
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 911

LWE Based Quantum-Resistant Pseudo-Random

Number Generator

Atul Kumar

SOCEMS, Defence Institute of Advanced

Technology, India

atulkumar.diat@gmail.com

Arun Mishra

SOCEMS, Defence Institute of Advanced

Technology, India

arunmishra@diat.ac.in

Abstract: In the realm of cryptography, computational statistics, gaming, simulation processes, gambling, and other related

fields, the design of Cryptographically Secure Pseudo-Random Number Generators (CSPRNGs) poses a significant challenge.

With the rapid advancement of quantum computing, the imminent “quantum-threat” looms closer, posing a risk to our current

cryptographically secure PRNGs. Consequently, it becomes crucial to address these threats seriously and develop diverse tools

and techniques to ensure that cryptographically secure Pseudo-Random Number Generators (PRNGs) remain unbreakable by

both classical and quantum computers. this paper presents a novel approach to constructing an effective Quantum-Resistant

Pseudo-Random Number Generator (QRPRNG) using the principles of lattice-based Learning with Errors (LWE). LWE is

considered quantum-resistant due to its reliance on the hardness of problems like the Shortest Vector Problem and Closest

Vector Problem. Our work focuses on developing a QRPRNG that utilizes a Linear Feedback Shift Register (LFSR) to generate

a stream of pseudo-random bits. To construct a secure seed for the QRPRNG, LWE is employed. The proposed QRPRNG

incorporates a secure seed input to the LFSR, and employs a Homomorphic function to protect the security of the finite states

within the LFSR. NIST statistical tests are conducted to evaluate the randomness of the generated output by the constructed

QRPRNG. The proposed QRPRNG achieves a throughput of 35.172 Mbit/s.

Keywords: Learning with errors, homomorphic function, pseudo-random number generator, homomorphic function, linear

feedback shift register, NIST statistical test suite.

Received January 25, 2021; accepted October 11, 2022

https://doi.org/10.34028/iajit/20/6/8

1. Introduction

A Pseudo-Random Number Generator (PRNG) is a

function especially mathematical which is based on

some deterministic procedures to produce a stream of

random numbers. To create nonces, blinding values,

challenges, and padding bytes, random numbers are

necessary. The creation of private/public key pairs for

asymmetric cryptographic algorithms like RSA, Diffie-

Hellman, and Digital Signature Algorithm (DSA) is also

accomplished using random numbers. The most

important element is that neither attackers nor intruders,

nor people who are familiar with the design, should be

able to predict the results of the random number

generator with any degree of accuracy. The security of

random numbers is a prerequisite for the security of the

various protocols. The entire system based on that

protocol would be vulnerable if the random number is

unreliable. This is accomplished by using a

Cryptographically Secure Pseudo-Random Number

Generator (CSPRNG) like Fortuna [10], Yarrow-160

[1], Counter-Based Random Number Generator

(CBRNG) [13], and Blum-Blum Shub [25] in classical

computer.

However, as soon as quantum algorithms are

developed, a difficulty appears. Since Grover's search

method [26] employs quantum computers, the

underlying structure of the Fortuna, and Yarrow 160

PRNG which uses SHA-256 and SHA-1 hash functions,

respectively, can be broken. CBRNG's security depends

on the key (seed) value and encryption technique. Since

Advanced Encryption Standard (AES) is typically

employed, Grover's search algorithm may be used to

recover the seed value, making CBRNG vulnerable to

quantum attacks. Blum-Blum Shub, which is predicated

on the difficulty of the factorization issue, the seed

might be retrieved via factorization using Shor's method

[28]. Because these Pseudo-Random Number

Generators (PRNGs) are not quantum-resistant, a

quantum-resistant PRNG is necessary to ensure that it

cannot be compromised by a quantum attack.

In this paper, we developed a plan for a Quantum-

Resistant PRNG (QR-PRNG) to address the

aforementioned CSPRNG concerns. The proposed plan

is divided into two main sections:

1) The building of secure seed.

2) Quantum-Resistant method for generating random

bits.

