
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 977

Live Virtual Machine Migration in Fog Computing:

State of the Art

Shahd Alqam

Computer Science Department,

Sultan Qaboos University Muscat, Sultanate of Oman

S125248@student.squ.edu.om

Nasser Alzeidi

Computer Science Department,

Sultan Qaboos University Muscat, Sultanate of Oman

alzidi@squ.edu.om

Abderrezak Touzene

Computer Science Department,

Sultan Qaboos University Muscat, Sultanate of Oman

touzene@squ.edu.om

Khaled Day

Computer Science Department,

Sultan Qaboos University Muscat, Sultanate of Oman

kday@squ.edu.om

Abstract: Fog computing is an emerging paradigm which extends the functionality of the cloud near to the end users. Its

introduction helped in running different real-time applications where latency is a critical factor. This paradigm is motivated by

the fast growth of Internet of Things (IoT) applications in different fields. By running Virtual Machines (VMs) on fog devices,

different users will be able to offload their computational tasks to fog devices to get them done in a smooth, transparent, and

faster manner. Nevertheless, the performance of real-time applications might suffer if no proper live virtual machine migration

mechanism is adopted. Live VM migration aims to move the running VM from one physical fog node to another with minimal or

zero downtime due to mobility issues. Many efforts have been made in this field to solve the challenges facing live VM migration

in fog computing. However, there are remaining issues that require solutions and improvements. In this paper, the following

presents the research outcomes: An extensive survey of existing literature on live VM migration mechanisms in fog computing.

Also, a new novel classification approach for categorizing live VM migration mechanisms based on conventional and Artificial

Intelligence (AI) approaches to address live VM migration challenges is presented. Moreover, an identification of research gaps

and in the existing literature and highlighting the areas where further investigation is required is done and finally a conclusion

with a discussion of potential future research directions is drawn.

Keywords: Live virtual machine migration, conventional algorithms, fog computing architecture, live migration algorithms

classification, artificial intelligence, framework modeling.

Received June 16, 2023; accepted October 5, 2023

https://doi.org/10.34028/iajit/20/6/14

1. Introduction

Although there are many definitions in the literature for

Internet of Things (IoT); it can be defined as an

emerging technology to connect different physical

things “objects” over the Internet [1]. It was first

introduced when Kevin Ashton used the term for the

first time in 1999 to talk about internet-based

information service architecture [2]. According to

Ahmed et al. [3], IoT is the integration of mobile

networks, Internet, social networks, and things which

are connected to provide different services and

applications to users. IoT has given birth to many

services and applications which have a huge impact on

humans’ daily life. This includes smart cities, smart

environment, smart farming, smart healthcare, smart

grid, Augmented Reality (AR), etc. IoT has gained

importance being successfully implemented in different

fields and areas [4]. Some of these applications are time-

critical where the latency is required to be minimal as

most of the interactions are expected to be done in real

time [5].

Cloud computing supplied IoT applications with

unlimited storage and processing capabilities. The cloud

has also facilitated the interactions between the

“things,” which made IoT and its applications a reality

[6]. However, although cloud computing has been an

effective way to fulfill the computational and storage

requirements for IoT applications, it might not be

suitable option for certain types of real-time

applications to fulfill their latency requirements [7].

Latency-critical applications such as AR, VR, video

surveillance, to name a few, cannot wait for the response

to be sent back from faraway cloud data centers. These

latency requirements are hard to achieve with existing

cloud computing architectures. Moreover, the

applications running on IoT produce a massive volume

of data that needs to be transferred through the network

and then processed. The amount of data generated from

the ‘things’ is continuously growing [6]. Therefore, it

would not be possible and not feasible to send all the

data collected from IoT devices (cameras, sensors,

smartphones, etc.,) to the cloud all the time. That would

incur high costs in terms of bandwidth, storage, latency,

and energy.

There was a need to resolve these weaknesses of the

978 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

cloud computing and introduce a middle layer between

the cloud and the “things” to meet the extreme latency

requirements of the real-time applications [8] and hence,

fog computing as a new paradigm has evolved [9]. Fog

computing is an architecture that uses one or more near-

edge devices to carry out some amount of storage,

communication, control, configuration, and

management of the cloud [9]. It does not substitute the

cloud but extends its functionality near to the edge users.

Fog computing has been introduced to be an

intermediate layer between the IoT devices and the

cloud layer [10].

Considering different factors like the mobility of the

users, QoS, service cost, and the capabilities of fog

nodes, there is a need to be able to offload some tasks

from one fog node to another to achieve higher

flexibility and adaptability [11]. Researchers Bi et al.

[12] have proposed to migrate fog-based Virtual

Machines (VMs) for a variety of reasons such as load

balancing, users' mobility, priorities, etc.

VM migration normally refers to the hardware-level

migration where the VM share the hardware resources

and can run different Operating Systems (OSs)

platforms. It applies two techniques: Cold migration and

live migration [13]. In cold migration the source VM is

frozen and suspended for some time, then it is

transferred to the destination and finally resumed on the

destination and removed from the source node [13].

Cold migration might result in a very long downtime,

which goes against the main objective of migrating the

application/service to support real-time application with

minimal latency. On the other hand, live VM migration

transfers the VM from one node to another with minimal

disruption time [14]. It strives to provide the end user

with the service without interruption during the

migration process [15].

In this paper, the state of the art of live VM migration

mechanisms in fog computing is critically evaluated and

analyzed. The contributions of this paper are three-fold:

 First, a comprehensive review and analysis of the

existing live VM migration mechanisms is presented.

 Second, light is shed on existing classifications of

these mechanisms and propose a new one.

 Finally, this paper presents the research gaps and

highlights some directions for further research

studies.

The rest of this paper is organized as follows: Section 2

provides some background information and

preliminaries about fog computing and virtualization.

Section 3, presenting a detailed literature review and

analysis of the existing live VM migration proposals. In

section 4, a classification of these tools and propose a

new classification is discussed. Research challenges and

directions are then outlined in section 5. The paper

concludes with final remarks about migration in

container-based systems in section 6.

2. Preliminaries and Background

2.1. Characteristics of Fog Computing

 Multi-Protocol Support: Fog computing is designed

in such a way to support many communication

protocols. These include: Wi-Fi, ZigBee, Bluetooth,

Advanced and Adaptive Network Technology

(ANT), Z-wave, 6 Low-power Wireless Personal

Area Network (6 LowPAN), Thread, Worldwide

Interoperability for Microwave Access (WiMAX),

Low-Power Wide Area Network (LPWAN), Cellular,

Radio Frequency Identifier (RFID), Near Field

Communication (NFC), HTTP, Extensible

Messaging Presence Protocol (XMPP), Message

Queuing Telemetry Transport (MQTT), Constrained

Application Protocol (CoAP), Advanced Message

Queuing Protocol (AMQP), IoTivity, Hyper-Cat,

AllJoyn, etc., [9].

 Mobility and Geo-Graphical Distribution: Mobility

is the main feature of fog computing [9]. IoT devices

and fog devices can be mobile and therefore, fog

systems should be able to handle and support this

mobility [16]. Mobility is considered as the main

characteristic of many smart city applications.

Mobility in fog computing allows the fog devices to

manage a large number of IoT devices across

different geographical areas [9]. Further, the services

and applications provided are distributed and can be

deployed anywhere in the fog environment [17].

 Low-latency: One of the characteristics of fog

computing which is considered the main driver

behind introducing fog computing is latency-

awareness. It aims at offering the end users with

guaranteed low-latency applications [18]. Factors

including latency in fog computing include execution

time, task offloading time, and transmission time.

 Heterogeneity: Fog computing is designed in such a

way to support a wide range of heterogonous devices

[18]. In the IoT architecture, the bottom layer consists

of various types of edge devices with different

software and hardware architectures and

specifications. It is heterogeneous even in terms of

the fog nodes and the network infrastructure. This is

because the fog layer might include high-end servers,

routers, wireless access points, proxy servers, end-

devices like vehicles, mobile phones, base stations,

etc. These devices are heterogeneous in terms of

hardware and software architecture and capabilities.

2.2. Applications and Use Cases of Fog

Computing

Fog computing was initially designed and introduced to

support latency-sensitive applications. This includes

smart cities applications, ITS, AR, healthcare, tele-

surveillance, smart grid, smart agriculture, smart waste

management, smart water management, smart retail

store, etc., [18, 19, 20, 21]. The following illustrates

Live Virtual Machine Migration in Fog Computing: State of the Art 979

some of these applications:

 Smart City: the city in this context refers to the urban

areas which require all things to be smart. To build

and construct a smart city, it is needed to ensure real-

time responses, latency-aware applications and

location-aware services [19]. Fog plays a major role

in supporting these various types of applications of

smart cities including noise pollution reduction,

urban drainage networks, smart buildings, etc., [20].

 Intelligent Transportation System (ITS): ITS is one

of the main components of smart cities. ITS systems

generate a huge amount of data which make it

difficult to be transferred to the cloud [19]. Further,

ITS applications such as smart vehicles are time-

critical and require fast response to ensure safety.

This could be done by integrating the ITS with Fog

computing [19]. As known, driving vehicles in cities

require immediate decision and response to different

cases and events. For example: an immediate

decision is required in case of slowing speed down,

sudden traffic, lane change, route change, blocked

routes, etc., [20].

 Healthcare System: fog Computing is applied in

healthcare for monitoring, detection, diagnosis and

visualization of the health status of people [21]. It

plays a vital role as many healthcare related issues

need to be monitored in real-time. Applications in

healthcare are latency sensitive. They need to send

real-time data to monitor the status of the patients.

[16].

 Augmented Reality: The applications under AR are

extra time-sensitive where a microsecond delay

makes a difference. A small delay might cause a fatal

error and hence, fog computing is adopted in this

field [20].

2.3. Fog Computing Architecture

The term architecture has different meanings across the

literature. This section presents some of the most

common architectures of fog computing:

1. Building architecture: this is concerned with

engineering principles of the fog layer and the

properties of the materials [22].

