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Abstract: Fog computing is an emerging paradigm which extends the functionality of the cloud near to the end users. Its 

introduction helped in running different real-time applications where latency is a critical factor. This paradigm is motivated by 

the fast growth of Internet of Things (IoT) applications in different fields. By running Virtual Machines (VMs) on fog devices, 

different users will be able to offload their computational tasks to fog devices to get them done in a smooth, transparent, and 

faster manner. Nevertheless, the performance of real-time applications might suffer if no proper live virtual machine migration 

mechanism is adopted. Live VM migration aims to move the running VM from one physical fog node to another with minimal or 

zero downtime due to mobility issues. Many efforts have been made in this field to solve the challenges facing live VM migration 

in fog computing. However, there are remaining issues that require solutions and improvements. In this paper, the following 

presents the research outcomes: An extensive survey of existing literature on live VM migration mechanisms in fog computing. 

Also, a new novel classification approach for categorizing live VM migration mechanisms based on conventional and Artificial 

Intelligence (AI) approaches to address live VM migration challenges is presented. Moreover, an identification of research gaps 

and in the existing literature and highlighting the areas where further investigation is required is done and finally a conclusion 

with a discussion of potential future research directions is drawn. 
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1. Introduction 

Although there are many definitions in the literature for 

Internet of Things (IoT); it can be defined as an 

emerging technology to connect different physical 

things “objects” over the Internet [1]. It was first 

introduced when Kevin Ashton used the term for the 

first time in 1999 to talk about internet-based 

information service architecture [2]. According to 

Ahmed et al. [3], IoT is the integration of mobile 

networks, Internet, social networks, and things which 

are connected to provide different services and 

applications to users. IoT has given birth to many 

services and applications which have a huge impact on 

humans’ daily life. This includes smart cities, smart 

environment, smart farming, smart healthcare, smart 

grid, Augmented Reality (AR), etc. IoT has gained 

importance being successfully implemented in different 

fields and areas [4]. Some of these applications are time-

critical where the latency is required to be minimal as 

most of the interactions are expected to be done in real 

time [5]. 

Cloud computing supplied IoT applications with  

 
unlimited storage and processing capabilities. The cloud 

has also facilitated the interactions between the 

“things,” which made IoT and its applications a reality 

[6]. However, although cloud computing has been an 

effective way to fulfill the computational and storage 

requirements for IoT applications, it might not be 

suitable option for certain types of real-time 

applications to fulfill their latency requirements [7]. 

Latency-critical applications such as AR, VR, video 

surveillance, to name a few, cannot wait for the response 

to be sent back from faraway cloud data centers. These 

latency requirements are hard to achieve with existing 

cloud computing architectures. Moreover, the 

applications running on IoT produce a massive volume 

of data that needs to be transferred through the network 

and then processed. The amount of data generated from 

the ‘things’ is continuously growing [6]. Therefore, it 

would not be possible and not feasible to send all the 

data collected from IoT devices (cameras, sensors, 

smartphones, etc.,) to the cloud all the time. That would 

incur high costs in terms of bandwidth, storage, latency, 

and energy.  

There was a need to resolve these weaknesses of the 
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cloud computing and introduce a middle layer between 

the cloud and the “things” to meet the extreme latency 

requirements of the real-time applications [8] and hence, 

fog computing as a new paradigm has evolved [9]. Fog 

computing is an architecture that uses one or more near-

edge devices to carry out some amount of storage, 

communication, control, configuration, and 

management of the cloud [9]. It does not substitute the 

cloud but extends its functionality near to the edge users. 

Fog computing has been introduced to be an 

intermediate layer between the IoT devices and the 

cloud layer [10]. 

Considering different factors like the mobility of the 

users, QoS, service cost, and the capabilities of fog 

nodes, there is a need to be able to offload some tasks 

from one fog node to another to achieve higher 

flexibility and adaptability [11]. Researchers Bi et al. 

[12] have proposed to migrate fog-based Virtual 

Machines (VMs) for a variety of reasons such as load 

balancing, users' mobility, priorities, etc.  

VM migration normally refers to the hardware-level 

migration where the VM share the hardware resources 

and can run different Operating Systems (OSs) 

platforms. It applies two techniques: Cold migration and 

live migration [13]. In cold migration the source VM is 

frozen and suspended for some time, then it is 

transferred to the destination and finally resumed on the 

destination and removed from the source node [13]. 

Cold migration might result in a very long downtime, 

which goes against the main objective of migrating the 

application/service to support real-time application with 

minimal latency. On the other hand, live VM migration 

transfers the VM from one node to another with minimal 

disruption time [14]. It strives to provide the end user 

with the service without interruption during the 

migration process [15]. 

In this paper, the state of the art of live VM migration 

mechanisms in fog computing is critically evaluated and 

analyzed. The contributions of this paper are three-fold: 

 First, a comprehensive review and analysis of the 

existing live VM migration mechanisms is presented. 

 Second, light is shed on existing classifications of 

these mechanisms and propose a new one. 

 Finally, this paper presents the research gaps and 

highlights some directions for further research 

studies. 

The rest of this paper is organized as follows: Section 2 

provides some background information and 

preliminaries about fog computing and virtualization. 

Section 3, presenting a detailed literature review and 

analysis of the existing live VM migration proposals. In 

section 4, a classification of these tools and propose a 

new classification is discussed. Research challenges and 

directions are then outlined in section 5. The paper 

concludes with final remarks about migration in 

container-based systems in section 6. 

2. Preliminaries and Background  

2.1. Characteristics of Fog Computing 

 Multi-Protocol Support: Fog computing is designed 

in such a way to support many communication 

protocols. These include: Wi-Fi, ZigBee, Bluetooth, 

Advanced and Adaptive Network Technology 

(ANT), Z-wave, 6 Low-power Wireless Personal 

Area Network (6 LowPAN), Thread, Worldwide 

Interoperability for Microwave Access (WiMAX), 

Low-Power Wide Area Network (LPWAN), Cellular, 

Radio Frequency Identifier (RFID), Near Field 

Communication (NFC), HTTP, Extensible 

Messaging Presence Protocol (XMPP), Message 

Queuing Telemetry Transport (MQTT), Constrained 

Application Protocol (CoAP), Advanced Message 

Queuing Protocol (AMQP), IoTivity, Hyper-Cat, 

AllJoyn, etc., [9]. 

 Mobility and Geo-Graphical Distribution: Mobility 

is the main feature of fog computing [9]. IoT devices 

and fog devices can be mobile and therefore, fog 

systems should be able to handle and support this 

mobility [16]. Mobility is considered as the main 

characteristic of many smart city applications. 

Mobility in fog computing allows the fog devices to 

manage a large number of IoT devices across 

different geographical areas [9]. Further, the services 

and applications provided are distributed and can be 

deployed anywhere in the fog environment [17]. 

 Low-latency: One of the characteristics of fog 

computing which is considered the main driver 

behind introducing fog computing is latency-

awareness. It aims at offering the end users with 

guaranteed low-latency applications [18]. Factors 

including latency in fog computing include execution 

time, task offloading time, and transmission time. 

 Heterogeneity: Fog computing is designed in such a 

way to support a wide range of heterogonous devices 

[18]. In the IoT architecture, the bottom layer consists 

of various types of edge devices with different 

software and hardware architectures and 

specifications. It is heterogeneous even in terms of 

the fog nodes and the network infrastructure. This is 

because the fog layer might include high-end servers, 

routers, wireless access points, proxy servers, end-

devices like vehicles, mobile phones, base stations, 

etc. These devices are heterogeneous in terms of 

hardware and software architecture and capabilities. 

