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Abstract: In the realm of cryptography, computational statistics, gaming, simulation processes, gambling, and other related 

fields, the design of Cryptographically Secure Pseudo-Random Number Generators (CSPRNGs) poses a significant challenge. 

With the rapid advancement of quantum computing, the imminent “quantum-threat” looms closer, posing a risk to our current 

cryptographically secure PRNGs. Consequently, it becomes crucial to address these threats seriously and develop diverse tools 

and techniques to ensure that cryptographically secure Pseudo-Random Number Generators (PRNGs) remain unbreakable by 

both classical and quantum computers. this paper presents a novel approach to constructing an effective Quantum-Resistant 

Pseudo-Random Number Generator (QRPRNG) using the principles of lattice-based Learning with Errors (LWE). LWE is 

considered quantum-resistant due to its reliance on the hardness of problems like the Shortest Vector Problem and Closest 

Vector Problem. Our work focuses on developing a QRPRNG that utilizes a Linear Feedback Shift Register (LFSR) to generate 

a stream of pseudo-random bits. To construct a secure seed for the QRPRNG, LWE is employed. The proposed QRPRNG 

incorporates a secure seed input to the LFSR, and employs a Homomorphic function to protect the security of the finite states 

within the LFSR. NIST statistical tests are conducted to evaluate the randomness of the generated output by the constructed 

QRPRNG. The proposed QRPRNG achieves a throughput of 35.172 Mbit/s. 
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1. Introduction 

A Pseudo-Random Number Generator (PRNG) is a 

function especially mathematical which is based on 

some deterministic procedures to produce a stream of 

random numbers. To create nonces, blinding values, 

challenges, and padding bytes, random numbers are 

necessary. The creation of private/public key pairs for 

asymmetric cryptographic algorithms like RSA, Diffie-

Hellman, and Digital Signature Algorithm (DSA) is also 

accomplished using random numbers. The most 

important element is that neither attackers nor intruders, 

nor people who are familiar with the design, should be 

able to predict the results of the random number 

generator with any degree of accuracy. The security of 

random numbers is a prerequisite for the security of the 

various protocols. The entire system based on that 

protocol would be vulnerable if the random number is 

unreliable. This is accomplished by using a 

Cryptographically Secure Pseudo-Random Number 

Generator (CSPRNG) like Fortuna [10], Yarrow-160 

[1], Counter-Based Random Number Generator 

(CBRNG) [13], and Blum-Blum Shub [25] in classical 

computer. 

However, as soon as quantum algorithms are 

developed, a difficulty appears. Since Grover's search 

method [26] employs quantum computers, the  

 

underlying structure of the Fortuna, and Yarrow 160 

PRNG which uses SHA-256 and SHA-1 hash functions, 

respectively, can be broken. CBRNG's security depends 

on the key (seed) value and encryption technique. Since 

Advanced Encryption Standard (AES) is typically 

employed, Grover's search algorithm may be used to 

recover the seed value, making CBRNG vulnerable to 

quantum attacks. Blum-Blum Shub, which is predicated 

on the difficulty of the factorization issue, the seed 

might be retrieved via factorization using Shor's method 

[28]. Because these Pseudo-Random Number 

Generators (PRNGs) are not quantum-resistant, a 

quantum-resistant PRNG is necessary to ensure that it 

cannot be compromised by a quantum attack.  

In this paper, we developed a plan for a Quantum-

Resistant PRNG (QR-PRNG) to address the 

aforementioned CSPRNG concerns. The proposed plan 

is divided into two main sections:  

1) The building of secure seed.  

2) Quantum-Resistant method for generating random 

bits. 

The lattice-based cryptographic method Learning With 

Errors (LWE) [2] is resistant against quantum 

computers, according to research by theoretical 

computer scientist Oded Regev [2] in 2005. The lattice-

based LWE technique is used since the primary 
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objective is to create the quantum-resistant seed as stated 

above. A polynomial-time solution that might defeat the 

lattice-based LWE algorithm currently does not exist, 

neither in classical nor quantum realms [3]. The 

quantum-resistant method that generates the random bit 

sequence uses the constructed secure, quantum resistant, 

seed as an input. The proposed method makes use of 

distributed Pseudo-Random Functions (PRFs) that may 

perform any binary operation. The circuit accepts the 

secure seed as an input (Refer Figure 1). The input is 

divided into three segments in a way that preserves the 

lattice features of LWE. Since maintaining the secrecy 

of the seed is a goal of the homomorphic function, 

operations on encrypted data are permitted. Because 

homomorphic function is utilized to construct circuits in 

a way that allows it to compute on encrypted data (a 

secure seed) to produce bitstream without losing the 

lattice features and secure the internal states of the 

circuit, the suggested technique is quantum-resistant. 