The lattice-based cryptographic method Learning With

Errors (LWE) [2] is resistant against quantum

computers, according to research by theoretical

computer scientist Oded Regev [2] in 2005. The lattice-

based LWE technique is used since the primary

https://doi.org/10.34028/iajit/20/6/8

912 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

objective is to create the quantum-resistant seed as stated

above. A polynomial-time solution that might defeat the

lattice-based LWE algorithm currently does not exist,

neither in classical nor quantum realms [3]. The

quantum-resistant method that generates the random bit

sequence uses the constructed secure, quantum resistant,

seed as an input. The proposed method makes use of

distributed Pseudo-Random Functions (PRFs) that may

perform any binary operation. The circuit accepts the

secure seed as an input (Refer Figure 1). The input is

divided into three segments in a way that preserves the

lattice features of LWE. Since maintaining the secrecy

of the seed is a goal of the homomorphic function,

operations on encrypted data are permitted. Because

homomorphic function is utilized to construct circuits in

a way that allows it to compute on encrypted data (a

secure seed) to produce bitstream without losing the

lattice features and secure the internal states of the

circuit, the suggested technique is quantum-resistant.

Figure 1. Initial representation of LFSR circuit.

2. Related Work

Through Goldreich, Goldwasser and Micali (GGM)

Construction [6], Goldreich, Goldwasser and Micali

formalized the idea of PRFs and PRNGs. Another

fundamental method of building PRFs known as NR

constructs [16] was developed by Naor and Reingold

(NR). Theoretically, PRFs and PRNGs are built from the

GGM and NR construction, which were derived with

particular hardness functions, such as Number Theoretic

assumptions and Lattice-based hardness assumptions,

leading to effective PRFs. Although there are generic

ways to create PRFs, such as the GGM and NR

constructions, in practice it is difficult to create effective

PRFs using these methods, hence realistic

implementation uses the idea of PRNGs. Until the

polynomial's period is achieved, these effective PRNGs

continue to run. The contemporary construction of PRFs

using homomorphic functions is one of the paradigms in

seed preservation. The homomorphic function [30],

which permits computation on encrypted data, is

employed in a variety of cloud storage and Zero

Knowledge privacy applications. Since Pseudo-Random

Functions (PRFs) are a fundamental component of

PRNGs, they could be cracked in polynomial time by

quantum algorithms. Consequently, the Lattice based

LWE technique could be useful to build an effective and

unpredictable PRF in order to secure the PRFs from

such types of attacks.

The Linear Feedback Shift Register (LFSR) is one of

the most basic and extensively used methods for

generating cryptographic pseudo-random number

stream. Traditionally, LFSRs have been intended to

operate on the binary Galois field GF(2) [12]. This

technique is suitable for hardware implementations;

however, it has low software efficiency due to two

major drawbacks:

1. To accomplish the register shifting or output

generating operations required to change the state of

an LFSR, the processor must spend several clock

cycles.

2. Because binary LFSRs only deliver one output bit

per clock pulse, software implementations are

expensive and squander contemporary processor

capabilities.

Delgado-Mohatar and Fúster-Sabater [8] constructed

the LFSR over the extended field GF(2n) rather than the

binary field GF(2). The goal of this kind of construction

was to efficiently utilize the modern processor with 2n

elements where n is size of the register in the processor

[27]. When extended fields are used instead of finite

fields, speed factors of up to 10.15 are achieved [8].

However, LFSR construction was not practicable for

large n (commended over the extension field GF(216) as

the internal operation cost was so high.

Espinosa Garcia et al. [9] proposed two methods to

improve the execution time and primitive polynomial

searching time in the extended field GF(2n). The basic

polynomial over GF(2n) would be represented using

binary LFSRs. The identical sequences will be created

using solely binary operations (XOR) in this manner.

The LFSR in GF(2n) and n binary LFSRs would have a

same sequence and would share the same feedback

polynomial in GF(2). Thus, the n binary LFSRs’ bit

operations may be calculated together, resulting in XOR

operations across n-bit words and reducing the

inefficiency caused by single-bit operations in this sort

of processor. Since execution time is getting reduced

there probability of a cryptanalysis attack would be

reduced therefore security would be improved.

Furthermore, the suggested technique allows any

primitive polynomial in GF(2n) to be utilised as an

LFSR’s feedback polynomial, circumventing the

present limits. However, LFSR construction will not be

practicable for large n as the internal operation cost

would be so high.

Chowdhury et al. [7] also proposed a fast correlation

attack-resistant block oriented software implementation

method of LFSR. The bit stream is formed by

aggregating the produced sequences of several distinct

LFSRs using the nonlinear Boolean function. However,

the actual implementation results were not favorable.