2.2. Applications and Use Cases of Fog 

Computing  

Fog computing was initially designed and introduced to 

support latency-sensitive applications. This includes 

smart cities applications, ITS, AR, healthcare, tele-

surveillance, smart grid, smart agriculture, smart waste 

management, smart water management, smart retail 

store, etc., [18, 19, 20, 21]. The following illustrates 
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some of these applications:  

 Smart City: the city in this context refers to the urban 

areas which require all things to be smart. To build 

and construct a smart city, it is needed to ensure real-

time responses, latency-aware applications and 

location-aware services [19]. Fog plays a major role 

in supporting these various types of applications of 

smart cities including noise pollution reduction, 

urban drainage networks, smart buildings, etc., [20]. 

 Intelligent Transportation System (ITS): ITS is one 

of the main components of smart cities. ITS systems 

generate a huge amount of data which make it 

difficult to be transferred to the cloud [19]. Further, 

ITS applications such as smart vehicles are time-

critical and require fast response to ensure safety. 

This could be done by integrating the ITS with Fog 

computing [19]. As known, driving vehicles in cities 

require immediate decision and response to different 

cases and events. For example: an immediate 

decision is required in case of slowing speed down, 

sudden traffic, lane change, route change, blocked 

routes, etc., [20]. 

 Healthcare System: fog Computing is applied in 

healthcare for monitoring, detection, diagnosis and 

visualization of the health status of people [21]. It 

plays a vital role as many healthcare related issues 

need to be monitored in real-time. Applications in 

healthcare are latency sensitive. They need to send 

real-time data to monitor the status of the patients. 

[16]. 

 Augmented Reality: The applications under AR are 

extra time-sensitive where a microsecond delay 

makes a difference. A small delay might cause a fatal 

error and hence, fog computing is adopted in this 

field [20].  

2.3. Fog Computing Architecture  

The term architecture has different meanings across the 

literature. This section presents some of the most 

common architectures of fog computing:  

1. Building architecture: this is concerned with 

engineering principles of the fog layer and the 

properties of the materials [22]. 

2. Hardware architecture: this describes the 

configurations of the components making up the fog 

node hardware and the working principles including 

the operations of the processors, etc. It is concerned 

also with the laws of physics.  

3. Software architecture: this defines the OSs and 

related software used in the fog nodes [22]. 

However, the most famous and common way to get a 

system architecture of fog computing is to have a 

layered architecture. In fog computing, the layered 

architecture is concerned with the components which 

are organized into a set of layers on top of one another. 

The idea is that the components in each layer will 

provide services and details to the upper layers, and it 

may abstract some details to the higher layers. 

The following are some existing layered 

architectures of fog computing. Yet, there is no standard 

architecture followed in the fog computing field. 

 OpenFog Consortium: in this architecture, the fog 

layer covers all the computing facilities between the 

end devices and the cloud servers. The fog nodes may 

connect using wireless or wired communication. 

Each layer differs in terms of processing capabilities, 

network, etc., [23]. Figure 1 represents the OpenFog 

layered architecture. 

 

Figure 1. OpenFog layered architecture [23]. 

 Cisco Bonomi Architecture: This architecture was 

created and developed by Flavio Bonomi. He 

designed this architecture with consideration of the 

heterogeneity of fog nodes. The architecture consists 

of five main components as shown in Figure 2: The 

heterogeneous physical resources layer, the fog 

abstraction layer, the fog services orchestration layer, 

the fog abstraction layer, IoT services, and distributed 

message bus [23]. As per this architecture, the 

heterogeneous physical resource layer consists of 

servers, edge routers, access points, vehicles, mobile 

phones, etc., [23]. 

 

Figure 2. Cisco bonomi architecture [23]. 
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 Three-layer Architecture: One of the fog computing 

architectures is the 3-layers architecture as illustrated 

in Figure 3. It consists of terminal, fog, and cloud 

layers.  

 Terminal layer: this layer is the closest layer to the 

end users and physical environment. It consists of 

sensors, mobile phones, smart vehicles, readers, 

etc. They sense and collect the data and send it to 

the upper layer which is the fog layer. 

 Fog layer: this layer is composed of a large 

number of heterogeneous fog nodes including 

routers, switches, proxy servers, bus stations, 

gateways, dedicated fog servers, etc. These 

devices can be found in a distribution fashion. 

They can be found in cafes, shopping centers, 

streets, parks, etc. They can be static or mobile.  

 Cloud layer: it consists of multiple high-

performance servers, [23]. 

Table 1 summarizes the key concepts of fog 

computing. 

 

Figure 3. Three-layers architecture [23]. 

Table 1. Summary of the key concepts of fog computing. 

Sub-sections Key concepts Description Examples 

Characteristics 

of fog 

computing. 

Multi-Protocol Support Fog computing supports wide range of dissimilar 
protocols 

Wi-Fi, ZigBee, Bluetooth, ANT, Z-wave, 6 
LowPAN, etc. 

Mobility and Geo-Graphical Distribution It is supported and considered as the main feature of 

fog computing 

Manage a large number of IoT devices 

across different geographical areas. 

Low-Latency Considered as the main trigger to create the fog 
computing 

Required in time-critical applications like 
VR, AR etc. 

Heterogeneity Fog node function could be built on any type of 

machines. 

Include high-end servers, routers, wireless 

access points, proxy servers, etc. 

Applications 

and use cases of 

fog computing. 

Smart City Fog is needed to ensure real-time responses, latency-

awareness. 

Noise pollution reduction, urban drainage 

networks, smart buildings, etc. 

ITS Generate a huge amount of data of time-critical 

application which require fast and prompt response 

An immediate decision is required in case 

of slowing speed down, sudden traffic, etc. 

AR An extra time-sensitive. Hence, fog computing is 

required 

AR in medical sector, AR in education, etc. 

Healthcare system Applications are latency sensitive. Monitoring, detection, diagnostics. 

Fog computing 

architecture. 

Building architecture Concerned with engineering principles of the fog 

layer and the properties of the materials 

- 

Hardware architecture Describes the configurations of the components 
making up the fog node hardware 

Processors 

Software architecture Defines the OSs and related software OS, applications 

OpenFog consortium The fog layer covers all the computing facilities 

between the end devices and the cloud servers. 

 

Cisco bonomi architecture Five main components: The heterogeneous resources 

layer, the fog layer, the fog services layer, the fog 

abstraction layer, IoT services 

 

Three-layers architecture Terminal layer, fog layer, cloud layer.  

 

3. Fog Computing and Resource 

Management 

3.1. Virtualization and Resource Management 

in Fog Computing 

The real-time applications running in IoT generate 

many tasks with stringent delay requirements. However, 

considering few factors related to the fog nodes, such as 

the mobility of the users connected to fog nodes, the 

low-resources available in fog nodes, heterogeneity of 

fog nodes, etc., the tasks may have to be migrated from 

one fog node to other fog nodes in order to meet the time 

requirements [11].  

One of the significant issues in resource allocation in 

fog computing is offloading. Offloading in fog means 

that, if a user is running a task and the resources are not 

enough in the assigned fog node, it will offload the task 

to the cloud or to a nearby fog node with higher 

computational capability [24].  

In cloud/fog computing, resource allocation is a 

concept of allocating and assigning the free and 

available resources to the IoT users over the Internet. 

The resources could be either physical resources or 

virtual resources [25]. Different parameters need to be 

considered while allocating the resources such as 

latency requirements, throughput, energy consumption, 

etc. However, by applying and using virtualization, the 

resources could be better utilized in the fog layer.  

Virtualization can be defined as a technique for 

abstracting the computational resources such as 

processors, memory, storage, I/O devices, etc. to 

provide virtualized resources to the IoT users through 
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VM [25]. Virtualization creates multiple virtual 

environments on a single physical device which allows 

to serve many users and process many tasks 

simultaneously [26]. Virtualization is considered as the 

engine that drives cloud computing and enables it to 

exist. It turned the data centers into a self-managed, 

highly scalable, and highly available pool of resources. 