 

Figure 1. Initial representation of LFSR circuit. 

2. Related Work 

Through Goldreich, Goldwasser and Micali (GGM) 

Construction [6], Goldreich, Goldwasser and Micali 

formalized the idea of PRFs and PRNGs. Another 

fundamental method of building PRFs known as NR 

constructs [16] was developed by Naor and Reingold 

(NR). Theoretically, PRFs and PRNGs are built from the 

GGM and NR construction, which were derived with 

particular hardness functions, such as Number Theoretic 

assumptions and Lattice-based hardness assumptions, 

leading to effective PRFs. Although there are generic 

ways to create PRFs, such as the GGM and NR 

constructions, in practice it is difficult to create effective 

PRFs using these methods, hence realistic 

implementation uses the idea of PRNGs. Until the 

polynomial's period is achieved, these effective PRNGs 

continue to run. The contemporary construction of PRFs 

using homomorphic functions is one of the paradigms in 

seed preservation. The homomorphic function [30], 

which permits computation on encrypted data, is 

employed in a variety of cloud storage and Zero 

Knowledge privacy applications. Since Pseudo-Random 

Functions (PRFs) are a fundamental component of 

PRNGs, they could be cracked in polynomial time by 

quantum algorithms. Consequently, the Lattice based 

LWE technique could be useful to build an effective and 

unpredictable PRF in order to secure the PRFs from 

such types of attacks. 

The Linear Feedback Shift Register (LFSR) is one of 

the most basic and extensively used methods for 

generating cryptographic pseudo-random number 

stream. Traditionally, LFSRs have been intended to 

operate on the binary Galois field GF(2) [12]. This 

technique is suitable for hardware implementations; 

however, it has low software efficiency due to two 

major drawbacks: 

1. To accomplish the register shifting or output 

generating operations required to change the state of 

an LFSR, the processor must spend several clock 

cycles. 

2. Because binary LFSRs only deliver one output bit 

per clock pulse, software implementations are 

expensive and squander contemporary processor 

capabilities.  

Delgado-Mohatar and Fúster-Sabater [8] constructed 

the LFSR over the extended field GF(2n) rather than the 

binary field GF(2). The goal of this kind of construction 

was to efficiently utilize the modern processor with 2n 

elements where n is size of the register in the processor 

[27]. When extended fields are used instead of finite 

fields, speed factors of up to 10.15 are achieved [8]. 

However, LFSR construction was not practicable for 

large n (commended over the extension field GF(216) as 

the internal operation cost was so high. 

Espinosa Garcia et al. [9] proposed two methods to 

improve the execution time and primitive polynomial 

searching time in the extended field GF(2n). The basic 

polynomial over GF(2n) would be represented using 

binary LFSRs. The identical sequences will be created 

using solely binary operations (XOR) in this manner. 

The LFSR in GF(2n) and n binary LFSRs would have a 

same sequence and would share the same feedback 

polynomial in GF(2). Thus, the n binary LFSRs’ bit 

operations may be calculated together, resulting in XOR 

operations across n-bit words and reducing the 

inefficiency caused by single-bit operations in this sort 

of processor. Since execution time is getting reduced 

there probability of a cryptanalysis attack would be 

reduced therefore security would be improved. 

Furthermore, the suggested technique allows any 

primitive polynomial in GF(2n) to be utilised as an 

LFSR’s feedback polynomial, circumventing the 

present limits. However, LFSR construction will not be 

practicable for large n as the internal operation cost 

would be so high. 