2. Hardware architecture: this describes the

configurations of the components making up the fog

node hardware and the working principles including

the operations of the processors, etc. It is concerned

also with the laws of physics.

3. Software architecture: this defines the OSs and

related software used in the fog nodes [22].

However, the most famous and common way to get a

system architecture of fog computing is to have a

layered architecture. In fog computing, the layered

architecture is concerned with the components which

are organized into a set of layers on top of one another.

The idea is that the components in each layer will

provide services and details to the upper layers, and it

may abstract some details to the higher layers.

The following are some existing layered

architectures of fog computing. Yet, there is no standard

architecture followed in the fog computing field.

 OpenFog Consortium: in this architecture, the fog

layer covers all the computing facilities between the

end devices and the cloud servers. The fog nodes may

connect using wireless or wired communication.

Each layer differs in terms of processing capabilities,

network, etc., [23]. Figure 1 represents the OpenFog

layered architecture.

Figure 1. OpenFog layered architecture [23].

 Cisco Bonomi Architecture: This architecture was

created and developed by Flavio Bonomi. He

designed this architecture with consideration of the

heterogeneity of fog nodes. The architecture consists

of five main components as shown in Figure 2: The

heterogeneous physical resources layer, the fog

abstraction layer, the fog services orchestration layer,

the fog abstraction layer, IoT services, and distributed

message bus [23]. As per this architecture, the

heterogeneous physical resource layer consists of

servers, edge routers, access points, vehicles, mobile

phones, etc., [23].

Figure 2. Cisco bonomi architecture [23].

980 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

 Three-layer Architecture: One of the fog computing

architectures is the 3-layers architecture as illustrated

in Figure 3. It consists of terminal, fog, and cloud

layers.

 Terminal layer: this layer is the closest layer to the

end users and physical environment. It consists of

sensors, mobile phones, smart vehicles, readers,

etc. They sense and collect the data and send it to

the upper layer which is the fog layer.

 Fog layer: this layer is composed of a large

number of heterogeneous fog nodes including

routers, switches, proxy servers, bus stations,

gateways, dedicated fog servers, etc. These

devices can be found in a distribution fashion.

They can be found in cafes, shopping centers,

streets, parks, etc. They can be static or mobile.

 Cloud layer: it consists of multiple high-

performance servers, [23].

Table 1 summarizes the key concepts of fog

computing.

Figure 3. Three-layers architecture [23].

Table 1. Summary of the key concepts of fog computing.

Sub-sections Key concepts Description Examples

Characteristics

of fog

computing.

Multi-Protocol Support Fog computing supports wide range of dissimilar
protocols

Wi-Fi, ZigBee, Bluetooth, ANT, Z-wave, 6
LowPAN, etc.

Mobility and Geo-Graphical Distribution It is supported and considered as the main feature of

fog computing

Manage a large number of IoT devices

across different geographical areas.

Low-Latency Considered as the main trigger to create the fog
computing

Required in time-critical applications like
VR, AR etc.

Heterogeneity Fog node function could be built on any type of

machines.

Include high-end servers, routers, wireless

access points, proxy servers, etc.

Applications

and use cases of

fog computing.

Smart City Fog is needed to ensure real-time responses, latency-

awareness.

Noise pollution reduction, urban drainage

networks, smart buildings, etc.

ITS Generate a huge amount of data of time-critical

application which require fast and prompt response

An immediate decision is required in case

of slowing speed down, sudden traffic, etc.

AR An extra time-sensitive. Hence, fog computing is

required

AR in medical sector, AR in education, etc.

Healthcare system Applications are latency sensitive. Monitoring, detection, diagnostics.

Fog computing

architecture.

Building architecture Concerned with engineering principles of the fog

layer and the properties of the materials

-

Hardware architecture Describes the configurations of the components
making up the fog node hardware

Processors

Software architecture Defines the OSs and related software OS, applications

OpenFog consortium The fog layer covers all the computing facilities

between the end devices and the cloud servers.

Cisco bonomi architecture Five main components: The heterogeneous resources

layer, the fog layer, the fog services layer, the fog

abstraction layer, IoT services

Three-layers architecture Terminal layer, fog layer, cloud layer.

3. Fog Computing and Resource

Management

3.1. Virtualization and Resource Management

in Fog Computing

The real-time applications running in IoT generate

many tasks with stringent delay requirements. However,

considering few factors related to the fog nodes, such as

the mobility of the users connected to fog nodes, the

low-resources available in fog nodes, heterogeneity of

fog nodes, etc., the tasks may have to be migrated from

one fog node to other fog nodes in order to meet the time

requirements [11].

One of the significant issues in resource allocation in

fog computing is offloading. Offloading in fog means

that, if a user is running a task and the resources are not

enough in the assigned fog node, it will offload the task

to the cloud or to a nearby fog node with higher

computational capability [24].

In cloud/fog computing, resource allocation is a

concept of allocating and assigning the free and

available resources to the IoT users over the Internet.

The resources could be either physical resources or

virtual resources [25]. Different parameters need to be

considered while allocating the resources such as

latency requirements, throughput, energy consumption,

etc. However, by applying and using virtualization, the

resources could be better utilized in the fog layer.

Virtualization can be defined as a technique for

abstracting the computational resources such as

processors, memory, storage, I/O devices, etc. to

provide virtualized resources to the IoT users through

Live Virtual Machine Migration in Fog Computing: State of the Art 981

VM [25]. Virtualization creates multiple virtual

environments on a single physical device which allows

to serve many users and process many tasks

simultaneously [26]. Virtualization is considered as the

engine that drives cloud computing and enables it to

exist. It turned the data centers into a self-managed,

highly scalable, and highly available pool of resources.

So, by dividing and abstracting the physical hardware

into logical divisions VMs, resource management

became more efficient in cloud computing and hence the

same applies to fog computing.

3.2. How Virtualization Works

The virtual environment is controlled and managed by

software called Hypervisor. The hypervisor is a layer of

software that resides between the hardware of the device

and the VM of the node.

The hypervisor is important as without having it, the

OS will communicate directly with the hardware and

hence, more than one OS from different VMs would

simultaneously try to control the hardware which results

in chaos and conflict. Hypervisor manages all these

interactions between individual VMs and the hardware

resources of the node. As in our research, VMs will be

discussed, it is worth discussing the two types of

hypervisors.

 Type 1 (bare metal) hypervisor: In this type, the

hypervisor is located directly on top of the physical

hardware. Because there is no extra layer between the

hypervisor and the hardware, it is called a bare-metal

type. It is directly communicating with the hardware

resources [14]. Figure 4 illustrates type 1.

Figure 4. Bare-metal hypervisor (virtualization essentials, n.d.).

 However type 2 hypervisor is different in that the

hypervisor software is not installed directly on the

physical hardware but instead runs on the top of the

device’s OS as illustrated in Figure 5. It shares the

OS libraries and creates guest OSs instead of guest

VMs [14].

Figure 5. Type 2-hosted hypervisor [27].

3.3. Virtual Machine Migration

VM Migration in fog computing is defined as

transferring the VM from source a fog node to another

more appropriate fog node. This could be done because

of several reasons. First, users in IoT scenarios are

moving very frequently which requires migration of

VM. Secondly, when a fog node cannot handle more

requests and it is overloaded; it is better to offload to

another fog node [12].

VM migration in fog computing enables resource

allocation efficiently. However, the migration of VM in

the fog layer is influenced by different aspects that are

not present in cloud computing [13]. The main

challenges when discussing VM migration in fog

computing are:

1) High heterogeneity of fog nodes. This means that the

fog layer consists of different nodes with different

hardware architecture, capabilities, and types. The

virtualization process should consider heterogeneity

while adopting a VM migration solution.

2) Fog nodes are connected using Wide Area Network

connections with different communication systems;

hence, huge latency and delay may result.

3) In cloud computing, the TMT is a secondary concern

while in fog computing it is a major concern.

4) The fog nodes are not dedicated for fog computing

purposes only. They are busy with their main

functions. For example, the fog can be built on the

router where the router’s main priority is to find the

best route in the network rather than fog-related tasks

[20].

There are two types of VM Migration: Cold VM

migration and live VM migration as presented in Figure

6. The following section provides more details on both

types of VM migration.

982 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 6. Live vs. non-live migration [28].

3.3.1. Cold (Non-Live) VM Migration

In this type of migration, the source VM is frozen and

suspended for some time, then it is transferred to the

destination and finally resumed on the destination and

removed from the source node [13].

According to Jiang et al. [28], no open network

connection is kept during the non-live (cold) migration

and all connections are rebuilt only after VM

resumption. The main issue in this type is the downtime.

The downtime is the duration in which the migrated VM

is out of service. However, non-live migration cannot be

adopted in fog computing scenarios due to its long

downtime which is detrimental to the requirements of

real-time applications. Live migration was proposed

initially to move the VMs between different physical

servers without any dis-connectivity or downtime.

Figure 7 represents this type of migration.

Figure 7. Cold migration [13].

3.3.2. Live VM Migration in Fog Computing

Live VM migration is a technique of transferring the

VM from one node to another with minimal downtime

[14]. It ensures service availability during the migration

process [15]. It is illustrated in Figure 8. Live VM

migration is used for many reasons as follows:

 Load balancing: When a machine is overloaded with

user requests and many VMs are running on it, its

performance is degraded and may become unable to

process its tasks. Another machine may be

underutilized at that same time, which will be

wasteful for its capabilities. Live VM migration is an

appropriate solution to transparently balance the load

without affecting the running machines and without

the user noticing the distribution of the service [15,

28].

 Resource sharing: Migration can be used when

multiple physical nodes have limited resources and

need to work together as a single machine to share

their resources. Relocating the VMs would make it

possible to share the resources between multiple

machines. This is referred to as a consolidation of

resources [15].

 Energy saving: When different machines work below

the normal load and are idle for most of the time,

some technique is required to switch them off and

save energy. This would be possible with VM

migration [15].