So, by dividing and abstracting the physical hardware 

into logical divisions VMs, resource management 

became more efficient in cloud computing and hence the 

same applies to fog computing. 

3.2. How Virtualization Works 

The virtual environment is controlled and managed by 

software called Hypervisor. The hypervisor is a layer of 

software that resides between the hardware of the device 

and the VM of the node.  

The hypervisor is important as without having it, the 

OS will communicate directly with the hardware and 

hence, more than one OS from different VMs would 

simultaneously try to control the hardware which results 

in chaos and conflict. Hypervisor manages all these 

interactions between individual VMs and the hardware 

resources of the node. As in our research, VMs will be 

discussed, it is worth discussing the two types of 

hypervisors.  

 Type 1 (bare metal) hypervisor: In this type, the 

hypervisor is located directly on top of the physical 

hardware. Because there is no extra layer between the 

hypervisor and the hardware, it is called a bare-metal 

type. It is directly communicating with the hardware 

resources [14]. Figure 4 illustrates type 1. 

 

Figure 4. Bare-metal hypervisor (virtualization essentials, n.d.). 

 However type 2 hypervisor is different in that the 

hypervisor software is not installed directly on the 

physical hardware but instead runs on the top of the 

device’s OS as illustrated in Figure 5. It shares the 

OS libraries and creates guest OSs instead of guest 

VMs [14]. 

 

Figure 5. Type 2-hosted hypervisor [27]. 

3.3. Virtual Machine Migration  

VM Migration in fog computing is defined as 

transferring the VM from source a fog node to another 

more appropriate fog node. This could be done because 

of several reasons. First, users in IoT scenarios are 

moving very frequently which requires migration of 

VM. Secondly, when a fog node cannot handle more 

requests and it is overloaded; it is better to offload to 

another fog node [12].  

VM migration in fog computing enables resource 

allocation efficiently. However, the migration of VM in 

the fog layer is influenced by different aspects that are 

not present in cloud computing [13]. The main 

challenges when discussing VM migration in fog 

computing are: 

1) High heterogeneity of fog nodes. This means that the 

fog layer consists of different nodes with different 

hardware architecture, capabilities, and types. The 

virtualization process should consider heterogeneity 

while adopting a VM migration solution.  

2) Fog nodes are connected using Wide Area Network 

connections with different communication systems; 

hence, huge latency and delay may result.  

3) In cloud computing, the TMT is a secondary concern 

while in fog computing it is a major concern.  

4) The fog nodes are not dedicated for fog computing 

purposes only. They are busy with their main 

functions. For example, the fog can be built on the 

router where the router’s main priority is to find the 

best route in the network rather than fog-related tasks 

[20]. 

There are two types of VM Migration: Cold VM 

migration and live VM migration as presented in Figure 

6. The following section provides more details on both 

types of VM migration. 
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Figure 6. Live vs. non-live migration [28]. 

3.3.1. Cold (Non-Live) VM Migration 

In this type of migration, the source VM is frozen and 

suspended for some time, then it is transferred to the 

destination and finally resumed on the destination and 

removed from the source node [13].  

According to Jiang et al. [28], no open network 

connection is kept during the non-live (cold) migration 

and all connections are rebuilt only after VM 

resumption. The main issue in this type is the downtime. 

The downtime is the duration in which the migrated VM 

is out of service. However, non-live migration cannot be 

adopted in fog computing scenarios due to its long 

downtime which is detrimental to the requirements of 

real-time applications. Live migration was proposed 

initially to move the VMs between different physical 

servers without any dis-connectivity or downtime. 

Figure 7 represents this type of migration.  

 

Figure 7. Cold migration [13]. 

3.3.2. Live VM Migration in Fog Computing  

Live VM migration is a technique of transferring the 

VM from one node to another with minimal downtime 

[14]. It ensures service availability during the migration 

process [15]. It is illustrated in Figure 8. Live VM 

migration is used for many reasons as follows: 

 Load balancing: When a machine is overloaded with 

user requests and many VMs are running on it, its 

performance is degraded and may become unable to 

process its tasks. Another machine may be 

underutilized at that same time, which will be 

wasteful for its capabilities. Live VM migration is an 

appropriate solution to transparently balance the load 

without affecting the running machines and without 

the user noticing the distribution of the service [15, 

28]. 

  Resource sharing: Migration can be used when 

multiple physical nodes have limited resources and 

need to work together as a single machine to share 

their resources. Relocating the VMs would make it 

possible to share the resources between multiple 

machines. This is referred to as a consolidation of 

resources [15].  

 Energy saving: When different machines work below 

the normal load and are idle for most of the time, 

some technique is required to switch them off and 

save energy. This would be possible with VM 

migration [15]. 

 Preserving service availability: When running real-

time applications, it is needed to ensure continuous 

service and availability for the end users. Live VM 

migration can serve this purpose. 

 

Figure 8. Live migration [12]. 

During live VM migration, the source machine keeps 

running while its files, states, disk storage and 

connections are being transferred to the destination 

machine [13]. Live VM migration can be performed 

across geographically distributed fog nodes. There are 

three components which need to be considered in live 

VM migration: memory state migration, storage 

migration and network connection migration [29]. 

According to Kaur et al. [30], live VM migration 

consists of three main phases: the push phase, stop-and-

copy phase and pull phase. In the push phase, the virtual 

machine to be migrated continues running on the source 

physical machine while its memory pages are being 

transferred to the destination machine. In the stop and 

copy phase, the source VM is suspended, and the 

remaining dirty and un-transferred memory pages are 

copied to the destination. Finally, in the pull phase the 

virtual machine is totally resumed on the destination 

physical machine and removed from the source 

machine. The live VM migration involves a dynamic 

transfer from the source physical (hosting) machine to 

the destination machine. There are some key 

performance metrics to consider while designing a live 

migration solution. The following lists some of those 

performance metrics:  
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 Total Migration Time (TMT): It is the total duration 

from the start of the migration process until the 

virtual machine is completely resumed on the 

destination machine and removed from the source 

machine. This duration is impacted by multiple 

factors including: 

1) The bandwidth and speed of the network links. 

2) The size of the VM to be migrated. 

3) The speed of the I/O Operations. 

4) The size of the memory pages, etc., [31]. It is 

estimated as follows:  

𝑇𝑀𝑇 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑉𝑀

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 

 Downtime: It is the total time during which the VM is 

unavailable to the user during the second (stop-and-

copy) phase of the migration until it resumes on the 

destination machine [31]. It is calculated as follows:  

𝐷𝑇 =
𝑓𝑑 ∗ 𝑝 ∗ 𝑡𝑛

𝑠
 

where fd is the number of dirty pages of the memory, p 

is the page size, tn is the duration of the copy function 

and s is the link speed [31].  

 Link Speed: It is the capacity of a link, or the 

bandwidth allocated to the link. It is inversely 

proportional to the downtime and to the TMT. This is 

clearly captured in the above equations [31]. 

 Total network traffic: This metric is also important. It 

is the amount of data transferred across the network 

connection from the source to the destination [31, 

32]. 

3.4. Issues in Live Migration  

Migration of VMs in the fog layer is influenced by 

different aspects that are not present in cloud computing 

[13]. The main challenges when discussing VM 

migration in fog computing are: 

 High heterogeneity of fog nodes: The fog layer 

consists of different nodes with different hardware 

architectures, capabilities, and types. The fog 

environment is characterized by a high level of node 

heterogeneity. The VM migration process should 

take into consideration this heterogeneity. It should 

function on different types of fog nodes with different 

specifications and architectures [13].  