Chowdhury et al. [7] also proposed a fast correlation 

attack-resistant block oriented software implementation 

method of LFSR. The bit stream is formed by 

aggregating the produced sequences of several distinct 

LFSRs using the nonlinear Boolean function. However, 

the actual implementation results were not favorable. 
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3. Preliminaries 

3.1. Lattice-Based Cryptography 

The RSA algorithm is the most widely used algorithm in 

a classical computer. Its security hinges on the large 

integer factoring problem. Using a classical computer, it 

is challenging to factor a huge composite number with 

exactly two large prime numbers as its factors in 

polynomial time. However, Shor's technique may be 

used to the quantum computer to address this issue in 

polynomial time [28]. As a result, a quantum computer 

can easily solve the issue of prime factorization. Despite 

this, some cryptography methods, such as lattice-based 

cryptography [23], are secure in the presence of a 

quantum computer. Such type of cryptography is known 

as post-quantum cryptography. 

One of the main competitors in the area of post-

quantum cryptography that establishes the framework of 

cryptographic primitives involving lattices is lattice-

based cryptography. A group of neatly arranged points 

that are uniformly spaced in an n-dimensional space 

make up a lattice [17]. On graph paper, points might be 

seen as a grid. The hardness of the lattice problem, 

increases with the increase in dimension, determines 

how secure a cryptosystem is, and the majority of 

cryptosystems are entirely based on their hardness only. 

Hard lattice problems include the Closest Vector 

Problem (CVP) [14] and the Shortest Vector Problem 

(SVP) [20]. SVP Determine the shortest vector from the 

origin for the given lattice. CVP for a given point that is 

not in the lattice, locate the point that is closest in the 

provided lattice. Lattice-based cryptography’s worst-

case hardness assumption is the source of its security. It 

is also protected from quantum computers [22]. Many 

cryptographic techniques, including digital signatures, 

public-key encryption, identity-based encryption, 

encryption resistant to key leakage attacks, and 

homomorphic encryption, utilise lattices. One of the 

most important algorithms used in lattice-based 

cryptography is LWE. 

 Learning with Errors (LWE) 

The LWE [2] problem is thought to be as hard as the 

worst-case lattice problem [22]. As a result, the 

development of such a cryptographic system would be 

resistant to quantum attacks. Finding the secret vector 

from any number of noisy linear Equations is the goal of 

this problem. 

𝑎11𝑠1 + 𝑎12𝑠2 +   …   + 𝑎1𝑛𝑠𝑛 + 𝑒1 =  𝑏1 mod q 

𝑎21𝑠1 + 𝑎22𝑠2 +    …   +  𝑎2𝑛𝑠𝑛 + 𝑒2 =  𝑏2 mod q 

  …  
 … 

 …  
𝑎𝑚1𝑠1 + 𝑎𝑚2𝑠2 + …   +  𝑎𝑚𝑛𝑠𝑛 + 𝑒𝑚 =  𝑏𝑚 mod q 

Let the elements of a matrix A are (a11, a12, …, amn), 

whereas the elements of the vectors s, e, and b are (s1, s2, 

…, sn), (e1, e2, …, em,), (b1, b2, …, bm) respectively. The 

aforementioned linear equations can be expressed in 

abbreviated form as A.s +e = b mod q. Where m and n 

denote the rows and columns of the matrix, which 

contains values that are uniformly and randomly 

selected, and 𝑠 ∈  ℤ𝑞
𝑚, 𝐴 ∈  ℤ𝑞

𝑛×𝑚, e(error) ∈ χ𝑛, q ∈ 

prime number. The error is chosen at random from a 

Gaussian distribution with a mean of zero and a small 

standard deviation. The secret value s must be found in 

great difficulty since otherwise, these equations can be 

solved by the Gaussian Elimination technique in 

polynomial time. The LWE based 

encryption/decryption process may be broken into three 

sections: 

Key Generation: 

𝑝𝑢𝑏𝐾𝑒𝑦 = {𝐴, 𝑏 = 𝐴. 𝑠 + 𝑒} 𝑎𝑛𝑑 𝑠𝑒𝑐𝐾𝑒𝑦 = 𝑠 

Encryption: 

𝐸𝑛𝑐(𝑝𝑢𝑏𝐾𝑒𝑦, 𝑏𝑖𝑡) = {𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡 𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 (𝑢) 
= 𝐴. 𝑥, 

 𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡 (𝑢′)  = 𝑏. 𝑥 + 𝑏𝑖𝑡. ⌊
𝑞

2
⌋}, 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈      {0, 1}𝑛 

Decryption: 

𝐷𝑒𝑐(𝑠𝑒𝑐𝐾𝑒𝑦, (𝑢, 𝑢′))

= {
0 𝑖𝑓 𝑢′ − 𝑠. 𝑢 𝑚𝑜𝑑 𝑞 ∈  [

−𝑞

4
 ,   

𝑞

4
]  

1 𝑖𝑓 𝑢′ − 𝑠. 𝑢 𝑚𝑜𝑑 𝑞 ∈  (
𝑞

4
 ,   

3𝑞

4
]

 

As 𝑆𝑉𝑃 ≤ 𝐶𝑉𝑃 ≤ 𝐿𝑊𝐸 [4] describes the SVP, which 

is indirectly reducible to the Learning with Errors 

(LWE) problem, has not yet been solved by a quantum 

computer, the LWE approach would likewise be 

secured from a quantum attacker. 

3.2. Random Number Generator 

There are two broad categories: 

1. True random number generator [15]. 

2. Pseudo-random number generator.  

While PRNG takes the seed value or initial value from 

the user or from an external entity like another process 

and applies mathematical operations over that to 

produce the stream of random numbers, TRNG takes 

the input from external natural sources in an analogue 

form through sensors and then converts it into the 

digital form and produces the sequence of random 

number streams (Refer Figure 2.) 
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Figure 2. Random number generators. 

3.3. Linear Feedback Shift Register (LFSR) 

An LFSR [11] is a combination of shift registers in a 

sequential manner of bits using combinational logic. The 

output from each shift register is carefully staged and fed 

back into its input in an LFSR, which enables the 

function to endlessly cycle through a variety of patterns. 

The feedback shift register may be broken down into 

two main components: the shift registers and the 

feedback function. A group of bits make up the shift 

register. When the length of a shift register is n bits, the 

shift register is referred to as an n-bit shift register. If a 

bit is necessary, all of the bits are typically moved one 

bit to the right, starting with the least significant bit. 

Based on other bits in the register, the next leftmost bit 

is determined. The output of the shift register is often the 

least significant bit. The period of a shift register refers 

to the length of the output sequence prior to its 

repetition. A linear function, often XOR, is used as the 

input in the simplest type of feedback shift register, 

known as an LFSR. Tap bits are the bits that modify the 

LFSR's state. Both the Galois approach and the 

Fibonacci method can be used to link tap bits. Unlike the 

Galois approach, which XORs each tap bits with the 

output stream, the Fibonacci method cascades tap bits 

and feeds them into the LFSR's leftmost shift register. In 

cryptography, LFSRs might be used to produce pseudo-

random numbers, nonces, etc.  

3.4. Quantum Cryptography 

In a classical computer, cryptography [5] is a method for 

carrying out secure communication and protecting 

information between two parties in the public domain by 

using mathematical concepts and algorithms. In a 

quantum computer, however, cryptography is a method 

that employs laws of quantum mechanics to secure 

communication and protection of information even 

when the intruders have access to quantum computing.  

4. Proposed PRNG based on LWE 

In the current work, a method for generating 

pseudorandom numbers is provided that takes use of the 

adaptability of lattice-based cryptography. For the 

purpose of securing the seed against cryptanalysis, the 

proposed method opts for Learning with Errors (LWE) 

implementation of the Lightweight Block Cipher (LBC) 

[23]. The seed bits are obfuscated by LWE into a vector 

in the lattice, which is then given to the Linear Feedback 

Shift Registers (LFSR), where a circuit (composed of 

three LFSRs) is computed to produce the random 

sequence. Keeping the lattice vector in the lattice after 

the circuit generates the feedback sequence for it is one 

of the more difficult side of this approach. Additionally, 

we must make sure that the original seed or secret used 

for LWE encryption is not compromised. To address 

this, the current scheme computes the value for the 

circuit using a homomorphic function. On encrypted 

data, homomorphic functions are performed without 

disclosing the information of the secret seed. 

The scheme is methodically divided into three 

sections:  

 

Figure 3. Block diagram of proposed PRNG. 