 Preserving service availability: When running real-

time applications, it is needed to ensure continuous

service and availability for the end users. Live VM

migration can serve this purpose.

Figure 8. Live migration [12].

During live VM migration, the source machine keeps

running while its files, states, disk storage and

connections are being transferred to the destination

machine [13]. Live VM migration can be performed

across geographically distributed fog nodes. There are

three components which need to be considered in live

VM migration: memory state migration, storage

migration and network connection migration [29].

According to Kaur et al. [30], live VM migration

consists of three main phases: the push phase, stop-and-

copy phase and pull phase. In the push phase, the virtual

machine to be migrated continues running on the source

physical machine while its memory pages are being

transferred to the destination machine. In the stop and

copy phase, the source VM is suspended, and the

remaining dirty and un-transferred memory pages are

copied to the destination. Finally, in the pull phase the

virtual machine is totally resumed on the destination

physical machine and removed from the source

machine. The live VM migration involves a dynamic

transfer from the source physical (hosting) machine to

the destination machine. There are some key

performance metrics to consider while designing a live

migration solution. The following lists some of those

performance metrics:

Live Virtual Machine Migration in Fog Computing: State of the Art 983

 Total Migration Time (TMT): It is the total duration

from the start of the migration process until the

virtual machine is completely resumed on the

destination machine and removed from the source

machine. This duration is impacted by multiple

factors including:

1) The bandwidth and speed of the network links.

2) The size of the VM to be migrated.

3) The speed of the I/O Operations.

4) The size of the memory pages, etc., [31]. It is

estimated as follows:

𝑇𝑀𝑇 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑉𝑀

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

 Downtime: It is the total time during which the VM is

unavailable to the user during the second (stop-and-

copy) phase of the migration until it resumes on the

destination machine [31]. It is calculated as follows:

𝐷𝑇 =
𝑓𝑑 ∗ 𝑝 ∗ 𝑡𝑛

𝑠

where fd is the number of dirty pages of the memory, p

is the page size, tn is the duration of the copy function

and s is the link speed [31].

 Link Speed: It is the capacity of a link, or the

bandwidth allocated to the link. It is inversely

proportional to the downtime and to the TMT. This is

clearly captured in the above equations [31].

 Total network traffic: This metric is also important. It

is the amount of data transferred across the network

connection from the source to the destination [31,

32].

3.4. Issues in Live Migration

Migration of VMs in the fog layer is influenced by

different aspects that are not present in cloud computing

[13]. The main challenges when discussing VM

migration in fog computing are:

 High heterogeneity of fog nodes: The fog layer

consists of different nodes with different hardware

architectures, capabilities, and types. The fog

environment is characterized by a high level of node

heterogeneity. The VM migration process should

take into consideration this heterogeneity. It should

function on different types of fog nodes with different

specifications and architectures [13].

 Connection of fog nodes: Fog nodes are usually

connected via wireless links with different

communication systems that are subject to long

latency and throughput. Heterogeneity is also

observed in terms of network topologies and

connections (e.g., Wi-Fi, Long Term Evaluation

(LTE), 4G, 5G, etc.,) [26].

 Functionality of the fog nodes: The fog nodes are not

dedicated for fog computing purposes. They have

their own main functions. For example, the fog can

be built on the router where the router’s main priority

is to find the best route in the network and the fog-

related tasks will be the second priority [20].

Table 2 summarizes the key findings of VM migration.

Table 2. Summary of the key findings of VM migration.

Sub-sections Key Findings

Virtual machine

migration

The aspects which influence the migration of

VMs in the fog layer:

 High heterogeneity of fog nodes.

 Wide Area Network connections with
different communication systems.

 The TMT is a major concern.

 The fog nodes are not dedicated for fog

computing purposes only.

Live VM migration is used for many reasons:

 Load balancing.

 Resource sharing.

 Energy saving.

 Preserving service availability.

The key performance metrics to consider while

designing a live migration solution.

 TMT.

 Downtime.

 Link speed.

 Total network traffic.

Issues in live

migration
 High heterogeneity of fog nodes.

 Connection of fog nodes.

 Functionality of the fog nodes.

4. A Classification of Live VM Migration

Methods

There are various types of live virtual machine

migration methods in the fog-computing environment.

The following provides a classification of the existing

methods. It is worth noting that this is the first

classification in literature that classifies the existing

methods. The proposed classification classifies the

existing solutions based on algorithm and framework

modeling. It further broken into subcategories, where

algorithm-based classification is divided into

conventional based and Artificial Intelligence (AI)

based. The Figure 15 details the new classification of the

existing solutions.

There are some differences between algorithm-based

and framework modelling-based solutions. A

framework modelling-based solution provides only

guidelines to follow. It is a scheme for applying ready

software or components. On the other hand, an

algorithm-based solution provides a systematic

approach for performing live VM migration in a fog-

computing environment.
There are two categories of algorithm-based

solutions. Traditional/conventional algorithms and AI-

based algorithms. AI-based solutions are more suitable

for solving complex and specialized problems where the

dynamic and large environment is a challenge. On the

other hand, a traditional algorithm solution is more

suitable for broad problems. Further, a traditional

algorithm results in static output, which makes it

inappropriate to cope with dynamically changing

(1)

(2)

984 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

environments like fog computing and mobile

computing. In dynamic environments, the learning will

be more efficient when the system learns from its own

experience.

5. Evaluation and Analysis of Existing Live

VM Migration Solutions

In this section, an evaluation and analysis of existing

live VM migration techniques out of both types of

algorithm-based and framework modeling-based is

presented.

5.1. Algorithm Based Solutions

5.1.1. Conventional Algorithms Based

5.1.1.1. Bin Packing Algorithm

Author Mann in [33] addressed load balancing in

fog/cloud environment. They discussed where to place

the VMs according to a Heuristic VM Scheduling

Strategy. The problem of minimizing the load balance

variance for the fog nodes was formulated as:

∑ 𝐼𝑛
𝑚𝑟𝑛 ≤ 𝜃𝑚

𝑁

𝑛=1

where ∑ 𝐼𝑛
𝑚𝑟𝑛

𝑁
𝑛=1 represents the resources allocated to

type m of computing nodes and 𝜃 𝑚 is the amount of

VM instances of that type. The applied strategy

allocates the VMs to the computing nodes which have

the same node type as the required VM instance type,

and which have enough spare space to host the VM. This

proposal applied Bin packing Best Fit Decreasing

(BFD) which is applied in scenarios where there is a

need to realize the process of computing nodes which

assign the VM into appropriate node. An experimental

evaluation and comparison analysis were conducted to

validate the efficiency of the proposed algorithm. A

comparison was made between First Fit Decreasing

(FFD), BFD and the suggested Heuristic Scheduling

Method (HSM). The results showed better performance

and better resource utilization when applying the

proposed HSM in comparison to FFD and BFD.

Although the study shows better performance

compared to other studies, it did not consider the

heterogeneity between the nodes of specific type

(Fog/Cloud). It assumes that all nodes of specific type

are homogenous and have the same architecture and

resources. Further, the study considers the users are in a

stationary mode.

5.1.1.2. Integer Linear Programming

A different approach is used in the study [34] where the

proposal used Integer Linear Programming (ILP) to find

out the best fog device to migrate the VM to it. It

considered mobility prediction and starts the process

before 5 minutes of user movement. Mouradian et al.

[34] used ILP to optimize the selection of physical

machines. The objective functions are:

1) Maximizing the accepted requests.

2) Minimizing the latency.

𝑚𝑎𝑥 ∑ ∑ 𝑃𝑎,𝑛
𝑛 ∈𝑁𝑎 ∈𝐴

where A is a set of applications to be executed, N is a set

of nodes and Pa,n is the placement matrix element with

value 1 if the application a is placed in the node n.

𝑚𝑖𝑛 ∑ ∑ 𝑃𝑎,𝑛 𝐶𝑎,𝑛
𝑛 ∈𝑁𝑎 ∈𝐴

where Ca,n is the cost matrix which calculates the latency

between a node n∈N and the user owner of the

application a∈A.

The study considered the requirements of

applications at the end user (edge) and how to choose

the best fog node to process the application based on the

application needs and computational resources of the

nodes. It ensured that the application is executed on one

server among all fog servers available. The server is

selected based on the available resources. However, the

limitations are: It assumes that all servers are of the

same type but may have different computational

resources. Further, in the simulation, they concentrate

on the mobility aspect and assume all fog nodes have

the same computational resources. The proposed model

did not include any parameters about the mobility in the

equations. It only considers mobility in the simulation

by using ready model. However, ILP is better used in

less complex scenarios where there is a set of predefined

physical fog devices, and it is only requiring deciding

where to migrate them.

5.1.1.3. Generic Fat Tree Algorithm

Authors Mukherjee et al. in [35] proposed an

algorithmic model by selecting a generic fat tree

architecture as an underlying topology. The main aim is

to reduce the latency and provide redundant paths at any

given time. The idea behind the fat tree is that it provides

a full redundancy of the network wherein there are

always available paths between any two switches at any

given time as illustrated in Figure 9. It considered

redundancy as a main requirement, which is a critical

factor in live migration. The proposal consists of three

layers: Edge layer is at the bottom of the system,

aggregation layer is in middle of the system, and core

layer is the upper one. Host Hh is the server layer that

performs only two actions for sending and receiving the

VMs. Mukherjee et al. [35] there are enough resources

to allocate the VMs within the system. The lowest layer

is the edge layer Ei, which is directly connected to the

servers. The aggregation layer Aj is the middle layer

where all switches monitor their ports all the time

waiting for incoming VMs. The core layer CL

interconnects different pods so that the ports of all

switches of this layer are looking downward to provide

a full mesh topology among all existing pods. Although

(3)

(4)

(5)

Live Virtual Machine Migration in Fog Computing: State of the Art 985

this mechanism ensured availability and redundancy, it

is not suitable for fog computing. It assumed that the fog

network consists of switches connected with wires only,

which does not match the fog characteristics. Further, it

is a costlier solution and difficult to implement in the

fog layer. Further, this study did not discuss how to

decide migration considering computational and

communication resources. It only considered the

available paths. No evaluation was carried out to

compare this mechanism with other solutions.