 Connection of fog nodes: Fog nodes are usually 

connected via wireless links with different 

communication systems that are subject to long 

latency and throughput. Heterogeneity is also 

observed in terms of network topologies and 

connections (e.g., Wi-Fi, Long Term Evaluation 

(LTE), 4G, 5G, etc.,) [26]. 

 Functionality of the fog nodes: The fog nodes are not 

dedicated for fog computing purposes. They have 

their own main functions. For example, the fog can 

be built on the router where the router’s main priority 

is to find the best route in the network and the fog-

related tasks will be the second priority [20]. 

Table 2 summarizes the key findings of VM migration. 

Table 2. Summary of the key findings of VM migration. 

Sub-sections Key Findings 

Virtual machine 

migration 

The aspects which influence the migration of 

VMs in the fog layer: 

 High heterogeneity of fog nodes. 

 Wide Area Network connections with 
different communication systems. 

 The TMT is a major concern. 

 The fog nodes are not dedicated for fog 

computing purposes only. 

Live VM migration is used for many reasons: 

 Load balancing. 

 Resource sharing. 

 Energy saving. 

 Preserving service availability. 

The key performance metrics to consider while 

designing a live migration solution. 

 TMT. 

 Downtime. 

 Link speed. 

 Total network traffic. 

Issues in live 

migration 
 High heterogeneity of fog nodes. 

 Connection of fog nodes. 

 Functionality of the fog nodes. 

4. A Classification of Live VM Migration 

Methods 

There are various types of live virtual machine 

migration methods in the fog-computing environment. 

The following provides a classification of the existing 

methods. It is worth noting that this is the first 

classification in literature that classifies the existing 

methods. The proposed classification classifies the 

existing solutions based on algorithm and framework 

modeling. It further broken into subcategories, where 

algorithm-based classification is divided into 

conventional based and Artificial Intelligence (AI) 

based. The Figure 15 details the new classification of the 

existing solutions. 

There are some differences between algorithm-based 

and framework modelling-based solutions. A 

framework modelling-based solution provides only 

guidelines to follow. It is a scheme for applying ready 

software or components. On the other hand, an 

algorithm-based solution provides a systematic 

approach for performing live VM migration in a fog-

computing environment. 
There are two categories of algorithm-based 

solutions. Traditional/conventional algorithms and AI-

based algorithms. AI-based solutions are more suitable 

for solving complex and specialized problems where the 

dynamic and large environment is a challenge. On the 

other hand, a traditional algorithm solution is more 

suitable for broad problems. Further, a traditional 

algorithm results in static output, which makes it 

inappropriate to cope with dynamically changing 

(1) 

(2) 
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environments like fog computing and mobile 

computing. In dynamic environments, the learning will 

be more efficient when the system learns from its own 

experience. 

5. Evaluation and Analysis of Existing Live 

VM Migration Solutions  

In this section, an evaluation and analysis of existing 

live VM migration techniques out of both types of 

algorithm-based and framework modeling-based is 

presented.  

5.1. Algorithm Based Solutions 

5.1.1. Conventional Algorithms Based 

5.1.1.1. Bin Packing Algorithm 

Author Mann in [33] addressed load balancing in 

fog/cloud environment. They discussed where to place 

the VMs according to a Heuristic VM Scheduling 

Strategy. The problem of minimizing the load balance 

variance for the fog nodes was formulated as:  

∑ 𝐼𝑛
𝑚𝑟𝑛 ≤ 𝜃𝑚

𝑁

𝑛=1

 

where ∑ 𝐼𝑛
𝑚𝑟𝑛

𝑁
𝑛=1  represents the resources allocated to 

type m of computing nodes and 𝜃 𝑚  is the amount of 

VM instances of that type. The applied strategy 

allocates the VMs to the computing nodes which have 

the same node type as the required VM instance type, 

and which have enough spare space to host the VM. This 

proposal applied Bin packing Best Fit Decreasing 

(BFD) which is applied in scenarios where there is a 

need to realize the process of computing nodes which 

assign the VM into appropriate node. An experimental 

evaluation and comparison analysis were conducted to 

validate the efficiency of the proposed algorithm. A 

comparison was made between First Fit Decreasing 

(FFD), BFD and the suggested Heuristic Scheduling 

Method (HSM). The results showed better performance 

and better resource utilization when applying the 

proposed HSM in comparison to FFD and BFD.  

Although the study shows better performance 

compared to other studies, it did not consider the 

heterogeneity between the nodes of specific type 

(Fog/Cloud). It assumes that all nodes of specific type 

are homogenous and have the same architecture and 

resources. Further, the study considers the users are in a 

stationary mode. 

5.1.1.2. Integer Linear Programming 

A different approach is used in the study [34] where the 

proposal used Integer Linear Programming (ILP) to find 

out the best fog device to migrate the VM to it. It 

considered mobility prediction and starts the process 

before 5 minutes of user movement. Mouradian et al. 

[34] used ILP to optimize the selection of physical 

machines. The objective functions are: 

1) Maximizing the accepted requests.  

2) Minimizing the latency.  

𝑚𝑎𝑥 ∑ ∑ 𝑃𝑎,𝑛
𝑛 ∈𝑁𝑎 ∈𝐴

 

where A is a set of applications to be executed, N is a set 

of nodes and Pa,n is the placement matrix element with 

value 1 if the application a is placed in the node n. 

𝑚𝑖𝑛 ∑ ∑ 𝑃𝑎,𝑛 𝐶𝑎,𝑛
𝑛 ∈𝑁𝑎 ∈𝐴

 

where Ca,n is the cost matrix which calculates the latency 

between a node n∈N and the user owner of the 

application a∈A.  

The study considered the requirements of 

applications at the end user (edge) and how to choose 

the best fog node to process the application based on the 

application needs and computational resources of the 

nodes. It ensured that the application is executed on one 

server among all fog servers available. The server is 

selected based on the available resources. However, the 

limitations are: It assumes that all servers are of the 

same type but may have different computational 

resources. Further, in the simulation, they concentrate 

on the mobility aspect and assume all fog nodes have 

the same computational resources. The proposed model 

did not include any parameters about the mobility in the 

equations. It only considers mobility in the simulation 

by using ready model. However, ILP is better used in 

less complex scenarios where there is a set of predefined 

physical fog devices, and it is only requiring deciding 

where to migrate them. 

5.1.1.3. Generic Fat Tree Algorithm  

Authors Mukherjee et al. in [35] proposed an 

algorithmic model by selecting a generic fat tree 

architecture as an underlying topology. The main aim is 

to reduce the latency and provide redundant paths at any 

given time. The idea behind the fat tree is that it provides 

a full redundancy of the network wherein there are 

always available paths between any two switches at any 

given time as illustrated in Figure 9. It considered 

redundancy as a main requirement, which is a critical 

factor in live migration. The proposal consists of three 

layers: Edge layer is at the bottom of the system, 

aggregation layer is in middle of the system, and core 

layer is the upper one. Host Hh is the server layer that 

performs only two actions for sending and receiving the 

VMs. Mukherjee et al. [35] there are enough resources 

to allocate the VMs within the system. The lowest layer 

is the edge layer Ei, which is directly connected to the 

servers. The aggregation layer Aj is the middle layer 

where all switches monitor their ports all the time 

waiting for incoming VMs. The core layer CL 

interconnects different pods so that the ports of all 

switches of this layer are looking downward to provide 

a full mesh topology among all existing pods. Although 

(3) 

(4) 

(5) 
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this mechanism ensured availability and redundancy, it 

is not suitable for fog computing. It assumed that the fog 

network consists of switches connected with wires only, 

which does not match the fog characteristics. Further, it 

is a costlier solution and difficult to implement in the 

fog layer. Further, this study did not discuss how to 

decide migration considering computational and 

communication resources. It only considered the 

available paths. No evaluation was carried out to 

compare this mechanism with other solutions. 