4.1. Seed Obfuscation using LWE 

In the current work, we develop the LWE Obfuscation 

method, which consists of two stages: Key Generation 

and Seed Obfuscation (Refer Figure 3. Block diagram 

of proposed PRNG), for obscuring the input seed. Key 

Generation step grabs the input seed to produce the 

matrix 𝐴 ∈  𝑅𝑞
𝑘×𝑘 and a secret key 𝑠 ∈ 𝑅𝑞

𝑘×1 and also to 

produce obfuscation key 𝐴. 𝑠 + 𝑒 where 𝑒 represents the 

uniform Gaussian error distribution. Once the keys have 

been obtained, the obfuscation vector c is created by 

passing the input to the Seed Obfuscation function. This 

is accomplished by first generating the random vector 

𝑥 ∈  𝑅𝑞
𝑘×1 and then 𝑐 = 𝑏𝑇 . 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2. The 

const_bit is used to increase the obfuscated seed's 

entropy. To apply the homomorphic function, the LFSR 

circuit will receive the obfuscated seed, “c ”. 

4.2. Homomorphic Function  

After evaluating obfuscated seed, homomorphic 

function enables operations on the obfuscated seed with 

the aim of maintaining privacy. One of the most crucial 

uses of lattice-based cryptography has proven to be 

homomorphic encryption [24]. In the current work, 

homomorphic function is utilized to design circuits that 

compute on encrypted data to generate sequence 

without losing the lattice properties. The distributed 
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PRFs on the ℤ𝒒 vector and the ○ 'a binary' operation are 

both used by the proposed PRNG generator. Input from 

the LWE obfuscation function “c ”. is divided into three 

parts by the circuit such that the operations adhere to the 

following circuit equality: 

Homo_LWE(c)=Homo_LWE(c_1)○Homo_LWE(c_2)○ 

Homo_LWE(c_3) 

Where ○ is any binary operation and Homo_LWE(c) is 

the function that LFSR obeys that does not interfere with 

the lattice properties of LWE. To determine if the circuit 

retains the LWE structure after homomorphic 

translation, we would establish the following theorem. 

 Theorem: If a circuit Homo_LWE with operation ○ is 

used, the evaluation of the LWE obfuscated vector c 

is performed using the equality shown below: 

𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐) = 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐1) 

○ 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐2) 

○  𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐3) 

Where the distributed seeds produced from the LWE 

obfuscation function c1, c2, and c3. 

 Proof: Seed obfuscation function is defined as 𝑐 =
𝑏. 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2. Let c1, c2 and c3 represent the 

divided outputs of the Homo_LWE(c) with ○
 operation, respectively, where c1, c2, and c3 serve as 

inputs to each distinct circuit function. The following 

equations are obtained by dividing the 𝑐 results into 

three parts: 

𝑐1 = 𝑏1. 𝑥1 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2 

𝑐2 = 𝑏2. 𝑥2 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2 

𝑐3 = 𝑏3. 𝑥3 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2 

Given that 𝑏 = 𝐴. 𝑠 + 𝑒, the function 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐) is 

as follows: 
 

(𝐴. 𝑠 + 𝑒) 𝑥 +  𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2 =  
 (𝐴1𝑠1 + 𝑒1)𝑥1 +  𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2 + 

(𝐴2𝑠2 + 𝑒2)𝑥2  + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2 + 

 (𝐴3𝑠3 + 𝑒3)𝑥3 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2 
 

𝐴. 𝑠. 𝑥 + 𝑒. 𝑥 +  𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2 = 
𝐴1𝑠1𝑥1  +  𝐴2𝑠2𝑥2  

+  𝐴3𝑠3𝑥3  + 𝑒1𝑥1 + 𝑒2𝑥2

+ 𝑒3𝑥3 +  𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2 

+𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2 

It is proved that the circuit keeps the structure of LWE 

after homomorphic translation since neither side of the 

equation has yet leaked any type of secret.  

4.3. Stream Generation using LFSRs  

The above discussed LWE based homomorphic function 

is used to produce the pseudorandom sequences. 

 

Figure 4. Linear feedback shift register. 

The distributed homomorphic circuit is implemented 

using three LFSRs and an obfuscated seed in the 

proposed technique. There are three phases in the LFSR 

sequence generator: 

1) Initializing LFSRs. 