Figure 9. Fat tree topology [35].

5.1.1.4. Auction Algorithm

The authors Naha et al. in [36] implemented a strategy

of computation offloading under a scenario of multi-

users which considered the performance of the

intelligent devices and servers as illustrated in Figure

10. In this proposal, Naha et al. [36] adopted an auction

algorithm which takes into consideration the time

requirements of the applications and the resources of the

servers. Their mode is divided into three stages. The first

stage decides whether there is a need to offload the tasks

or not based on the energy and time consumption on the

local mobile/edge devices. If it is decided to offload or

migrate tasks, the second stage applies an Analytic

Hierarchy Process (AHP) method to select the suitable

server to offload based on the time and energy

consumption and the CPU resources. In the third stage,

the tasks are scheduled in the appropriate virtual

machine by applying an improved auction algorithm.

The time and energy consumptions are formulated as

follows:

𝑇𝐿 =
𝐶𝑛

𝑉𝐿

where Cn represents the computational resources

required by the task n and VL is the execution rate of the

local CPU.

𝐸𝐿 = 𝑇𝐿 𝑥 𝑃𝐿

where PL is the computing power of mobile devices. The

condition for offloading is formulated as follows:

𝑊 >
𝑉𝐿𝑃𝑢𝑝𝐷𝑛

𝑃𝐿𝐶𝑛 𝑙𝑜𝑔2(1 +
𝑃𝑢𝑝 𝑥 𝐿𝑜𝑠

𝑁
)

Where W is the channel bandwidth, Pup is the upload

power of the mobile devices, Los is the channel gain, N

is the Gauss noise power in the channel and Dn is the

amount of data that needs to be uploaded for the

computing tasks.

The following represents the tasks’ scheduling

auction model: This proposal did not address when to

migrate but only concentrates on where to migrate. It did

not consider downtime or latency reduction. It only

ensured the task was accomplished.

Figure 10. Auction model for tasks' scheduling [38].

5.1.1.5. Smart Elastic Scheduling Algorithm (SESA)

This study [37] aims to analyze and study existing

techniques and focusing on SESA and Modified Best-

Fit Decreasing as illustrated in Figure 11. First, the

researchers classified the work into main sections. The

first section deals with how clusters are organized

within the nodes. Then, it focuses on placement of VMs

considering the VMs that need to be migrated as per

Modified Best-Fit Decreasing Algorithm. The model

particularly emphasis is on addressing the power

efficiency and resource utilization of VM placement.

Figure 11. SESA algorithm [37].

5.1.1.6. A Service Migration Method for Resource

Competition (SMRC)

This study [38] depends on the request/response aspect

as shown in Figure 12. The users are considered mobile

but with fixed route. The decision of migration depends

on the user’s movement speed and data transmission

(8)

(7)

(6)

986 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

rate. This study considers the migration from one base-

station to another only. The task can send a pre-

migration request and then the user can migrate the task.

Figure 12. A summary of the steps of SMRC [38].

5.1.2. AI- based Solutions

5.1.2.1. Deep Reinforcement Learning

Authors Perera et al. in [39] proposed a container

migration architecture considering the communication

delay and computational power. The proposal is

implemented using reinforcement learning based on

Markov Decision Process (MDP) as illustrated in Figure

13. The proposal consisted of a mobile user layer, a fog

layer, and a cloud layer. The algorithm applied in this

study consists of three main parts: Action-selection

where the system must use two methods (exploration

and/or exploitation), next state observation and reward

calculation and Q-network update. In this study, the

delay and power consumption are formulated as

follows:

𝑑𝑛𝑒𝑡 = ∑ ∫(𝑘𝑛𝑒𝑡 𝑙𝑜𝑔10 𝑑𝑖

𝐼

𝑖=1

(𝑡) + 𝑏𝑛𝑒𝑡) 𝑑𝑡

𝑃𝑡𝑜𝑡𝑎𝑙 = ∫(∑(𝑝𝑖𝑑𝑙𝑒 + (𝑝𝑚𝑎𝑥 − 𝑝𝑖𝑑𝑙𝑒) 𝑥 𝑢𝑖(𝑡)

𝑚

𝑖=1

)) 𝑑

This proposal aimed at reducing the cost of the power

consumption and delay. The goal is to find the best

strategy that minimizes C, where C is

𝑚𝑖𝑛 𝐶 = 𝑤1𝑑𝑡𝑜𝑡𝑎𝑙 + 𝑤2𝑝𝑡𝑜𝑡𝑎𝑙 + 𝑚𝑡𝑜𝑡𝑎𝑙

and mtotal is the migration cost.

In a reinforcement learning algorithm, at each time slot

or episode Tt, the agent monitors the environment and

gets the state St then takes the action At according to a

pre-defined strategy to maximize the reward Rt-1. In this

study, a deep Q-learning algorithm was adopted to

enable fast computation. As the problem is complex, a

multi-dimensional and large scale MDP based model is

designed. Perera et al. [38] adopted deep learning and

especially deep Q-learning where it does not require

prior knowledge about the whole environment. In

addition, Q-learning has the advantage of fast decision-

making while traditional algorithms cannot solve large-

scale MDP problems with large state set and action set.

Deep reinforcement learning can handle such large size

problems. Similarly, study [40] proposed deep Q-

network for task migration in a mobile edge computing

system to generalize the experience of the agent rather

than knowing all the situations which is not possible in

the case of fog computing. The idea is that, at the initial

state, the agent does not know how to take the action but

in later states, the agent will learn which action will

increase the reward. In this system, the agent is the Fog

Master Controller (FMC) which has all information

about the network and the servers. The state at time slot

𝑡 ∈𝑇 is defined as st=ut where ut is the difference

between the user’s current location and the location after

the movement. Hence, mobility is the main trigger for

migration in this study. The FMC takes an action 𝑎 𝑡 ∈𝐴
to migrate or not to migrate based on the state. FMC gets

a reward based on its action and the current state. The

reward in this study is:

𝑟𝑡(𝑠𝑡, 𝑎𝑡) = 𝑞(𝑠𝑡) − 𝑐𝑡(𝑠𝑡, 𝑎𝑡) = {
𝑞(𝑠𝑡) 𝑖𝑓 𝑎𝑡 = 𝑎0

 𝐷 − 𝐶(𝑠𝑡) 𝑖𝑓 𝑎𝑡 = 𝑎1

where 𝑞 (𝑠 𝑡) is the quality of the service, D is the

maximum quality C(st) is the function of time delay.

The experiments showed that this proposal

outperforms the existing approaches which use dynamic

programming and the situations when “no migration”

decision is taken in terms of total reward.

Figure 13. Deep Q-network model [39].

5.2. Framework Modeling-based Solutions

5.2.1. Follow Me Model

Study [35] proposed a framework to support smooth

handover between the fog nodes in a timely manner. In

this study, Mukherjee et al. [35] followed the principle

of “follow me” like “follow me cloud” which aims at a

smooth migration between one data center to another

[26]. Further, there are few works using “follow me

edge” or “move with me” concepts where the main

trigger of migration is the mobility of the users. This is

helpful in situations where mobility is the main factor in

migrating. It pre-migrates the jobs when the handover is

expected to happen.

This proposal results in a reduction in the service

interruption time and downtime. The study guarantees

services continuity and reduces the latency during

(9)

(10)

(11)

(12)

Live Virtual Machine Migration in Fog Computing: State of the Art 987

handover. It proactively takes the decision of migrating

to the virtual machine. However, the limitations of this

proposal are that each fog node has one Software as a

Service (SAAS) server which is not practical. Further,

fog nodes are assumed to be connected via wired

connections, which is not always the case. In addition,

getting prior knowledge of users’ mobility is difficult.

This study only migrates processed jobs, which is not

suitable for applications with heavy data loads after job

processing. However, this method is good in scenarios

where user movement is fixed. This proposal developed

a framework which measures the strength of the signal

in the access point and then decides whether to migrate

or not. This proposal results in a reduction in the service

interruption time and downtime. The study guarantees

services continuity and reduces the latency during

handover. It proactively takes the decision of migrating

to the virtual machine.

Looking at the assumptions made to design the

framework, the design of the model considers access

points only as fog nodes. However, the fog layer is a

heterogeneous layer which consists of different types of

nodes with varying hardware capabilities, architectures,

OS, configuration, etc. This has been assumed across

the literature [9, 13, 19, 20, 41, 42, 43, 44, 45].

5.2.2. Discovery and Deployment Model

The authors Tang et al. in [46], proposed a Foglets

programming model that facilitates distributed

programming across the resource continuum from the

sensors to the cloud. In this model, the fog is augmented

with the right distributed programming model. The

Foglets model supports four main functionalities.

Firstly, it automatically discovers fog computing

resources at different levels of the network hierarchy

and deploys application components onto the fog

computing resources commensurate with the latency

requirements of each component in the application.

Secondly, it supports multi-application collate on any

compute node. Thirdly, it provides communication APIs

for components of the application that are deployed at

different physical levels of the network hierarchy to

communicate with one another to exchange application

state. Lastly, it supports both latency- and workload-

driven resource adaptation and state migration over

space (geo- graphic) and time to deal with the dynamism

in situation awareness applications.

5.2.3. Complexity Bandwidth Management Model

 In Tay et al. [47] proposed a Settable Complexity

Bandwidth Manager (SCBM) for the live migration of

VMs over 5G Fog Radio Area Network (FOGRAN)

Multipath Transmission Control Protocol (MPTCP)

connections as illustrated in Figure 14. The study

proposes SCBM for minimizing the energy consumed

by wireless devices in the fog environment to sustain the

migration process under different constraints on

migration time and downtime. The proposal aims to

optimize the energy consumption of several MPTCP

connections. The migration module of this proposal

focuses on how to manage the migration. The idea is to

update Q value out of Imax rates of the pre-copy rounds

that are spaced apart by 𝑆 ≜
𝐼𝑚𝑎𝑥

𝑄
 rounds over the round

index set={1,2,…….,Imax} where Imax is the maximum

number of migration pre-copy rounds, Q is the integer-

valued number of the pre-copy migration rates and 𝑆 ≜

is the resulting integer-valued size.