L1

LFSR

L2

LFSR

L3

LFSR

Homo-

morphic
Function

LWE-

based

Secure
obfuscated
seed

… …

…

… …

LWE Based Quantum-Resistant Pseudo-Random Number Generator 913

3. Preliminaries

3.1. Lattice-Based Cryptography

The RSA algorithm is the most widely used algorithm in

a classical computer. Its security hinges on the large

integer factoring problem. Using a classical computer, it

is challenging to factor a huge composite number with

exactly two large prime numbers as its factors in

polynomial time. However, Shor's technique may be

used to the quantum computer to address this issue in

polynomial time [28]. As a result, a quantum computer

can easily solve the issue of prime factorization. Despite

this, some cryptography methods, such as lattice-based

cryptography [23], are secure in the presence of a

quantum computer. Such type of cryptography is known

as post-quantum cryptography.

One of the main competitors in the area of post-

quantum cryptography that establishes the framework of

cryptographic primitives involving lattices is lattice-

based cryptography. A group of neatly arranged points

that are uniformly spaced in an n-dimensional space

make up a lattice [17]. On graph paper, points might be

seen as a grid. The hardness of the lattice problem,

increases with the increase in dimension, determines

how secure a cryptosystem is, and the majority of

cryptosystems are entirely based on their hardness only.

Hard lattice problems include the Closest Vector

Problem (CVP) [14] and the Shortest Vector Problem

(SVP) [20]. SVP Determine the shortest vector from the

origin for the given lattice. CVP for a given point that is

not in the lattice, locate the point that is closest in the

provided lattice. Lattice-based cryptography’s worst-

case hardness assumption is the source of its security. It

is also protected from quantum computers [22]. Many

cryptographic techniques, including digital signatures,

public-key encryption, identity-based encryption,

encryption resistant to key leakage attacks, and

homomorphic encryption, utilise lattices. One of the

most important algorithms used in lattice-based

cryptography is LWE.

 Learning with Errors (LWE)

The LWE [2] problem is thought to be as hard as the

worst-case lattice problem [22]. As a result, the

development of such a cryptographic system would be

resistant to quantum attacks. Finding the secret vector

from any number of noisy linear Equations is the goal of

this problem.

𝑎11𝑠1 + 𝑎12𝑠2 + … + 𝑎1𝑛𝑠𝑛 + 𝑒1 = 𝑏1 mod q

𝑎21𝑠1 + 𝑎22𝑠2 + … + 𝑎2𝑛𝑠𝑛 + 𝑒2 = 𝑏2 mod q

 …
 …

 …
𝑎𝑚1𝑠1 + 𝑎𝑚2𝑠2 + … + 𝑎𝑚𝑛𝑠𝑛 + 𝑒𝑚 = 𝑏𝑚 mod q

Let the elements of a matrix A are (a11, a12, …, amn),

whereas the elements of the vectors s, e, and b are (s1, s2,

…, sn), (e1, e2, …, em,), (b1, b2, …, bm) respectively. The

aforementioned linear equations can be expressed in

abbreviated form as A.s +e = b mod q. Where m and n

denote the rows and columns of the matrix, which

contains values that are uniformly and randomly

selected, and 𝑠 ∈ ℤ𝑞
𝑚, 𝐴 ∈ ℤ𝑞

𝑛×𝑚, e(error) ∈ χ𝑛, q ∈

prime number. The error is chosen at random from a

Gaussian distribution with a mean of zero and a small

standard deviation. The secret value s must be found in

great difficulty since otherwise, these equations can be

solved by the Gaussian Elimination technique in

polynomial time. The LWE based

encryption/decryption process may be broken into three

sections:

Key Generation:

𝑝𝑢𝑏𝐾𝑒𝑦 = {𝐴, 𝑏 = 𝐴. 𝑠 + 𝑒} 𝑎𝑛𝑑 𝑠𝑒𝑐𝐾𝑒𝑦 = 𝑠

Encryption:

𝐸𝑛𝑐(𝑝𝑢𝑏𝐾𝑒𝑦, 𝑏𝑖𝑡) = {𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡 𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 (𝑢)
= 𝐴. 𝑥,

 𝑐𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡 (𝑢′) = 𝑏. 𝑥 + 𝑏𝑖𝑡. ⌊
𝑞

2
⌋}, 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ {0, 1}𝑛

Decryption:

𝐷𝑒𝑐(𝑠𝑒𝑐𝐾𝑒𝑦, (𝑢, 𝑢′))