2) Generating bit output sequences. 

3) Generating feedback. 

In the first phase, three LFSRs, L1, L2, and L3, each 

with 2000 bits, are taken into consideration during 

design. To initialize all bits, the LWE obfuscation 

function creates a 6000-bit seed that is obfuscated. The 

non-sequential initialization of each LFSR uses the 

obfuscated seed. An iterative technique is utilized to 

initialize the LFSRs. Eight bits are successively filled in 

each LFSR in the first iteration. Following that, the 

eight bits of each LFSR are XORed to determine which 

pair of LFSRs has the highest XOR value. In the 

following iteration, a pair with the highest XOR value 

would be filled. Until the two LFSRs are entirely filled, 

the same procedure would be repeated. The remaining 

obfuscated seed bits would then be sequentially fed into 

the pending third LFSR. In this way, the initialization 

process of LFSRs is not sequential. In the second phase, 

following initialization of all three LFSRs, the output 

sequence would be produced in accordance with the 

state of the Master-Slave LFSRs. In the beginning, the 

scheme selects one LFSR, let's say L2, as the Master 

LFSR, and the other two, let's say L1 and L3, as the 

Slaves. Every LFSR splits its bits into eight-bit blocks 

at the beginning. First, the Master LFSR L2's first block 

is chosen, and the positions of the ones in that block are 

determined. For slave LFSR L1 and L3, a left shift 

would be carried out based on where the ones were 

located in a chosen block of L2. For instance, if position 

two in a chosen block of the Master LFSR L2 contains 

one, then the number of shifting bits would be 

calculated as 22=4. L1 and L3 would thus each have a 

four-bit left shift. The output would be the result of 

further XORing the four bits from the LFSR L1 and L3 

together. Slave LFSRs' shifted values would be 

compared to one another in order to choose the master 

(1) 

(2) 

(3) 

(4) 

(5) 
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LFSR for the following iteration. The LFSR with the 

highest value would take over as master for the 

following iteration, while the other two would act as 

slaves. However, the present Master LFSR would 

continue to function as the Master LFSR if the values of 

the two slave LFSRs were equal. The cycle continues 

eternally. In the last phase, the LFSR sequence must be 

fed continually to prevent exhaustion in order to 

generate outputs for any number of bits. The current byte 

and the output bits are used in this technique to give the 

LFSRs feedback. The two slave LFSRs' left-shifted bits 

from the bit output sequence generation are XORed with 

the same number of bits from a chosen block of the 

master LFSR. These XORed bits are cross-fed into the 

slave LFSRs. For instance, in the LFSR illustrated in 

Figure 4, if L2 is the master and L1, and L3 are the 

slaves, then the XORed bits of L1 and L2 would be sent 

into L3, and the XORed bits of L2 and L3 would be fed 

into L1. 

5. Result and Analysis 

The NIST STS (Statistical Test Suite) [23] is a collection 

of empirical tests designed to analyse bitstream 

randomness in accordance with a wide range of bit or 

block statistics. The suggested Pseudo-Random Number 

(0/1) Generator which is implemented in ‘C’ language 

has undergone each of the 12 NIST tests. The CDAC-

PARAM Shavak machine is used to conduct these tests 

in the Secure Systems Lab of the SOCEMS at DIAT, 

Pune. To verify the generator's randomness, we buffered 

the 1.1 GB output bits into a file, which was then used 

as input to the NIST test suite. This provided 106 bits for 

every 50 samples. The selected parameters for the 

respective tests are mentioned in Table 1. 

Table 1. Parameters selected for the respective tests. 

Sl. 

No. 

Test Block 

length 

1. Block Frequency Test  128 

2. Non-Overlapping Template Test 8 

3. Overlapping Template Test  8 

4. Approximate Entropy Test  7 

5. Serial Test  10 

6. Linear Complexity Test  500 

----------------------------------------------------------------

The minimum pass rate for each statistical test with the 

exception of the random excursion (variant) test is 

approximately=47 for a sample size=50 binary 

sequences. 

The minimum pass rate for the random excursion 

(variant) test is approximately=21 for a sample size= 23 

binary sequences. 