Figure 14. The main idea of proposed SCBM [46].

This study assumed that all devices are homogenous

and communicate only via wireless access points. It

discusses how to redirect the connection before the

migration happens. It takes decisions of migration based

on nearby servers and not any other parameters.

5.2.4. Multipath Transmission Control Protocol

Model

Authors in Teka et al. [48] applied a MPTCP approach

to improve the virtual machine migration time and the

network transparency of the applications. The study

assumes that each server in the edge/cloud environment

has at least two Network Interface Cards (NICs). The

migration technique followed uses MPTCP between the

sender and receiver to migrate the memory and disk

states in parallel, which in turn reduces the latency.

The main issue with this proposal is that it is only

concerned with increasing the bandwidth so that parallel

transfer is done. It is not concerned with taking

decisions regarding when and where to migrate. It

assumes that the decision is already taken and discusses

how to migrate using multi paths to increase the

bandwidth and reduce the latency. This approach is not

suitable for the fog environment as fog is a dynamic

environment and not implemented using servers only.

Hence it is difficult to ensure that each device has at

least two NICs.

Authors Kapil et al. in [29] suggested a nearby VM-

based approach to minimize the latency and save energy.

They are solving two problems. The first problem is that

the mobile device’s IP address is changed when the user

moves from one cloudlet to another. This will terminate

the established TCP connection with the virtual

machine. The second problem happens when the

destination cloudlet tries to access the source cloudlet

during the migration.

The idea of this proposal is avoiding re-establishment

988 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

of the TCP connection by using MP TCP and ensure that

one connection is opened even if the user is moving.

This approach only considers re-directing the

connection.

5.2.5. Layered Framework Model

Authors Teka et al. in [49] presented a layered approach

to migrate the services from the VMs or containers. The

framework is designed using an incremental file

synchronization approach. This framework applies

ready technologies. It consists of three layers: A base

layer, which is represented by a base package with no

application installed; an application layer, which

contains an idle version of the application; and an

instance layer, which contains the running state of the

service.

5.3.Classification Based on “Why to Migrate.”

Different studies have suggested different proposals to

enable live VM migration to optimize one or multiple

performance metrics. They applied their proposals in

different scenarios and use cases. First, an analysis must

be why the migration is needed. The following details

the main reasons that trigger live VM migration:

 Reduced Delay: The authors Kapil et al. in [29] and

Tay et al. [47] formulated the need of virtual machine

migration as a way to eliminate and reduce the delay

caused by service initiation time when migrating the

network connection from the source to the

destination in the migration process.

 Mobility: Both Mukherjee et al. [35] and Mouradian

et al. [34] agreed that VM migration is triggered by

the user mobility and the path should be ready for

migration based on a pre-defined mobility model.

Similarly, [50] agreed that mobility of the users

should be studied and a proper live VM migration

algorithm should be developed to follow the user

mobility in order to optimize the latency incurred by

this mobility. However, both Mouradian et al. [34]

and Wang et al. [50] take decisions on migration

proactively by following the user movement based on

a mobility prediction model. [40, 48, 49, 51] all

believed that mobility is the main reason to migrate

the VMs according to the user movement. However,

study [48] focuses on the network connection

migration and the issues associated with the user

mobility.

 Load Balancing: Mann in [33] stated that load

balancing is crucial in fog computing as the resources

are limited and hence suggested a heuristic model for

live VM migration in order to optimize the load of

the fog devices.

 Nodes Consolidation: The under loaded and

underutilized nodes can be switched off to save

energy and the VMs could be lively migrated to

another fog node [39, 52].

Apart from the classification based on why to migrate,

and as stated earlier, each proposal or mechanism is

developed to optimize at least one performance metric.

Performance metrics are the key factor in the solution

design. Here, a classification of the proposals based on

the purpose of migration and the performance metrics to

optimize as well as the different factors that affect those

metrics is provided. Table 3 discusses the different

performance metrics.

Table 3. Summary of existing live VM migration solutions.

AG L/N M H FD COF RTA MT

F MF T W WS M S N

NA [50] L √ x √ x S √ AR √

DDP [46] L √ x √ x S √ ITS √

DRL [39] L x x √ x S - - - √

SCBM [47] L √ x √ x S - - - √ -

BFD [33] L x x √ x S - - - - - -

ILP [34] L √ x √ x S √ √ VS - -

Deep learning [53] L √ x √ x S √ VO √

Generic fat tree architecture [35] L √ x √ x S √ √ - - - -

Auction algorithms [36] - √ x √ x S √ DA - - -

MPTCP [48] L √ x √ x S √ - √ √ √

DRL [40] L √ x √ x S √ FR - - -

PL-Edge [51] L √ x √ x S √ VO - - -

LF [49] L √ x √ x S √ OG - √ √

MPTCP [29] L √ x √ x S VS √

SESA [37] L √ √ x S √ - √ √ √

SMRC [38] L √ √ x S √ - √

 The abbreviation list: AG: Algorithm used, NA: Not Applicable. L/N: Live, Non-Live Migration. M: Mobility of End Users. H: Heterogeneity of Fog nodes. FD: Fog
Device. T: Type, F: Fixed, MF: Mobile. S: Same. D: Different. COF: Connectivity of Fog Devices. W: Wired. WS: Wireless. RTA: Real Time Applications.AR:

Augmented Reality, VR: Virtual Reality, HL: Health, ITS: Intelligent Transportation System. FR: Face Recognition, VO: Voice Recognition, OG: Online Gaming, VS:

Vehicular System, DA: Divisible applications, MT: Migration Type, M: Memory, S: Storage, N: Network. BFD: Best Fit Decreasing. DDP: Discovery and Deployment

Protocol. DRL: Deep Reinforcement Learning algorithms. SCBM: Settable-Complexity Bandwidth Manager, TCBM: Tunable-Complexity Bandwidth Manager. PS:
Policies and Strategies, MPTCP: Multipath TCP, PL-Edge: Policy-VM Latency-aware consolidation scheme for mobile Edge computing, LF: Layered Framework.

From Table 3, we can see that most of the studies

proposed solutions to optimize more than one

performance metric simultaneously, while few others

focused on one metric only. Different performance

metrics are studied in the literature and explored by us

including downtime, TMT, mean time to repair, mean

Live Virtual Machine Migration in Fog Computing: State of the Art 989

time to recover, failure rate, latency, energy saving,

bandwidth utilization and resource utilization. For each

performance metric, there are factors that hinder the

achievement of the best values. The following factors

were identified affecting the performance metrics:

Network bandwidth, heterogeneity of the fog devices,

mobility of the users and fog devices, late decision to

migrate the VMs and early handover for the VMs, and

data size.

Further, it is noticed that the two most common

metrics are latency and downtime optimization. Authors

in Mouradian et al. [34], Teka et al. [48], and Wang et

al. [50] proposed solutions to reduce the latency and

downtime caused by live VM migration. They stated

that the main purpose of live virtual machine migration

is to transfer the tasks of the user without interrupting

the service, especially for time-sensitive applications.

Hence, their solutions are developed in such a way to

reduce the latency and downtime. However, those

metrics are affected by many factors. Mobility of the

devices is the main factor. When users or fog devices

move, the downtime is affected. Another factor with

impact is the network bandwidth [15]. When the

bandwidth is low, the latency and downtime are high.

[31] used Myifogsim and [50] used prototype testing.

The author Mann in [33] stated that load balancing is

one of the key factors to help fog computing achieving

better resource utilization as fog devices are resource-

constrained devices. The author Mann [33] live VM

migration as a powerful tool for resource management,

so it is crucial to balance the load in the fog layer to

avoid any overloading or underloading. They used

Cloudsim to test the load balancing metric. However,

this metric is affected by the network bandwidth and

heterogeneity of the fog devices. Therefore, it becomes

difficult to balance the load across different devices with

different computational resources and functionalities

(e.g., routers, access points, base stations, vehicles,

etc.,). Both Naha et al. [36] and Tay et al. [47] agreed

that the smart and edge devices suffer from limited

resources and energy. They stated that energy

consumption still offsets the benefits of live VM

migration. Therefore, there is a need to optimize energy

consumption to help the edge and mobile devices to

meet the growing needs of low-latency and resource-

intensive applications. However, as with any other

performance metrics, energy consumption is affected by

several factors including the size of the data to be

migrated and the mobility of the users.

To conclude, it is noted that no study addresses the

availability and robustness of the migrated VMs.

Further, no study discussed how to optimize the Mean

Time to Repair and the Mean Time to Recover (MTTR

and MTTRe) especially when a wrong decision is taken

and when the migration fails. These metrics are affected

by many factors including the heterogeneity of fog

devices and mobility.

Both MTTR and MTTRe can be defined as follows:

 Mean Time To Repair (MTTR): it is the amount of

time required to repair the failure of live VM

Migration on a wrong decision and restore the service

to functionality on an appropriate fog node.

𝑀𝑇𝑇𝑅 =
𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑎𝑖𝑟𝑠

 Mean Time To Recover (MTTR): it is the average

time from the time the live VM migration fails until

the time it is resumed on another fog node

successfully.

𝑀𝑇𝑇𝑅𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 (𝑜𝑢𝑡 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

Looking at other comparison factors and when

discussing live virtual machine migration, a few more

criteria need to be considered. The following discusses

some of those criteria:

 Granularity: this is concerned with whether the

proposed solutions consider multiple migrations at

the same time or a single migration only. Most of the

studies in the literature mentioned multiple

migrations they did not reflect that in the designs of

their solutions.

 Migration decision time: this criterion is concerned

with the timing of the migration. It is worth noting

that most of the studies proposed reactive designs in

which VM migration is triggered by some factors like

overloading of the physical machine and user

mobility. This reactive decision making may lead to

late handover. The migration will be done after the

trigger is detected. It then takes time to decide and

choose an appropriate fog device to host the virtual

machine and then migrate.

