be used to decide what treatment 

or therapy to prescribe or which diagnosis to perform 

further. From the results, the ranked direction of 

changes (principal components) along with the 

contribution of each original variable can be observed. 

Fusing and presenting this with the daily prescriptions 

the patient has been given, a healthcare professional 

can be able to establish causal inference. In addition, 

using this information, a professional can be able to 

decide which laboratory test to perform further and/or 

exclude. It can also help decide which prescriptions to 

avoid or prescribe additional medicines. Moreover, 

each principal component is a linear combination of 

the original individual variables. With a closer look at 

this, a physician can be able to understand the 

combined effects of the original variables to make 

medical inferences. 
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Table 4. Associated daily medical prescriptions. 

9/9/2120 - 18/10/2120 10/9/2120 - 18/9/2120 11/9/2120 - 14/9/2120 

Drug 

Drug 

Type Drug 

Drug 

Type Drug Drug Type 

5% Dextrose BASE 5% Dextrose BASE Amiodarone MAIN 

Albumin 5% MAIN Amiodarone MAIN Furosemide MAIN 

Albuterol 0.083% Neb Soln MAIN D5W BASE 5% Dextrose (EXCEL BAG) BASE 

Albuterol Inhaler MAIN Furosemide MAIN Norepinephrine MAIN 

Amiodarone MAIN Haloperidol MAIN 0.9% Sodium Chloride BASE 

Ciprofloxacin IV MAIN Ipratropium Bromide Neb MAIN     

D5W BASE Milrinone MAIN     

Fluticasone Propionate 110mcg MAIN Norepinephrine MAIN     

Furosemide MAIN Vasopressin MAIN     

Heparin MAIN Xopenex MAIN     

Hydrocortisone Na Succ. MAIN   

 

    

Ipratropium Bromide Neb MAIN   

 

    

Magnesium Sulfate MAIN   

 

    

Milrinone MAIN   

 

    

Oxycodone-Acetaminophen MAIN   

 

    

Racepinephrine MAIN   

 

    

SW BASE   

 

    

Vasopressin MAIN   

 

    

Xopenex Neb MAIN   

 

    

 

The effectiveness of a treatment and the 

improvement or cure of a disease can be influenced by 

multiple factors. The observation in a single patient 

may suggest the likelihood of a new property of a drug, 

or a contrary effect on the patient. This may not insure 

it happened due to causality; however, it can help rule 

out the possibility of coincidence between the clinical 

interventions and the outcomes. It is through causality 

we can be able to infer the behavior of a medical 

treatment. Hence the vitality of causality in medicine. 

In this study causal inference refers to the process of 

uncovering causal relationships from medical 

treatment data. This does not mean that we remove the 

need for human judgment, but rather help healthcare 

professionals validate the results and make informed 

decisions. It is worth mentioning that no matter how 

detailed or clean the data is, machine learning models 

cannot eliminate unmeasured or unprecedented factors 

coincident with a particular intervention that may 

explain an apparent outcome change. Given all the 

daily vital sign measurements for ICU patients, a 

medical professional has to make the most out of it for 

saving the patient. It is because of these facts; we 

propose a tool to assist the users in daily clinical 

routine practices. Results showed that the approach if 

fused with other machine learning models, it presents a 

bright future for real-time patient monitoring in ICU 

settings. It can also help anticipate and avoid life-

threatening conditions from happening proactively. 

In any statistical model, where PCA is not an 

exception, model validation is imperative to generalize 

the results of a proposed model. Studies [10] advocate 

nonparametric methods such as permutation and 

bootstrap tests as theoretically better matches for the 

nonparametric nature of PCA. By applying these 

nonparametric methods different matrices can be 

generated by permutation or resampling of the data, 

and their Eigenvalues and Eigenvectors will no longer 

be the same. Given these facts, the study applied 

bootstrap testing for model validation. In experimental 

studies with treatment and control groups, results may 

be analyzed by simply regressing the outcome on a 

treatment group indicator variable to estimate 

treatment effects [9]. However, this is impossible to 

achieve in observational studies. Our results 

demonstrate that the proposed method can be 

combined with other strategies to improve causal 

inference for critically ill patients. However, it is worth 

mentioning that we did not address the issue of 

whether the change happened due to the introduction 

of treatment or by chance. Besides, it is worth stating 

that, the medical protocols used and input events 

recommended to the patients during the ICU stay were 

not considered in this study. The proposed approach 

may help physicians feel confident about their 

decisions. However, we would like to emphasize that 

any tool developed out of this approach is not meant to 

replace or undermine the skills and instincts of medical 

practitioners. It is only meant to provide an alternative 

or a second eye for the users in presenting hidden 

insights. When fully realized, machine learning models 

could analyze longitudinal electronic health records to 

provide a second eye to the healthcare professionals. 

Principal component analysis is an interesting 

approach for patient monitoring because it holds 

several advantages in observational and exploratory 

studies. These advantages include it being easy to 

compute. It speeds up other machine-learning 

algorithms. It can also counteract the issues of high-

dimensional data. In addition, PCA improves the 

performance of the ML algorithm as it eliminates 

correlated variables that don't contribute to any 
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decision-making. PCA results in high variance and 

thus improves visualization. 

5. Conclusions  

Machine Learning (ML) technology is a technique for 

data analysis utilized in the medical field for disease 

diagnosis, therapy, and treatment [3]. Machine learning 

models can detect hidden patterns and relationships in 

certain diseases from electronic health records. In this 

aspect, these models can be regarded as the second pair 

of eyes in monitoring patient health. Moreover, they 

can also be able to help healthcare professionals make 

informed, timely, lifesaving, and effective decisions. 

They can also help save and avoid unnecessary 

wastage of both monetary and material resources. 

Also, the decision-making process in clinical medicine 

can be supported and facilitated with the appropriate 

selection and application of relevant machine learning 

models. This study showed that PCA can be used as 

part of a tool for establishing cause-effect relationships 

from medical treatment data. Nevertheless, to assist 

researchers and stakeholders in the field, it will be of 

great paramount if the proposed method is fused with 

other machine learning frameworks and models for a 

better and full-fledged application. Furthermore, 

additional investigation will be conducted to fuse this 

approach with other probabilistic and machine-learning 

approaches to provide a better and more robust tool for 

medical practitioners. Finally, the study took a great 

deal of time to come up with the selected machine 

learning models for establishing cause-effect 

relationships from medical treatment data. However, 

we believe that there are areas that still need a great 

deal of work and improved upon and that we consider 

as future works. 
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