---------------------------------------------------------------- 

As the proportion value for each statistical test meets the 

minimal criterion limit to pass the statistical tests, Table 

2 clearly shows that the proposed Pseudo-Random 

Number Generator has passed all NIST tests. 

 

Table 2. Testing results for the generator. 

Sl. 

No. 
Test 

Statistic and 

reference 

distribution 

Proportion 
Accepted/ 

Rejected 

1. 
Frequency (Mono-

bit) test 

Half normal 

distribution 
47/50 Accepted 

2. 
Frequency test 
within a Block 

χ2 distribution 48/50 Accepted 

3. Runs test χ2 distribution 48/50 Accepted 

4. 

Tests for the 

longest-run-of 
ones in a block 

χ2 distribution 47/50 Accepted 

5. 
Binary matrix rank 

test 
χ2 distribution 48/50 Accepted 

6. 

Discrete fourier 

transform 

(Spectral) Test 

Normal 
distribution 

49/50 Accepted 

7. 

Non-overlapping 

template matching 

test 

χ2 distribution 47/50 Accepted 

8. 
Overlapping 

template matching 

test 

χ2 distribution 47/50 Accepted 

9. 
Linear complexity 

test 
χ2 distribution 50/50 Accepted 

10. 
Cumulative sums 

test 

Normal 

distribution 
49/50 Accepted 

11. 
Random 

excursions test 
χ2 distribution 23/23 Accepted 

12. 
Random 

excursions variant 

test 

Half normal 

distribution 
23/23 Accepted 

The speed of suggested QRPRNG was tested, and 

35.172 Mbit/s were obtained. A software-based 

methodology, time stamping, is used to gauge the speed 

of the current QRPRNG. 

6. Key Space Analysis 

The collection of potential keys that can be used to 

generate random bits using a certain PRNG strategy is 

known as the key-space of a PRNG technique. The size 

of the key space is determined by the total amount of 

bits in the key, also referred to as the key length. The 

number of available bits is multiplied by the length of 

the key at each location to get the size of the key space. 

The proposed QRPRNG generates the LFSR's initial 

seed via a lattice-based hard problem. Shake256 is used 

as the input for the LWE encryption. Key space for the 

output produced by SHAKE256 is 2256. As a result, the 

key space for the proposed generator is 2256, a large 

number. 

7. Comparison with other PRNGs 

This section provides a comparative analysis of the 

proposed PRNG in relation to other approaches, 

considering randomness, quantum security, key space 

analysis, and performance. The proposed approach is 

based on a lattice-based hard problem and LFSR, 

enabling the generation of a random bit sequence. One 

significant advantage of the proposed scheme is its 

satisfactory statistical properties and completely 

random behavior. Table 3 employs criteria such as 

statistical test suite, speed analysis, and quantum safety 
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to assess PRNGs. The data clearly demonstrates that the 

proposed PRNG underwent the most extensive testing. 

Table 3. Comparison of proposed PRNG with other PRNGs. 

Features [19] [29] [21] [18] 
Proposed 

PRNG 

Implementation 

based on 

PCG32 

PRNG-linear 

congruential 

generator 

Xoroshiro1

28+  

Memristor 

+ LFSR 

Lattice 

based 

Lattice based  

LWE +LFSR 

NIST test suite Pass – Pass Pass Pass 

Speed (Mbit/s) 4-5 8-9 1.5 35.089 35.172 

Quantum safe No No No ✔ ✔ 

Key space 

analysis 
– – – ✔ ✔ 

Comparison 

analysis 
– – – ✔ ✔ 

 Note: ‘✔’states achieved and ‘–‘ states no result reported yet. 

8. Conclusions 

Lattice-based primitives, notably the LWE problem, are 

used in this approach to attempt to secure the seed. 

Through the use of LFSR and a homomorphic function, 

it generates an indefinite long random sequence, 

satisfying the LWE problem's theoretical security 

requirement. The suggested PRNG is subjected to NIST 

statistical testing. As it is based on a lattice-based LWE 

problem, the proposed system is also resistant to 

quantum attacks. 

Present work is focused on generators to ensure their 

viability as quantum resistant solution. In future, the 

code can be parallelized to speed up the QRPRNG. 

Further research is needed to optimize the efficiency and 

analyze the security of LWE-based PRNGs. 
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