However, a few studies only proactively migrate VMs

based on different inputs. For example, the study in [34]

takes the mobility prediction of the user from GPS input

and proactively decides on when and where to migrate.

This is better than a reactive solution as, according to

the study, it can decrease the latency and the number of

migrations needed. However, this also may incur some

issues like early handover and reduced reliability as it

should not depend only on the mobility prediction as fog

environment has some other several characteristics

which might affect the decision such as:

Decentralization nature, heterogeneity, location-

awareness, etc. Such solutions should consider the issue

of the user changing movement pattern.

 Decision to be taken: Each study takes a decision

related to the time to migrate or the place to migrate

to. Most of the studies take decisions regarding where

to migrate. Only two studies discussed when to

migrate. Study [50] discusses when to migrate by

pre-migrating the jobs to ensure that the migration

decision is taken and the process is started before the

full handover. However, the authors in Mouradian et

al. [34], addressed when and where to migrate.

(13)

(14)

990 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Regarding “when to migrate,” they refer to ready

mobility models to take the decision in a pro-active

manner. As for “when to migrate,” it is based on the

resource’s availability. It is the only study in the

literature we came across which considers both

decisions.

5.4. Studies on “What Component to Migrate”

Here a classification about the studies based on what

element is migrated is discussed. It can be a service, a

task, a job, the VM itself, or an application component.

 Task: It is an execution of a single process in the fog

node.

 Job: It is a collection of multiple tasks on the fog

node.

 Service: It is software that performs tasks. It

automatically starts in the background when the tasks

start.

 Application: It is a program which interacts with the

user to accomplish a particular task.

 Virtual Machine: It is a system image that behaves

like an actual computer and shares the physical

computer resources including memory, CPU, and

disk resources.

It is noted that the most used terms in the literature are

the service and the task while in the implementation, the

full virtual machine migration is considered. There is

another classification based on what to be migrated

which considers the environment to be migrated

whether it is a VM or a container. It is worth noting that

most of the studies focus on virtual machine migration

although some recent studies considered container

migration because containers are lighter than VM and

require less time to boot and initialize in contrast of the

virtual machine which needs more time to boot and

results in a delay. Table 4 summarizes the studies based

on what is migrated.

Table 4. Migrated components.

Migrated

component

Reference Use case

Task [40][36] FR, vehicles

Service [33] [49] Video surveillance, OG, face

detection

Application [46] Vehicles

Job [50] Smart sport and smart tourism

Full VM [28], [34], [35], [47],

[48], [51], [53]

Vehicles, VO applications

In this classification, we differentiate between the

studies based on the components they migrate. As

shown in Table 5 most of the studies across in the

literature address the migration of the virtual machine

itself. Some studies, however, do address the migration

of services and tasks while others address the migration

of jobs and applications.

Table 5. What to migrate.

Environment VM Container

Literature studies [29], [33], [34], [35],

[36], [40], [47], [48],

[49], [50] , [51], [53],

[54]

[39], [46], [49]

Figure 15. Classification of live VM migration methods in fog computing.

To link the components to migration, the

environment of migration is studied whether it is a

virtual machine migration or a container migration. It is

noticed that most of the studies fall under the virtual

machine migration category although some recent

studies moved towards container migration. Table 6

concludes the classification with the factors regarding

when and where to migrate.

Live Virtual Machine Migration in Fog Computing: State of the Art 991

Table 6. Common classification factors.

Study Granularity (S/M) Timing of the decision Nature of decision

Single Multiple Reactive Proactive When Where

[51] √ √ √

[47] √ √ √ √

[40] √ √ √

[48] √ √ √

[34] √ √ √

[35] √ √ √ √

[54] √ √ √ √

[36] √ √ √

[37] √ √ √

[49] √ √ - -

[50] √ √ - -

[41] √ √ √

[52] √ √ √

Table 7 details the ket findings of exisitng models of

VM migration.

Table 7. Key findings of existing models of VM migration.

Evaluation

and analysis

of existing

live VM

migration

solutions.

Key concepts/ Findings

 Two categories of algorithm-based solutions.

Traditional/conventional algorithms and AI-based
algorithms.

 AI-based solutions are more suitable for solving complex
and specialized

 A traditional algorithm solution is more suitable for broad

problems.

 Algorithms can be classified based on: “why to migrate,”

“what component to migrate.”

6. Container versus Virtual Machine

When discussing VM migration, it must not ignore the

discussion about the containers. Although there are

many common points between them, there are also

many differences worth discussing [35].

Containerization is an OS-Level virtualization where

the kernel is shared between the users. Multiple users

can use the kernel’s resources simultaneously in an

isolated environment. The virtualization instances in

that case are called containers [13]. The software in the

container can share the resources provided by the kernel

and assigned to this container [13].

To compare between container and virtual machine,

containers are OS-Level virtualization while VM

implies both OS-level and hardware-level

virtualization. Containers are lighter in weight than VM

which might result in less challenges than VM [40].

According to [55], the container has several advantages

over VMs. However, there are a few differences like the

performance, size, and ease of use.

Containers require less time to boot and initialize in

contrast to the virtual machine which needs more time

to boot which in turn leads to a delay in the process.

Hence, container is faster than VM [56]. Recalling how

a virtual machine migrates, the memory state is copied

and transferred to the destination over several iterations

until all dirty pages are transferred. Meanwhile, the

storage is transferred, and the network connection is

redirected. The iterations take longer time if the

iterations take longer time if the memory pages are big

[56].

On the other hand, containers are lighter, and the

process of migration them is different. It does not incur

a large amount of time. The process of the migration is

done by simply killing the container at the source and

recreating it on the destination physical host. This

process is known as Checkpoint and Restore where a

checkpoint is created, and the state of the current

applications is restored at the destination.

Although container has several advantages over

virtual machine, but it also has several issues not

suffered by VM. For example, as containers are sharing

the kernel resources, they also share some libraries. This

means that during the migration process, the destination

should ensure that those libraries are prepared and ready

before the migration [35]. In contrast, VM does not

require preparing the libraries before migration.

Table 8 illustrates the key points of the comparison

between VM and containers.

Table 8. Key findings of containers Vs.VM.

Container

Versus

Virtual

Machine

Key Concepts/ Findings

 Containerization is an OS-level virtualization

 VM implies both OS-level and hardware-level

virtualization.

 Containers are lighter in weight than VM containers

require less time to boot and initialize in contrast to the
virtual machine which needs more time.

Table 9 lists the summary points of open questions

and challenges.

Table 9. Summary of open questions and challenges.

Open questions

and challenges.

Key concepts/ Findings

 Heterogeneity of the fog devices.

 Priority of fog devices.

 When and where to migrate.

 Migration overheads.

 Mobility models.

7. Open Questions and Challenges

To summarize, all the studies have some common

research gaps and remaining research questions to

address including the following:

 Heterogeneity of the fog devices: According to

Bittencourt et al. [13], fog computing is characterized

by the heterogeneity of nodes and hence there is a

need for virtualization mechanisms that run on

different types of fog nodes. As seen across the

literature, most of the studies ignore this aspect and

assume that fog devices are homogenous. So, how

will the heterogeneous devices handle the migration

without affecting the running services and with

minimum downtime?.

 Priority of fog devices: As stated in Habibi et al. [25],

each fog is responsible to do its own functions and

the fog-related functions always come in the second

priority. This would prevent the real-time

applications from achieving their objective of low

latency and will incur delays. Hence, a remaining

question is how to balance between the devices’ own

992 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

functions and the fog-related functions to optimize

the performance of real-time applications.

 When and where to migrate: The two aspects should

be studied together and not independently. Most of

the studies design their solutions to decide where to

migrate without paying attention to when to migrate.

This might cause a problem of late or early handover

and hence failure of the migration process.

 Migration overheads: According to Mukherjee et al.

[35], a good VM live migration strategy should

consider in its design the overhead incurred by the

migration and try to minimize it. Such overheads

include computational overhead, network overhead

and space overhead. Most of the existing proposals

did not consider the overhead reduction in their

proposals.

 Mobility models: they should be more accurate by

considering the possible changes in the expected user

mobility pattern. Most of the studies used ready

mobility models which assume unrealistically that

the user movement is fixed, and the user moves in

one specific direction. The design should consider

possible changes in the expected user movement

pattern.

 Speed: Fog network is closer to the end users which

enables the users to run real-time applications as it

will run on fog layer which will be faster [57].

8. Conclusions and Future Work

To conclude, live VM migration is a key technique for

real-time applications, but it has several challenges that

need addressing. This paper summarizes the state-of-

the-art technologies in live virtual machine migration in

the field of fog computing. All the technologies are

compared with each other by using the performance

metrics and overheads discussed from the review, the

following conclusions were drawn:

1) Most virtual machine algorithms decide only to

check either when to migrate the virtual machine or

where to migrate. Few studies considered both

factors in the decision.

2) Most of the studies ignored the fact that the fog nodes

are heterogenous and assumed that the node are

homogenous.

3) Most of the studies did not consider the issue of early

and late handover although it is a critical factor in

real-time applications run on fog layer.

The paper also presented a new classification for the

existing literature. It divided the solutions based on

algorithms based and framework model based and

further broken into subcategories, where algorithm-

based classification is divided into conventional based

and AI-based.