 

Figure 9. Fat tree topology [35]. 

5.1.1.4. Auction Algorithm  

The authors Naha et al. in [36] implemented a strategy 

of computation offloading under a scenario of multi-

users which considered the performance of the 

intelligent devices and servers as illustrated in Figure 

10. In this proposal, Naha et al. [36] adopted an auction 

algorithm which takes into consideration the time 

requirements of the applications and the resources of the 

servers. Their mode is divided into three stages. The first 

stage decides whether there is a need to offload the tasks 

or not based on the energy and time consumption on the 

local mobile/edge devices. If it is decided to offload or 

migrate tasks, the second stage applies an Analytic 

Hierarchy Process (AHP) method to select the suitable 

server to offload based on the time and energy 

consumption and the CPU resources. In the third stage, 

the tasks are scheduled in the appropriate virtual 

machine by applying an improved auction algorithm. 

The time and energy consumptions are formulated as 

follows:  

𝑇𝐿 =
𝐶𝑛

𝑉𝐿
 

where Cn represents the computational resources 

required by the task n and VL is the execution rate of the 

local CPU.  

𝐸𝐿 = 𝑇𝐿 𝑥 𝑃𝐿 

where PL is the computing power of mobile devices. The 

condition for offloading is formulated as follows:  

𝑊 >  
𝑉𝐿𝑃𝑢𝑝𝐷𝑛

𝑃𝐿𝐶𝑛 𝑙𝑜𝑔2(1 +
𝑃𝑢𝑝 𝑥 𝐿𝑜𝑠

𝑁
)

 

Where W is the channel bandwidth, Pup is the upload 

power of the mobile devices, Los is the channel gain, N 

is the Gauss noise power in the channel and Dn is the 

amount of data that needs to be uploaded for the 

computing tasks.  

The following represents the tasks’ scheduling 

auction model: This proposal did not address when to 

migrate but only concentrates on where to migrate. It did 

not consider downtime or latency reduction. It only 

ensured the task was accomplished. 

  

Figure 10. Auction model for tasks' scheduling [38]. 

5.1.1.5. Smart Elastic Scheduling Algorithm (SESA) 

This study [37] aims to analyze and study existing 

techniques and focusing on SESA and Modified Best-

Fit Decreasing as illustrated in Figure 11. First, the 

researchers classified the work into main sections. The 

first section deals with how clusters are organized 

within the nodes. Then, it focuses on placement of VMs 

considering the VMs that need to be migrated as per 

Modified Best-Fit Decreasing Algorithm. The model 

particularly emphasis is on addressing the power 

efficiency and resource utilization of VM placement.  

 

Figure 11. SESA algorithm [37]. 

5.1.1.6. A Service Migration Method for Resource 

Competition (SMRC)  

This study [38] depends on the request/response aspect 

as shown in Figure 12. The users are considered mobile 

but with fixed route. The decision of migration depends 

on the user’s movement speed and data transmission 

(8) 

(7) 

(6) 
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rate. This study considers the migration from one base-

station to another only. The task can send a pre-

migration request and then the user can migrate the task.  

 

Figure 12. A summary of the steps of SMRC [38]. 

5.1.2. AI- based Solutions 

5.1.2.1. Deep Reinforcement Learning 

Authors Perera et al. in [39] proposed a container 

migration architecture considering the communication 

delay and computational power. The proposal is 

implemented using reinforcement learning based on 

Markov Decision Process (MDP) as illustrated in Figure 

13. The proposal consisted of a mobile user layer, a fog 

layer, and a cloud layer. The algorithm applied in this 

study consists of three main parts: Action-selection 

where the system must use two methods (exploration 

and/or exploitation), next state observation and reward 

calculation and Q-network update. In this study, the 

delay and power consumption are formulated as 

follows: 

𝑑𝑛𝑒𝑡 =  ∑ ∫(𝑘𝑛𝑒𝑡 𝑙𝑜𝑔10 𝑑𝑖

𝐼

𝑖=1

(𝑡) + 𝑏𝑛𝑒𝑡) 𝑑𝑡 

𝑃𝑡𝑜𝑡𝑎𝑙 =  ∫(∑(𝑝𝑖𝑑𝑙𝑒 + (𝑝𝑚𝑎𝑥 − 𝑝𝑖𝑑𝑙𝑒) 𝑥 𝑢𝑖(𝑡)

𝑚

𝑖=1

) ) 𝑑 

This proposal aimed at reducing the cost of the power 

consumption and delay. The goal is to find the best 

strategy that minimizes C, where C is  

𝑚𝑖𝑛 𝐶 = 𝑤1𝑑𝑡𝑜𝑡𝑎𝑙 + 𝑤2𝑝𝑡𝑜𝑡𝑎𝑙 + 𝑚𝑡𝑜𝑡𝑎𝑙  

and mtotal is the migration cost. 

In a reinforcement learning algorithm, at each time slot 

or episode Tt, the agent monitors the environment and 

gets the state St then takes the action At according to a 

pre-defined strategy to maximize the reward Rt-1. In this 

study, a deep Q-learning algorithm was adopted to 

enable fast computation. As the problem is complex, a 

multi-dimensional and large scale MDP based model is 

designed. Perera et al. [38] adopted deep learning and 

especially deep Q-learning where it does not require 

prior knowledge about the whole environment. In 

addition, Q-learning has the advantage of fast decision-

making while traditional algorithms cannot solve large-

scale MDP problems with large state set and action set. 

Deep reinforcement learning can handle such large size 

problems. Similarly, study [40] proposed deep Q-

network for task migration in a mobile edge computing 

system to generalize the experience of the agent rather 

than knowing all the situations which is not possible in 

the case of fog computing. The idea is that, at the initial 

state, the agent does not know how to take the action but 

in later states, the agent will learn which action will 

increase the reward. In this system, the agent is the Fog 

Master Controller (FMC) which has all information 

about the network and the servers. The state at time slot 

𝑡 ∈𝑇  is defined as st=ut where ut is the difference 

between the user’s current location and the location after 

the movement. Hence, mobility is the main trigger for 

migration in this study. The FMC takes an action 𝑎 𝑡 ∈𝐴  
to migrate or not to migrate based on the state. FMC gets 

a reward based on its action and the current state. The 

reward in this study is: 

𝑟𝑡(𝑠𝑡, 𝑎𝑡) = 𝑞(𝑠𝑡) − 𝑐𝑡(𝑠𝑡, 𝑎𝑡) =  {
𝑞(𝑠𝑡)                   𝑖𝑓 𝑎𝑡 =  𝑎0

 𝐷 − 𝐶(𝑠𝑡)      𝑖𝑓 𝑎𝑡 =  𝑎1  

where 𝑞 (𝑠 𝑡 ) is the quality of the service, D is the 

maximum quality C(st) is the function of time delay. 

The experiments showed that this proposal 

outperforms the existing approaches which use dynamic 

programming and the situations when “no migration” 

decision is taken in terms of total reward.  

 

Figure 13. Deep Q-network model [39]. 

5.2. Framework Modeling-based Solutions 

5.2.1. Follow Me Model 

Study [35] proposed a framework to support smooth 

handover between the fog nodes in a timely manner. In 

this study, Mukherjee et al. [35] followed the principle 

of “follow me” like “follow me cloud” which aims at a 

smooth migration between one data center to another 

[26]. Further, there are few works using “follow me 

edge” or “move with me” concepts where the main 

trigger of migration is the mobility of the users. This is 

helpful in situations where mobility is the main factor in 

migrating. It pre-migrates the jobs when the handover is 

expected to happen. 