= {
0 𝑖𝑓 𝑢′ − 𝑠. 𝑢 𝑚𝑜𝑑 𝑞 ∈ [

−𝑞

4
 ,

𝑞

4
]

1 𝑖𝑓 𝑢′ − 𝑠. 𝑢 𝑚𝑜𝑑 𝑞 ∈ (
𝑞

4
 ,

3𝑞

4
]

As 𝑆𝑉𝑃 ≤ 𝐶𝑉𝑃 ≤ 𝐿𝑊𝐸 [4] describes the SVP, which

is indirectly reducible to the Learning with Errors

(LWE) problem, has not yet been solved by a quantum

computer, the LWE approach would likewise be

secured from a quantum attacker.

3.2. Random Number Generator

There are two broad categories:

1. True random number generator [15].

2. Pseudo-random number generator.

While PRNG takes the seed value or initial value from

the user or from an external entity like another process

and applies mathematical operations over that to

produce the stream of random numbers, TRNG takes

the input from external natural sources in an analogue

form through sensors and then converts it into the

digital form and produces the sequence of random

number streams (Refer Figure 2.)

914 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 2. Random number generators.

3.3. Linear Feedback Shift Register (LFSR)

An LFSR [11] is a combination of shift registers in a

sequential manner of bits using combinational logic. The

output from each shift register is carefully staged and fed

back into its input in an LFSR, which enables the

function to endlessly cycle through a variety of patterns.

The feedback shift register may be broken down into

two main components: the shift registers and the

feedback function. A group of bits make up the shift

register. When the length of a shift register is n bits, the

shift register is referred to as an n-bit shift register. If a

bit is necessary, all of the bits are typically moved one

bit to the right, starting with the least significant bit.

Based on other bits in the register, the next leftmost bit

is determined. The output of the shift register is often the

least significant bit. The period of a shift register refers

to the length of the output sequence prior to its

repetition. A linear function, often XOR, is used as the

input in the simplest type of feedback shift register,

known as an LFSR. Tap bits are the bits that modify the

LFSR's state. Both the Galois approach and the

Fibonacci method can be used to link tap bits. Unlike the

Galois approach, which XORs each tap bits with the

output stream, the Fibonacci method cascades tap bits

and feeds them into the LFSR's leftmost shift register. In

cryptography, LFSRs might be used to produce pseudo-

random numbers, nonces, etc.

3.4. Quantum Cryptography

In a classical computer, cryptography [5] is a method for

carrying out secure communication and protecting

information between two parties in the public domain by

using mathematical concepts and algorithms. In a

quantum computer, however, cryptography is a method

that employs laws of quantum mechanics to secure

communication and protection of information even

when the intruders have access to quantum computing.

4. Proposed PRNG based on LWE

In the current work, a method for generating

pseudorandom numbers is provided that takes use of the

adaptability of lattice-based cryptography. For the

purpose of securing the seed against cryptanalysis, the

proposed method opts for Learning with Errors (LWE)

implementation of the Lightweight Block Cipher (LBC)

[23]. The seed bits are obfuscated by LWE into a vector

in the lattice, which is then given to the Linear Feedback

Shift Registers (LFSR), where a circuit (composed of

three LFSRs) is computed to produce the random

sequence. Keeping the lattice vector in the lattice after

the circuit generates the feedback sequence for it is one

of the more difficult side of this approach. Additionally,

we must make sure that the original seed or secret used

for LWE encryption is not compromised. To address

this, the current scheme computes the value for the

circuit using a homomorphic function. On encrypted

data, homomorphic functions are performed without

disclosing the information of the secret seed.

The scheme is methodically divided into three

sections:

Figure 3. Block diagram of proposed PRNG.

4.1. Seed Obfuscation using LWE

In the current work, we develop the LWE Obfuscation

method, which consists of two stages: Key Generation

and Seed Obfuscation (Refer Figure 3. Block diagram

of proposed PRNG), for obscuring the input seed. Key

Generation step grabs the input seed to produce the

matrix 𝐴 ∈ 𝑅𝑞
𝑘×𝑘 and a secret key 𝑠 ∈ 𝑅𝑞

𝑘×1 and also to

produce obfuscation key 𝐴. 𝑠 + 𝑒 where 𝑒 represents the

uniform Gaussian error distribution. Once the keys have

been obtained, the obfuscation vector c is created by

passing the input to the Seed Obfuscation function. This

is accomplished by first generating the random vector

𝑥 ∈ 𝑅𝑞
𝑘×1 and then 𝑐 = 𝑏𝑇 . 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2. The

const_bit is used to increase the obfuscated seed's

entropy. To apply the homomorphic function, the LFSR

circuit will receive the obfuscated seed, “c ”.