References

[1] Aazam M., Zeadally S., and Harras K.,

“Offloading in Fog Computing for IoT: Review,

Enabling Technologies, and Research

Opportunities,” Future Generation Computer

Systems, vol. 87, pp. 278-289, 2018.

https://doi.org/10.1016/j.future.2018.04.057

[2] Abou-Tair D., Büchsenstein S., and Khalifeh A.,

“A Fog Computing-Based Framework for Privacy

Preserving IoT Environments,” The International

Arab Journal of Information Technology, vol. 17,

no. 3, pp. 306-315, 2020.

https://doi.org/10.34028/iajit/17/3/4

[3] Ahmed A., Arkian H., Battulga D., Fahs A., and

Farhadi M., “Fog Computing Applications:

Taxonomy and Requirements,” arXiv Preprint,

arXiv:1907.11621, 2019.

https://doi.org/10.48550/arXiv.1907.11621

[4] Ahmad K., Mohammad O., Atieh M., and

Ramadan H., “Enhanced Performance and Faster

Response using New IoT Litetechnique,” The

International Arab Journal of Information

Technology, vol. 16, no. 3A, pp. 548-556, 2019.

https://iajit.org/PDF/Special%20Issue%202019,

%20No.%203A/18601.pdf

[5] Akintoye S. and Bagula A., “Improving Quality-

of-Service in Cloud/Fog Computing through

Efficient Resource Allocation,” Sensors, vol. 19,

no. 6, pp. 1-29, 2019.

https://doi.org/10.3390/s19061267

[6] Amendola D., Cordeschi N., and Baccarelli E.,

“Bandwidth Management VMs Live Migration in

Wireless Fog Computing for 5G Networks,” in

Proceedings of the 5th IEEE International

Conference on Cloud Networking (Cloudnet),

Pisa, pp. 21-26, 2016.

DOI:10.1109/CloudNet.2016.36

[7] Anawar M., Wang S., Zia M., Jadoon A., Akram

U., and Raza S., “Fog Computing: An Overview

of Big IoT Data Analytics,” Wireless

Communications and Mobile Computing, vol.

2018, pp. 1-23, 2018.

https://doi.org/10.1155/2018/7157192d

[8] Atlam H., Walters R., and Wills G., “Fog

Computing and the Internet of Things: A Review,”

Big Data and Cognitive Computing, vol. 2, no. 2,

pp. 1-18, 2018.

https://doi.org/10.3390/bdcc2020010

[9] Baccarelli E., Scarpiniti M., and Momenzadeh A.,

“Fog-Supported Delay-Constrained Energy-

Saving Live Migration of VMs over MultiPath

TCP/IP 5G Connections,” IEEE Access, vol. 6, pp.

42327-42354, 2018.

DOI:10.1109/ACCESS.2018.2860249

[10] Bao W., Yuan D., Yang Z., Wang S., Li W., Zhou

B., and Zomaya A., “Follow Me Fog: Toward

Seamless Handover Timing Schemes in a Fog

https://doi.org/10.1016/j.future.2018.04.057
https://doi.org/10.48550/arXiv.1907.11621
https://doi.org/10.3390/s19061267
https://doi.org/10.3390/bdcc2020010

Live Virtual Machine Migration in Fog Computing: State of the Art 993

Computing Environment,” IEEE Communications

Magazine, vol. 55, no. 11, pp. 72-78, 2017.

DOI:10.1109/MCOM.2017.1700363

[11] Besharati R. and Rezvani M., “A Prototype

Auction-based Mechanism for Computation

Offloading in Fog-Cloud Environments,” in

Proceedings of the 5th Conference on Knowledge

Based Engineering and Innovation, Tehran, pp.

542-547, 2019.

DOI:10.1109/KBEI.2019.8734918

[12] Bi Y., Han G., Lin C., Deng Q., Guo L., and Li F.,

“Mobility Support for Fog Computing: An SDN

Approach,” IEEE Communications Magazine,

vol. 56, no. 5, pp. 53-59, 2018.

DOI:10.1109/MCOM.2018.1700908

[13] Bittencourt L., Immich R., Sakellariou R.,

Fonseca N., and Madeira E., “The Internet of

Things, Fog and Cloud Continuum: Integration

and Challenges,” Internet of Things, vol. 2-3, pp.

134-155, 2018.

https://doi.org/10.1016/j.iot.2018.09.005

[14] Bittencourt L., Lopes M., Petri I., and Rana O.,

“Towards Virtual Machine Migration in Fog

Computing,” in Proceedings of the 10th

International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing, Krakow, pp. 1-8,

2015, DOI:10.1109/3PGCIC.2015.85

[15] Botta A., De Donato W., Persico V., and Pescapé

A., “Integration of Cloud Computing and Internet

of Things: A Survey,” Future Generation

Computer Systems, vol. 56, pp. 684-700, 2016.

https://doi.org/10.1016/j.future.2015.09.021

[16] Chaufournier L., Sharma P., Le F., Nahum E.,

Shenoy P., and Towsley D., “Fast Transparent

Virtual Machine Migration in Distributed Edge

Clouds,” in Proceedings of the 2nd ACM/IEEE

Symposium on Edge Computing, Wilmington, pp.

1-13, 2017.

https://doi.org/10.1145/3132211.3134445

[17] Choudhary A., Govil M., Singh G., Awasthi L.,

Pilli E., and Kapil D., “A Critical Survey of Live

Virtual Machine Migration Techniques,” Journal

of Cloud Computing: Advances, Systems and

Applications, vol. 6, no. 1, pp. 1-41, 2017.

DOI:10.1186/s13677-017-0092-1

[18] Damania K., Holmukhe S., Singhai V., and

Bhavathankar P., “An Overview of VM Live

Migration Strategies and Technologies,” in

Proceedings of the 2nd International Conference

on Electronics, Communication and Aerospace

Technology, Coimbatore, pp. 1185-1190, 2018.

DOI:10.1109/ICECA.2018.8474910

[19] Doan T., Nguyen G., Salah H., Pandi S., Jarschel

M., Pries R., and Fitzek F., “Containers vs Virtual

Machines: Choosing the Right Virtualization

Technology for Mobile Edge Cloud,” in

Proceedings of the IEEE 2nd 5G World Forum,

Dresden, pp. 46-52, 2019. DOI:

10.1109/5GWF.2019.8911715

[20] Duan J., Ren K., Zhou W., Xu Y., and Dou W., “A

Service Migration Method for Resource

Competition in Mobile Edge Computing,” in

Proceedings of the IEEE International

Performance, Computing, and Communications

Conference, Austin, pp. 1-8, 2021.

DOI:10.1109/IPCCC51483.2021.9679421

[21] Genez T., Tso F., and Cui L., “Latency-Aware

Joint Virtual Machine and Policy Consolidation

for Mobile Edge Computing,” in Proceedings of

the 15th IEEE Annual Consumer Communications

and Networking Conference, Las Vegas, pp. 1-6,

2018. DOI:10.1109/CCNC.2018.8319204

[22] Giri A., Dutta S., Neogy S., Dahal K., and Pervez

Z., “Internet of things (IoT): A Survey on

Architecture, Enabling Technologies,

Applications and Challenges,” in Proceedings of

the 1st International Conference on Internet of

Things and Machine Learning IML'17, Liverpool,

pp. 1-12, 2017.

https://doi.org/10.1145/3109761.3109768

[23] Goncalves D., Velasquez K., Curado M.,

Bittencourt L., and Madeira E., “Proactive Virtual

Machine Migration in Fog Environments,” in

Proceedings of the IEEE Symposium on

Computers and Communications, Natal, pp.

00742-00745, 2018.

DOI:10.1109/ISCC.2018.8538655

[24] Govindaraj K. and Artemenko A., “Container

Live Migration for Latency Critical Industrial

Applications on Edge Computing,” in

Proceedings of the IEEE 23rd International

Conference on Emerging Technologies and

Factory Automation, Turin, pp. 83-90, 2018.

DOI10.1109/ETFA.2018.8502659

[25] Habibi P., Farhoudi M., Kazemian S., Khorsandi

S., and Leon-Garcia A., “Fog Computing: A

Comprehensive Architectural Survey,” IEEE

Access, vol. 8, pp. 69105-69133, 2020.

DOI:10.1109/ACCESS.2020.2983253

[26] Haouari F., Faraj R., and AlJa’am J., “Fog

Computing Potentials, Applications, and

Challenges,” in Proceedings of the International

Conference on Computer and Applications,

Beirut, pp. 399-406, 2018.

DOI:10.1109/COMAPP.2018.8460182

[27] Hu P., Dhelim S., Ning H., and Qiu T., “Survey on

Fog Computing: Architecture, Key Technologies,

Applications and Open Issues,” Journal of

Network and Computer Applications, vol. 98, pp.

27-42, 2017.

https://doi.org/10.1016/j.jnca.2017.09.002

[28] Jiang Y., Huang Z., and Tsang D., “Challenges

and Solutions in Fog Computing Orchestration,”

IEEE Network, vol. 32, no. 3, pp. 122-129, 2018.

DOI:10.1109/MNET.2017.1700271

[29] Kapil D., Pilli E., and Joshi R., “Live Virtual

994 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Machine Migration Techniques: Survey and

Research Challenges,” in Proceedings of the 3rd

IEEE International Advance Computing

Conference, Ghaziabad, pp. 963-969, 2013.

DOI:10.1109/IAdCC.2013.6514357

[30] Kaur A., Kumar S., Gupta D., Hamid Y., Hamdi

M., and KsibiA., “Algorithmic Approach to

Virtual Machine Migration in Cloud Computing

with Updated SESA Algorithm,” Sensors, vol. 23,

no. 13, pp. 1-18, 2023.

https://doi.org/10.3390/s23136117

[31] Li S., Tryfonas T., and Li H., “The Internet of

Things: A Security Point of View,” Internet

Research, vol. 26, no. 2, pp. 337-359, 2016. DOI:

10.1108/IntR-07-2014-0173

[32] Machen A., Wang S., Leung K., Ko B., and

Salonidis T., “Live Service Migration in Mobile

Edge Clouds,” IEEE Wireless Communications,

vol. 25, no. 1, pp. 140-147, 2018.