This proposal results in a reduction in the service 

interruption time and downtime. The study guarantees 

services continuity and reduces the latency during 

(9) 

(10) 

(11) 

(12) 
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handover. It proactively takes the decision of migrating 

to the virtual machine. However, the limitations of this 

proposal are that each fog node has one Software as a 

Service (SAAS) server which is not practical. Further, 

fog nodes are assumed to be connected via wired 

connections, which is not always the case. In addition, 

getting prior knowledge of users’ mobility is difficult. 

This study only migrates processed jobs, which is not 

suitable for applications with heavy data loads after job 

processing. However, this method is good in scenarios 

where user movement is fixed. This proposal developed 

a framework which measures the strength of the signal 

in the access point and then decides whether to migrate 

or not. This proposal results in a reduction in the service 

interruption time and downtime. The study guarantees 

services continuity and reduces the latency during 

handover. It proactively takes the decision of migrating 

to the virtual machine. 

Looking at the assumptions made to design the 

framework, the design of the model considers access 

points only as fog nodes. However, the fog layer is a 

heterogeneous layer which consists of different types of 

nodes with varying hardware capabilities, architectures, 

OS, configuration, etc. This has been assumed across 

the literature [9, 13, 19, 20, 41, 42, 43, 44, 45]. 

5.2.2. Discovery and Deployment Model 

The authors Tang et al. in [46], proposed a Foglets 

programming model that facilitates distributed 

programming across the resource continuum from the 

sensors to the cloud. In this model, the fog is augmented 

with the right distributed programming model. The 

Foglets model supports four main functionalities. 

Firstly, it automatically discovers fog computing 

resources at different levels of the network hierarchy 

and deploys application components onto the fog 

computing resources commensurate with the latency 

requirements of each component in the application. 

Secondly, it supports multi-application collate on any 

compute node. Thirdly, it provides communication APIs 

for components of the application that are deployed at 

different physical levels of the network hierarchy to 

communicate with one another to exchange application 

state. Lastly, it supports both latency- and workload-

driven resource adaptation and state migration over 

space (geo- graphic) and time to deal with the dynamism 

in situation awareness applications.  

5.2.3. Complexity Bandwidth Management Model 

 In Tay et al. [47] proposed a Settable Complexity 

Bandwidth Manager (SCBM) for the live migration of 

VMs over 5G Fog Radio Area Network (FOGRAN) 

Multipath Transmission Control Protocol (MPTCP) 

connections as illustrated in Figure 14. The study 

proposes SCBM for minimizing the energy consumed 

by wireless devices in the fog environment to sustain the 

migration process under different constraints on 

migration time and downtime. The proposal aims to 

optimize the energy consumption of several MPTCP 

connections. The migration module of this proposal 

focuses on how to manage the migration. The idea is to 

update Q value out of Imax rates of the pre-copy rounds 

that are spaced apart by 𝑆 ≜  
𝐼𝑚𝑎𝑥

𝑄
 rounds over the round 

index set={1,2,…….,Imax} where Imax is the maximum 

number of migration pre-copy rounds, Q is the integer-

valued number of the pre-copy migration rates and 𝑆 ≜ 

is the resulting integer-valued size. 

 

Figure 14. The main idea of proposed SCBM [46]. 

This study assumed that all devices are homogenous 

and communicate only via wireless access points. It 

discusses how to redirect the connection before the 

migration happens. It takes decisions of migration based 

on nearby servers and not any other parameters.  

5.2.4. Multipath Transmission Control Protocol 

Model  

Authors in Teka et al. [48] applied a MPTCP approach 

to improve the virtual machine migration time and the 

network transparency of the applications. The study 

assumes that each server in the edge/cloud environment 

has at least two Network Interface Cards (NICs). The 

migration technique followed uses MPTCP between the 

sender and receiver to migrate the memory and disk 

states in parallel, which in turn reduces the latency. 

The main issue with this proposal is that it is only 

concerned with increasing the bandwidth so that parallel 

transfer is done. It is not concerned with taking 

decisions regarding when and where to migrate. It 

assumes that the decision is already taken and discusses 

how to migrate using multi paths to increase the 

bandwidth and reduce the latency. This approach is not 

suitable for the fog environment as fog is a dynamic 

environment and not implemented using servers only. 

Hence it is difficult to ensure that each device has at 

least two NICs.  

Authors Kapil et al. in [29] suggested a nearby VM-

based approach to minimize the latency and save energy. 

They are solving two problems. The first problem is that 

the mobile device’s IP address is changed when the user 

moves from one cloudlet to another. This will terminate 

the established TCP connection with the virtual 

machine. The second problem happens when the 

destination cloudlet tries to access the source cloudlet 

during the migration.  

The idea of this proposal is avoiding re-establishment 
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of the TCP connection by using MP TCP and ensure that 

one connection is opened even if the user is moving. 

This approach only considers re-directing the 

connection.  

5.2.5. Layered Framework Model 

Authors Teka et al. in [49] presented a layered approach 

to migrate the services from the VMs or containers. The 

framework is designed using an incremental file 

synchronization approach. This framework applies 

ready technologies. It consists of three layers: A base 

layer, which is represented by a base package with no 

application installed; an application layer, which 

contains an idle version of the application; and an 

instance layer, which contains the running state of the 

service. 

5.3.Classification Based on “Why to Migrate.” 

Different studies have suggested different proposals to 

enable live VM migration to optimize one or multiple 

performance metrics. They applied their proposals in 

different scenarios and use cases. First, an analysis must 

be why the migration is needed. The following details 

the main reasons that trigger live VM migration:  

 Reduced Delay: The authors Kapil et al. in [29] and 

Tay et al. [47] formulated the need of virtual machine 

migration as a way to eliminate and reduce the delay 

caused by service initiation time when migrating the 

network connection from the source to the 

destination in the migration process. 

 Mobility: Both Mukherjee et al. [35] and Mouradian 

et al. [34] agreed that VM migration is triggered by 

the user mobility and the path should be ready for 

migration based on a pre-defined mobility model. 

Similarly, [50] agreed that mobility of the users 

should be studied and a proper live VM migration 

algorithm should be developed to follow the user 

mobility in order to optimize the latency incurred by 

this mobility. However, both Mouradian et al. [34] 

and Wang et al. [50] take decisions on migration 

proactively by following the user movement based on 

a mobility prediction model. [40, 48, 49, 51] all 

believed that mobility is the main reason to migrate 

the VMs according to the user movement. However, 

study [48] focuses on the network connection 

migration and the issues associated with the user 

mobility.  

 Load Balancing: Mann in [33] stated that load 

balancing is crucial in fog computing as the resources 

are limited and hence suggested a heuristic model for 

live VM migration in order to optimize the load of 

the fog devices.  

 Nodes Consolidation: The under loaded and 

underutilized nodes can be switched off to save 

energy and the VMs could be lively migrated to 

another fog node [39, 52]. 

Apart from the classification based on why to migrate, 

and as stated earlier, each proposal or mechanism is 

developed to optimize at least one performance metric. 

Performance metrics are the key factor in the solution 

design. Here, a classification of the proposals based on 

the purpose of migration and the performance metrics to 

optimize as well as the different factors that affect those 

metrics is provided. Table 3 discusses the different 

performance metrics. 

Table 3. Summary of existing live VM migration solutions. 