4.2. Homomorphic Function

After evaluating obfuscated seed, homomorphic

function enables operations on the obfuscated seed with

the aim of maintaining privacy. One of the most crucial

uses of lattice-based cryptography has proven to be

homomorphic encryption [24]. In the current work,

homomorphic function is utilized to design circuits that

compute on encrypted data to generate sequence

without losing the lattice properties. The distributed

LWE Based Quantum-Resistant Pseudo-Random Number Generator 915

PRFs on the ℤ𝒒 vector and the ○ 'a binary' operation are

both used by the proposed PRNG generator. Input from

the LWE obfuscation function “c ”. is divided into three

parts by the circuit such that the operations adhere to the

following circuit equality:

Homo_LWE(c)=Homo_LWE(c_1)○Homo_LWE(c_2)○

Homo_LWE(c_3)

Where ○ is any binary operation and Homo_LWE(c) is

the function that LFSR obeys that does not interfere with

the lattice properties of LWE. To determine if the circuit

retains the LWE structure after homomorphic

translation, we would establish the following theorem.

 Theorem: If a circuit Homo_LWE with operation ○ is

used, the evaluation of the LWE obfuscated vector c

is performed using the equality shown below:

𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐) = 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐1)

○ 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐2)

○ 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐3)

Where the distributed seeds produced from the LWE

obfuscation function c1, c2, and c3.

 Proof: Seed obfuscation function is defined as 𝑐 =
𝑏. 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2. Let c1, c2 and c3 represent the

divided outputs of the Homo_LWE(c) with ○
 operation, respectively, where c1, c2, and c3 serve as

inputs to each distinct circuit function. The following

equations are obtained by dividing the 𝑐 results into

three parts:

𝑐1 = 𝑏1. 𝑥1 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2

𝑐2 = 𝑏2. 𝑥2 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2

𝑐3 = 𝑏3. 𝑥3 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2

Given that 𝑏 = 𝐴. 𝑠 + 𝑒, the function 𝐻𝑜𝑚𝑜_𝐿𝑊𝐸(𝑐) is

as follows:

(𝐴. 𝑠 + 𝑒) 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2 =
 (𝐴1𝑠1 + 𝑒1)𝑥1 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2 +

(𝐴2𝑠2 + 𝑒2)𝑥2 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2 +

 (𝐴3𝑠3 + 𝑒3)𝑥3 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2

𝐴. 𝑠. 𝑥 + 𝑒. 𝑥 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡. 𝑞/2 =
𝐴1𝑠1𝑥1 + 𝐴2𝑠2𝑥2

+ 𝐴3𝑠3𝑥3 + 𝑒1𝑥1 + 𝑒2𝑥2

+ 𝑒3𝑥3 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡1. 𝑞/2

+𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡2. 𝑞/2 + 𝑐𝑜𝑛𝑠𝑡_𝑏𝑖𝑡3. 𝑞/2

It is proved that the circuit keeps the structure of LWE

after homomorphic translation since neither side of the

equation has yet leaked any type of secret.

4.3. Stream Generation using LFSRs

The above discussed LWE based homomorphic function

is used to produce the pseudorandom sequences.

Figure 4. Linear feedback shift register.

The distributed homomorphic circuit is implemented

using three LFSRs and an obfuscated seed in the

proposed technique. There are three phases in the LFSR

sequence generator:

1) Initializing LFSRs.

2) Generating bit output sequences.

3) Generating feedback.