DOI:10.1109/MWC.2017.1700011

[33] Mann Z., “Notions of Architecture in Fog

Computing,” Computing, vol. 103, no. 1, pp. 51-

73, 2021. https://doi.org/10.1007/s00607-020-

00848-z

[34] Mouradian C., Naboulsi D., Yangui S., Glitho R.,

Morrow M., and Polakos P., “A Comprehensive

Survey on Fog Computing : State-of-the-Art and

Research Challenges,” IEEE Communications

Surveys and Tutorials, vol. 20, no. 1, pp. 416-464,

2018. DOI: 10.1109/COMST.2017.2771153

[35] Mukherjee M., Shu L., and Wang D., “Survey of

Fog Computing: Fundamental, Network

Applications, and Research Challenges,” IEEE

Communications Surveys and Tutorials, vol. 20,

no. 3, pp. 1826-1857, 2018.

DOI:10.1109/COMST.2018.2814571

[36] Naha R., Garg S., Georgakopoulos D., Jayaraman

P., Gao L., Xiang Y., and Ranjan R., “Fog

Computing: Survey of Trends, Architectures,

Requirements, and Research Directions,” IEEE

Access, vol. 6, pp. 47980-48009, 2018.

DOI:10.1109/ACCESS.2018.2866491

[37] Noura M., Atiquzzaman M., and Gaedke M.,

“Interoperability in Internet of Things :

Taxonomies and Open Challenges

Interoperability in Internet of Things :

Taxonomies and Open Challenges,” Mobile

Networks and Applications, vol. 24, pp. 796-809,

2019. https://doi.org/10.1007/s11036-018-1089-9

[38] Perera C., Qin Y., Estrella J., Reiff-Marganiec S.,

and Vasilakos A., “Fog Computing for

Sustainable Smart Cities: A Survey,” ACM

Computing Surveys, vol. 50, no. 32, pp. 1-43,

2017. https://doi.org/10.1145/3057266

[39] Perera C., Zaslavsky A., Christen P., and

Georgakopoulos D., “Context Aware Computing

for the Internet of Things: A Survey,” IEEE

Communications Surveys and Tutorials, vol. 16,

no. 1, pp. 414-454, 2014.

DOI:10.1109/SURV.2013.042313.00197

[40] Portnoy M., Virtualisation Essesntials, John

Wiley and Sons, 2012.

https://www.gettextbooks.com/isbn/97811181767

19/

[41] Puliafito C., Vallati C., Mingozzi E., Merlino G.,

Longo F., and Puliafito A., “Container Migration

in the Fog: A Performance Evaluation,” Sensors,

vol. 19, no. 7, pp. 1-22, 2019,

https://doi.org/10.3390/s19071488

[42] Roig P., Alcaraz S., Gilly K., and Juiz C.,

“Modelling VM Migration in a Fog Computing

Environment,” Elektronika Ir Elektrotechnika,

vol. 25, no. 5, pp. 75-81, 2019.

https://doi.org/10.5755/j01.eie.25.5.24360

[43] Saurez E., Hong K., Lillethun D., Ramachandran

U., and Ottenwälder B., “Incremental Deployment

and Migration of Geo-Distributed Situation

Awareness Applications in the Fog,” in

Proceedings of the 10th ACM International

Conference on Distributed and Event-based

Systems, California, pp. 258-269, 2016.

https://doi.org/10.1145/2933267.2933317

[44] Sheng J., Hu J., Teng X., Wang B., and Pan X.,

“Computation Offloading Strategy in Mobile

Edge Computing,” Information, vol. 10, no. 6, pp.

1-20, 2019. https://doi.org/10.3390/info10060191

[45] Singh G. and Gupta P., “A Review on Migration

Techniques and Challenges in Live Virtual

Machine Migration,” in Proceedings of the 5th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and

Future Directions), Noida, pp. 542-546, 2016.

DOI: 10.1109/ICRITO.2016.7785015

[46] Tang Z., Zhou X., Zhang F., Jia W., and Zhao W.,

“Migration Modeling and Learning Algorithms

for Containers in Fog Computing,” IEEE

Transactions on Services Computing, vol. 12, no.

5, pp. 712-725, 2019.

DOI:10.1109/TSC.2018.2827070

[47] Tay Y., Gaurav K., and Karkun P., “A Performance

Comparison of Containers and Virtual Machines

in Workload Migration Context,” in Proceedings

of the IEEE 37th International Conference on

Distributed Computing Systems Workshops,

Atlanta, pp. 61-66, 2017.

DOI:10.1109/ICDCSW.2017.44

[48] Teka F., Lung C., and Ajila S., “Nearby Live

Virtual Machine Migration Using Cloudlets and

Multipath TCP,” Journal of Cloud Computing,

vol. 5, no. 1, pp. 1-21, 2016.

https://doi.org/10.1186/s13677-016-0061-0

[49] Teka F., Lung C., and Ajila S., “Seamless Live

Virtual Machine Migration with Cloudlets and

Multipath TCP,” in Proceedings of the IEEE 39th

Annual Computer Software and Applications

Conference, Taichung, pp. 607-616, 2015.

https://doi.org/10.1007/s00607-020-00848-z
https://doi.org/10.1007/s00607-020-00848-z
https://link.springer.com/journal/11036
https://link.springer.com/journal/11036
https://doi.org/10.1007/s11036-018-1089-9
https://dl.acm.org/toc/csur/2018/50/3
https://dl.acm.org/toc/csur/2018/50/3
https://doi.org/10.1145/3057266
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1186/s13677-016-0061-0

Live Virtual Machine Migration in Fog Computing: State of the Art 995

DOI: 10.1109/COMPSAC.2015.31

[50] Wang S., Xu J., Zhang N., and Liu Y., “A Survey

on Service Migration in Mobile Edge

Computing,” IEEE Access, vol. 6, pp. 23511-

23528, 2018.

DOI:10.1109/ACCESS.2018.2828102

[51] Xu X., Liu Q., Qi L., Yuan Y., Dou W., and Liu A.,

“A Heuristic Virtual Machine Scheduling Method

for Load Balancing in Fog-Cloud Computing,” in

Proceedings of the IEEE 4th International

Conference on Big Data Security on Cloud, IEEE

International Conference on High Performance

and Smart Computing, and IEEE International

Conference on Intelligent Data and Security,

Omaha, pp. 83-88, 2018.

DOI:10.1109/BDS/HPSC/IDS18.2018.00030

[52] Yi S., Hao Z., Qin Z., and Li Q., “Fog Computing:

Platform and Applications,” in Proceedings of the

3rd IEEE Workshop on Hot Topics in Web Systems

and Technologies, Washington (DC), pp. 73-78,

2016. DOI: 10.1109/HotWeb.2015.22

[53] Yousefpour A., Fung C., Nguyen T., Kadiyala K.,

Jalali F., Charlotte U., and Jue J., “All One Needs

to Know about Fog Computing and Related Edge

Computing Paradigms : A Complete Survey,”

Journal of Systems Architecture, vol. 98, pp. 289-

330, 2019.

https://doi.org/10.1016/j.sysarc.2019.02.009

[54] Zhang C. and Zheng Z., “Task Migration for

Mobile Edge Computing Using Deep

Reinforcement Learning,” Future Generation

Computer Systems, vol. 96, pp. 111-118, 2019.

https://doi.org/10.1016/j.future.2019.01.059

[55] Zhang F., “Challenges and New Solutions for Live

Migration of Virtual Machines in Cloud

Computing Environments,” Doctoral Theses,

Georg-August University, 2018.

file:///C:/Users/user/Downloads/dissertation-

submission.pdf

[56] Zhang F., Liu G., Fu X., and Yahyapour R., “A

Survey on Virtual Machine Migration:

Challenges, Techniques, and Open Issues,” IEEE

Communications Surveys and Tutorials, vol. 20,

no. 2, pp. 1206-1243, 2018.

DOI:10.1109/COMST.2018.2794881

[57] Zhou Z., Liao H., Zhao X., Ai B., and Guizani M.,

“Reliable Task Offloading for Vehicular Fog

Computing under Information Asymmetry and

Information Uncertainty,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 9, pp. 8322-

8335, 2019. DOI:10.1109/TVT.2019.2926732.

Shahd Alqam received the bachelor

and M.Sc. degree in Engineering in

Computer hardware from Coventry

University-UK, in 2011 and 2013

respectively. She is currently

continuing her Ph. D study in

Computer Science from Sultan Qaboos University-

Oman. Her research interest is Computer hardware,

Networking, Cybersecurity and Internet of Things.

Nasser Alzeidi received his PhD

degree in computer science from the

University of Glasgow (UK) in 2007.

He is currently an Associate Professor

of computer science and the Deputy

Vice Chancellor for Administrative

and Financial affairs at Sultan Qaboos

University. His research interests include IoT

architectures, Blockchain, performance evaluation of

communication systems, wireless networks,

interconnection networks, System on Chip architectures

and parallel and distributed computing. Dr. Alzeidi

supervised a large number of M.Sc. and PhD students in

different Computer Science and related areas. He has

been the director for the Center for Information Systems

and led the digital transformation projects and initiatives

at Sultan Qaboos University for seven years. He is a

member of editorial boards of international journals and

conference committees. He has developed a number of

cutting-edge courses and given many keynote talks,

conference presentations and media interviews. He is

also a member of the IEEE.

Abderezak Touzene is a full

professor and Head of Department

Computer Science at the College of

Science, Sultan Qaboos University,

Muscat, Sultanate of Oman. He has

more than 30 years of teaching and

research experience. He obtained his

Ph.D. from Institute Polytechnique de Grenoble, France

(1992), M.Sc. from Paris University, France (1989), and

B.Sc. from University of Technology Houari

Boumediene, Algeria (1987) His area of interest

includes Smart Systems, Cloud computing,

Cybersecurity, Machine Learning, Big Data analytics,

IoT, etc. In the last five years, he has published 23

Journals and 11 conference publications. He has

received 8 research grants and is on the editorial board

of several journals and conferences.

Khaled Day received the MSc and

PhD degrees in computer science

from the University of Minnesota,

USA, in 1989 and 1992 respectively.

He is currently holding a professor

position at the Department of

Computer Science in Sultan Qaboos

University, Oman. His research interests include

parallel and distributed computing and networks.

https://doi.org/10.1109/COMPSAC.2015.31
https://doi.org/10.1109/TVT.2019.2926732