AG L/N M H FD COF RTA MT 

F MF T W WS M S N 

NA [50] L √ x √ x S √  AR   √ 

DDP [46] L √ x √ x S √  ITS √   

DRL [39] L x x √ x S - - - √   

SCBM [47] L √ x √ x S - - - √  - 

BFD [33] L x x √ x S - - - - - - 

ILP [34] L √ x √ x S √ √ VS - -  

Deep learning [53] L √ x √ x S √  VO √   

Generic fat tree architecture [35] L √ x √ x S √ √ - - - - 

Auction algorithms [36] - √ x √ x S  √ DA - - - 

MPTCP [48] L √ x √ x S  √ - √ √ √ 

DRL [40] L √ x √ x S  √ FR - - - 

PL-Edge [51] L √ x √ x S  √ VO - - - 

LF [49] L √ x √ x S  √ OG - √ √ 

MPTCP [29] L √ x √ x S   VS   √ 

SESA [37] L √  √ x S √  - √ √ √ 

SMRC [38] L √  √ x S  √ -   √ 

 The abbreviation list: AG: Algorithm used, NA: Not Applicable. L/N: Live, Non-Live Migration. M: Mobility of End Users. H: Heterogeneity of Fog nodes. FD: Fog 
Device. T: Type, F: Fixed, MF: Mobile. S: Same. D: Different. COF: Connectivity of Fog Devices. W: Wired. WS: Wireless. RTA: Real Time Applications.AR: 

Augmented Reality, VR: Virtual Reality, HL: Health, ITS: Intelligent Transportation System. FR: Face Recognition, VO: Voice Recognition, OG: Online Gaming, VS: 

Vehicular System, DA: Divisible applications, MT: Migration Type, M: Memory, S: Storage, N: Network. BFD: Best Fit Decreasing. DDP: Discovery and Deployment 

Protocol. DRL: Deep Reinforcement Learning algorithms. SCBM: Settable-Complexity Bandwidth Manager, TCBM: Tunable-Complexity Bandwidth Manager. PS: 
Policies and Strategies, MPTCP: Multipath TCP, PL-Edge: Policy-VM Latency-aware consolidation scheme for mobile Edge computing, LF: Layered Framework.  

 

From Table 3, we can see that most of the studies 

proposed solutions to optimize more than one 

performance metric simultaneously, while few others 

focused on one metric only. Different performance 

metrics are studied in the literature and explored by us 

including downtime, TMT, mean time to repair, mean 
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time to recover, failure rate, latency, energy saving, 

bandwidth utilization and resource utilization. For each 

performance metric, there are factors that hinder the 

achievement of the best values. The following factors 

were identified affecting the performance metrics: 

Network bandwidth, heterogeneity of the fog devices, 

mobility of the users and fog devices, late decision to 

migrate the VMs and early handover for the VMs, and 

data size.  

Further, it is noticed that the two most common 

metrics are latency and downtime optimization. Authors 

in Mouradian et al. [34], Teka et al. [48], and Wang et 

al. [50] proposed solutions to reduce the latency and 

downtime caused by live VM migration. They stated 

that the main purpose of live virtual machine migration 

is to transfer the tasks of the user without interrupting 

the service, especially for time-sensitive applications. 

Hence, their solutions are developed in such a way to 

reduce the latency and downtime. However, those 

metrics are affected by many factors. Mobility of the 

devices is the main factor. When users or fog devices 

move, the downtime is affected. Another factor with 

impact is the network bandwidth [15]. When the 

bandwidth is low, the latency and downtime are high. 

[31] used Myifogsim and [50] used prototype testing. 

The author Mann in [33] stated that load balancing is 

one of the key factors to help fog computing achieving 

better resource utilization as fog devices are resource-

constrained devices. The author Mann [33] live VM 

migration as a powerful tool for resource management, 

so it is crucial to balance the load in the fog layer to 

avoid any overloading or underloading. They used 

Cloudsim to test the load balancing metric. However, 

this metric is affected by the network bandwidth and 

heterogeneity of the fog devices. Therefore, it becomes 

difficult to balance the load across different devices with 

different computational resources and functionalities 

(e.g., routers, access points, base stations, vehicles, 

etc.,). Both Naha et al. [36] and Tay et al. [47] agreed 

that the smart and edge devices suffer from limited 

resources and energy. They stated that energy 

consumption still offsets the benefits of live VM 

migration. Therefore, there is a need to optimize energy 

consumption to help the edge and mobile devices to 

meet the growing needs of low-latency and resource- 

intensive applications. However, as with any other 

performance metrics, energy consumption is affected by 

several factors including the size of the data to be 

migrated and the mobility of the users.  

To conclude, it is noted that no study addresses the 

availability and robustness of the migrated VMs. 

Further, no study discussed how to optimize the Mean 

Time to Repair and the Mean Time to Recover (MTTR 

and MTTRe) especially when a wrong decision is taken 

and when the migration fails. These metrics are affected 

by many factors including the heterogeneity of fog 

devices and mobility. 

Both MTTR and MTTRe can be defined as follows: 

 Mean Time To Repair (MTTR): it is the amount of 

time required to repair the failure of live VM 

Migration on a wrong decision and restore the service 

to functionality on an appropriate fog node. 

𝑀𝑇𝑇𝑅 =
𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑎𝑖𝑟𝑠
 

 Mean Time To Recover (MTTR): it is the average 

time from the time the live VM migration fails until 

the time it is resumed on another fog node 

successfully. 

𝑀𝑇𝑇𝑅𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 ( 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 

Looking at other comparison factors and when 

discussing live virtual machine migration, a few more 

criteria need to be considered. The following discusses 

some of those criteria:  

 Granularity: this is concerned with whether the 

proposed solutions consider multiple migrations at 

the same time or a single migration only. Most of the 

studies in the literature mentioned multiple 

migrations they did not reflect that in the designs of 

their solutions.  

 Migration decision time: this criterion is concerned 

with the timing of the migration. It is worth noting 

that most of the studies proposed reactive designs in 

which VM migration is triggered by some factors like 

overloading of the physical machine and user 

mobility. This reactive decision making may lead to 

late handover. The migration will be done after the 

trigger is detected. It then takes time to decide and 

choose an appropriate fog device to host the virtual 

machine and then migrate.  

However, a few studies only proactively migrate VMs 

based on different inputs. For example, the study in [34] 

takes the mobility prediction of the user from GPS input 

and proactively decides on when and where to migrate. 

This is better than a reactive solution as, according to 

the study, it can decrease the latency and the number of 

migrations needed. However, this also may incur some 

issues like early handover and reduced reliability as it 

should not depend only on the mobility prediction as fog 

environment has some other several characteristics 

which might affect the decision such as: 

Decentralization nature, heterogeneity, location-

awareness, etc. Such solutions should consider the issue 

of the user changing movement pattern. 

 Decision to be taken: Each study takes a decision 

related to the time to migrate or the place to migrate 

to. Most of the studies take decisions regarding where 

to migrate. Only two studies discussed when to 

migrate. Study [50] discusses when to migrate by 

pre-migrating the jobs to ensure that the migration 

decision is taken and the process is started before the 

full handover. However, the authors in Mouradian et 

al. [34], addressed when and where to migrate. 

(13) 

(14) 
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Regarding “when to migrate,” they refer to ready 

mobility models to take the decision in a pro-active 

manner. As for “when to migrate,” it is based on the 

resource’s availability. It is the only study in the 

literature we came across which considers both 

decisions.  

5.4. Studies on “What Component to Migrate” 

Here a classification about the studies based on what 

element is migrated is discussed. It can be a service, a 

task, a job, the VM itself, or an application component. 

 Task: It is an execution of a single process in the fog 

node. 

 Job: It is a collection of multiple tasks on the fog 

node. 

 Service: It is software that performs tasks. It 

automatically starts in the background when the tasks 

start. 

 Application: It is a program which interacts with the 

user to accomplish a particular task. 

 Virtual Machine: It is a system image that behaves 

like an actual computer and shares the physical 

computer resources including memory, CPU, and 

disk resources. 

It is noted that the most used terms in the literature are 

the service and the task while in the implementation, the 

full virtual machine migration is considered. There is 

another classification based on what to be migrated 

which considers the environment to be migrated 

whether it is a VM or a container. It is worth noting that 

most of the studies focus on virtual machine migration 

although some recent studies considered container 

migration because containers are lighter than VM and 

require less time to boot and initialize in contrast of the 

virtual machine which needs more time to boot and 

results in a delay. Table 4 summarizes the studies based 

on what is migrated.  