In the first phase, three LFSRs, L1, L2, and L3, each

with 2000 bits, are taken into consideration during

design. To initialize all bits, the LWE obfuscation

function creates a 6000-bit seed that is obfuscated. The

non-sequential initialization of each LFSR uses the

obfuscated seed. An iterative technique is utilized to

initialize the LFSRs. Eight bits are successively filled in

each LFSR in the first iteration. Following that, the

eight bits of each LFSR are XORed to determine which

pair of LFSRs has the highest XOR value. In the

following iteration, a pair with the highest XOR value

would be filled. Until the two LFSRs are entirely filled,

the same procedure would be repeated. The remaining

obfuscated seed bits would then be sequentially fed into

the pending third LFSR. In this way, the initialization

process of LFSRs is not sequential. In the second phase,

following initialization of all three LFSRs, the output

sequence would be produced in accordance with the

state of the Master-Slave LFSRs. In the beginning, the

scheme selects one LFSR, let's say L2, as the Master

LFSR, and the other two, let's say L1 and L3, as the

Slaves. Every LFSR splits its bits into eight-bit blocks

at the beginning. First, the Master LFSR L2's first block

is chosen, and the positions of the ones in that block are

determined. For slave LFSR L1 and L3, a left shift

would be carried out based on where the ones were

located in a chosen block of L2. For instance, if position

two in a chosen block of the Master LFSR L2 contains

one, then the number of shifting bits would be

calculated as 22=4. L1 and L3 would thus each have a

four-bit left shift. The output would be the result of

further XORing the four bits from the LFSR L1 and L3

together. Slave LFSRs' shifted values would be

compared to one another in order to choose the master

(1)

(2)

(3)

(4)

(5)

916 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

LFSR for the following iteration. The LFSR with the

highest value would take over as master for the

following iteration, while the other two would act as

slaves. However, the present Master LFSR would

continue to function as the Master LFSR if the values of

the two slave LFSRs were equal. The cycle continues

eternally. In the last phase, the LFSR sequence must be

fed continually to prevent exhaustion in order to

generate outputs for any number of bits. The current byte

and the output bits are used in this technique to give the

LFSRs feedback. The two slave LFSRs' left-shifted bits

from the bit output sequence generation are XORed with

the same number of bits from a chosen block of the

master LFSR. These XORed bits are cross-fed into the

slave LFSRs. For instance, in the LFSR illustrated in

Figure 4, if L2 is the master and L1, and L3 are the

slaves, then the XORed bits of L1 and L2 would be sent

into L3, and the XORed bits of L2 and L3 would be fed

into L1.

5. Result and Analysis

The NIST STS (Statistical Test Suite) [23] is a collection

of empirical tests designed to analyse bitstream

randomness in accordance with a wide range of bit or

block statistics. The suggested Pseudo-Random Number

(0/1) Generator which is implemented in ‘C’ language

has undergone each of the 12 NIST tests. The CDAC-

PARAM Shavak machine is used to conduct these tests

in the Secure Systems Lab of the SOCEMS at DIAT,

Pune. To verify the generator's randomness, we buffered

the 1.1 GB output bits into a file, which was then used

as input to the NIST test suite. This provided 106 bits for

every 50 samples. The selected parameters for the

respective tests are mentioned in Table 1.

Table 1. Parameters selected for the respective tests.

Sl.

No.

Test Block

length

1. Block Frequency Test 128

2. Non-Overlapping Template Test 8

3. Overlapping Template Test 8

4. Approximate Entropy Test 7

5. Serial Test 10

6. Linear Complexity Test 500

--

The minimum pass rate for each statistical test with the

exception of the random excursion (variant) test is

approximately=47 for a sample size=50 binary

sequences.

The minimum pass rate for the random excursion

(variant) test is approximately=21 for a sample size= 23

binary sequences.

--

As the proportion value for each statistical test meets the

minimal criterion limit to pass the statistical tests, Table

2 clearly shows that the proposed Pseudo-Random

Number Generator has passed all NIST tests.

Table 2. Testing results for the generator.

Sl.

No.
Test

Statistic and

reference

distribution

Proportion
Accepted/

Rejected

1.
Frequency (Mono-

bit) test

Half normal

distribution
47/50 Accepted

2.
Frequency test
within a Block

χ2 distribution 48/50 Accepted

3. Runs test χ2 distribution 48/50 Accepted

4.

Tests for the

longest-run-of
ones in a block

χ2 distribution 47/50 Accepted

5.
Binary matrix rank

test
χ2 distribution 48/50 Accepted

6.

Discrete fourier

transform

(Spectral) Test

Normal
distribution

49/50 Accepted

7.