Table 4. Migrated components. 

Migrated 

component 

Reference Use case 

Task [40][36] FR, vehicles  

Service [33] [49] Video surveillance, OG, face 

detection  

Application  [46] Vehicles  

Job [50] Smart sport and smart tourism 

Full VM [28], [34], [35], [47], 

[48], [51], [53] 

Vehicles, VO applications 

In this classification, we differentiate between the 

studies based on the components they migrate. As 

shown in Table 5 most of the studies across in the 

literature address the migration of the virtual machine 

itself. Some studies, however, do address the migration 

of services and tasks while others address the migration 

of jobs and applications. 

Table 5. What to migrate. 

Environment VM Container 

Literature studies [29], [33], [34], [35], 

[36], [40], [47], [48], 

[49], [50] , [51], [53], 

[54] 

[39], [46], [49] 

 

 

Figure 15. Classification of live VM migration methods in fog computing. 
 

To link the components to migration, the 

environment of migration is studied whether it is a 

virtual machine migration or a container migration. It is 

noticed that most of the studies fall under the virtual 

machine migration category although some recent 

studies moved towards container migration. Table 6 

concludes the classification with the factors regarding 

when and where to migrate. 
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Table 6. Common classification factors. 

Study Granularity (S/M)  Timing of the decision  Nature of decision 

Single Multiple Reactive Proactive When Where 

[51] √   √ √  

[47]  √ √ √  √ 

[40] √  √   √ 

[48]  √ √   √ 

[34] √  √   √ 

[35] √   √ √ √ 

[54] √ √   √ √ 

[36]  √ √   √ 

[37]  √ √   √ 

[49]  √ √  - - 

[50] √  √  - - 

[41]  √  √ √  

[52] √  √   √ 

Table 7 details the ket findings of exisitng models of 

VM migration. 

Table 7. Key findings of existing models of VM migration. 

Evaluation 

and analysis 

of existing 

live VM 

migration 

solutions. 

Key concepts/ Findings 

 Two categories of algorithm-based solutions. 

Traditional/conventional algorithms and AI-based 
algorithms. 

 AI-based solutions are more suitable for solving complex 
and specialized 

 A traditional algorithm solution is more suitable for broad 

problems. 

 Algorithms can be classified based on: “why to migrate,” 

“what component to migrate.” 

6. Container versus Virtual Machine  

When discussing VM migration, it must not ignore the 

discussion about the containers. Although there are 

many common points between them, there are also 

many differences worth discussing [35]. 

Containerization is an OS-Level virtualization where 

the kernel is shared between the users. Multiple users 

can use the kernel’s resources simultaneously in an 

isolated environment. The virtualization instances in 

that case are called containers [13]. The software in the 

container can share the resources provided by the kernel 

and assigned to this container [13]. 

To compare between container and virtual machine, 

containers are OS-Level virtualization while VM 

implies both OS-level and hardware-level 

virtualization. Containers are lighter in weight than VM 

which might result in less challenges than VM [40]. 

According to [55], the container has several advantages 

over VMs. However, there are a few differences like the 

performance, size, and ease of use.  

Containers require less time to boot and initialize in 

contrast to the virtual machine which needs more time 

to boot which in turn leads to a delay in the process. 

Hence, container is faster than VM [56]. Recalling how 

a virtual machine migrates, the memory state is copied 

and transferred to the destination over several iterations 

until all dirty pages are transferred. Meanwhile, the 

storage is transferred, and the network connection is 

redirected. The iterations take longer time if the 

iterations take longer time if the memory pages are big 

[56]. 

On the other hand, containers are lighter, and the 

process of migration them is different. It does not incur 

a large amount of time. The process of the migration is 

done by simply killing the container at the source and 

recreating it on the destination physical host. This 

process is known as Checkpoint and Restore where a 

checkpoint is created, and the state of the current 

applications is restored at the destination. 

Although container has several advantages over 

virtual machine, but it also has several issues not 

suffered by VM. For example, as containers are sharing 

the kernel resources, they also share some libraries. This 

means that during the migration process, the destination 

should ensure that those libraries are prepared and ready 

before the migration [35]. In contrast, VM does not 

require preparing the libraries before migration. 

Table 8 illustrates the key points of the comparison 

between VM and containers.  

Table 8. Key findings of containers Vs.VM. 

Container 

Versus 

Virtual 

Machine 

Key Concepts/ Findings 

 Containerization is an OS-level virtualization 

 VM implies both OS-level and hardware-level 

virtualization. 

 Containers are lighter in weight than VM containers 

require less time to boot and initialize in contrast to the 
virtual machine which needs more time.  

Table 9 lists the summary points of open questions 

and challenges.  

Table 9. Summary of open questions and challenges. 

Open questions 

and challenges. 

Key concepts/ Findings 

 Heterogeneity of the fog devices. 

 Priority of fog devices. 

 When and where to migrate. 

 Migration overheads. 

 Mobility models. 

7. Open Questions and Challenges  

To summarize, all the studies have some common 

research gaps and remaining research questions to 

address including the following: 

 Heterogeneity of the fog devices: According to 

Bittencourt et al. [13], fog computing is characterized 

by the heterogeneity of nodes and hence there is a 

need for virtualization mechanisms that run on 

different types of fog nodes. As seen across the 

literature, most of the studies ignore this aspect and 

assume that fog devices are homogenous. So, how 

will the heterogeneous devices handle the migration 

without affecting the running services and with 

minimum downtime?. 

 Priority of fog devices: As stated in Habibi et al. [25], 

each fog is responsible to do its own functions and 

the fog-related functions always come in the second 

priority. This would prevent the real-time 

applications from achieving their objective of low 

latency and will incur delays. Hence, a remaining 

question is how to balance between the devices’ own 
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functions and the fog-related functions to optimize 

the performance of real-time applications. 

 When and where to migrate: The two aspects should 

be studied together and not independently. Most of 

the studies design their solutions to decide where to 

migrate without paying attention to when to migrate. 

This might cause a problem of late or early handover 

and hence failure of the migration process.  

 Migration overheads: According to Mukherjee et al. 

[35], a good VM live migration strategy should 

consider in its design the overhead incurred by the 

migration and try to minimize it. Such overheads 

include computational overhead, network overhead 

and space overhead. Most of the existing proposals 

did not consider the overhead reduction in their 

proposals. 

 Mobility models: they should be more accurate by 

considering the possible changes in the expected user 

mobility pattern. Most of the studies used ready 

mobility models which assume unrealistically that 

the user movement is fixed, and the user moves in 

one specific direction. The design should consider 

possible changes in the expected user movement 

pattern. 

 Speed: Fog network is closer to the end users which 

enables the users to run real-time applications as it 

will run on fog layer which will be faster [57]. 

8. Conclusions and Future Work 

To conclude, live VM migration is a key technique for 

real-time applications, but it has several challenges that 

need addressing. This paper summarizes the state-of-

the-art technologies in live virtual machine migration in 

the field of fog computing. All the technologies are 

compared with each other by using the performance 

metrics and overheads discussed from the review, the 

following conclusions were drawn: 

1) Most virtual machine algorithms decide only to 

check either when to migrate the virtual machine or 

where to migrate. Few studies considered both 

factors in the decision. 

2) Most of the studies ignored the fact that the fog nodes 

are heterogenous and assumed that the node are 

homogenous. 

3) Most of the studies did not consider the issue of early 

and late handover although it is a critical factor in 

real-time applications run on fog layer. 

The paper also presented a new classification for the 

existing literature. It divided the solutions based on 

algorithms based and framework model based and 

further broken into subcategories, where algorithm-

based classification is divided into conventional based 

and AI-based. 
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