Non-overlapping

template matching

test

χ2 distribution 47/50 Accepted

8.
Overlapping

template matching

test

χ2 distribution 47/50 Accepted

9.
Linear complexity

test
χ2 distribution 50/50 Accepted

10.
Cumulative sums

test

Normal

distribution
49/50 Accepted

11.
Random

excursions test
χ2 distribution 23/23 Accepted

12.
Random

excursions variant

test

Half normal

distribution
23/23 Accepted

The speed of suggested QRPRNG was tested, and

35.172 Mbit/s were obtained. A software-based

methodology, time stamping, is used to gauge the speed

of the current QRPRNG.

6. Key Space Analysis

The collection of potential keys that can be used to

generate random bits using a certain PRNG strategy is

known as the key-space of a PRNG technique. The size

of the key space is determined by the total amount of

bits in the key, also referred to as the key length. The

number of available bits is multiplied by the length of

the key at each location to get the size of the key space.

The proposed QRPRNG generates the LFSR's initial

seed via a lattice-based hard problem. Shake256 is used

as the input for the LWE encryption. Key space for the

output produced by SHAKE256 is 2256. As a result, the

key space for the proposed generator is 2256, a large

number.

7. Comparison with other PRNGs

This section provides a comparative analysis of the

proposed PRNG in relation to other approaches,

considering randomness, quantum security, key space

analysis, and performance. The proposed approach is

based on a lattice-based hard problem and LFSR,

enabling the generation of a random bit sequence. One

significant advantage of the proposed scheme is its

satisfactory statistical properties and completely

random behavior. Table 3 employs criteria such as

statistical test suite, speed analysis, and quantum safety

LWE Based Quantum-Resistant Pseudo-Random Number Generator 917

to assess PRNGs. The data clearly demonstrates that the

proposed PRNG underwent the most extensive testing.

Table 3. Comparison of proposed PRNG with other PRNGs.

Features [19] [29] [21] [18]
Proposed

PRNG

Implementation

based on

PCG32

PRNG-linear

congruential

generator

Xoroshiro1

28+

Memristor

+ LFSR

Lattice

based

Lattice based

LWE +LFSR

NIST test suite Pass – Pass Pass Pass

Speed (Mbit/s) 4-5 8-9 1.5 35.089 35.172

Quantum safe No No No ✔ ✔

Key space

analysis
– – – ✔ ✔

Comparison

analysis
– – – ✔ ✔

 Note: ‘✔’states achieved and ‘–‘ states no result reported yet.

8. Conclusions

Lattice-based primitives, notably the LWE problem, are

used in this approach to attempt to secure the seed.

Through the use of LFSR and a homomorphic function,

it generates an indefinite long random sequence,

satisfying the LWE problem's theoretical security

requirement. The suggested PRNG is subjected to NIST

statistical testing. As it is based on a lattice-based LWE

problem, the proposed system is also resistant to

quantum attacks.

Present work is focused on generators to ensure their

viability as quantum resistant solution. In future, the

code can be parallelized to speed up the QRPRNG.

Further research is needed to optimize the efficiency and

analyze the security of LWE-based PRNGs.

References

[1] Abdulsalam S., Olaniyi M., and Ahmed A.,

“Enhanced Tiny Encryption Algorithm for Secure

Electronic Health Authentication System,”

International Journal of Information Privacy,

Security and Integrity, vol. 3, no. 3, 2018.

DOI:10.1504/IJIPSI.2018.10013222

[2] Albrecht M., Player R., and Scott S., “on the

Concrete Hardness of Learning with Errors,”

Journal of Mathematical Cryptology, vol. 9, no. 3,

pp. 169-203, 2015. DOI:10.1515/jmc-2015-0016

[3] Banerjee A., Peikert C., and Rosen A.,

“Pseudorandom Functions and Lattices,” in

Proceedings of the Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, UK, pp. 719-737,

2012. https://doi.org/10.1007/978-3-642-29011-

4_42

[4] Becker A., Gama N., and Joux A., “Solving

Shortest and Closest Vector Problems: The

Decomposition Approach,” Cryptology ePrint

Archive, 2013.

[5] Bennett C. and Brassard G., “Quantum

Cryptography: Public Key Distribution and Con

Tos5,” Theoretical Computer Science, vol.

560, pp. 7-11, 2014.

https://doi.org/10.48550/arXiv.2003.06557

[6] Blum M. and Micali S., Providing Sound

Foundations for Cryptography: On the Work of

Shafi Goldwasser and Silvio Micali, Association

for Computing Machinery, 2019.
DOI:10.1145/3335741.3335751

[7] Chowdhury S. and Maitra S., “Efficient Software

Implementation of Linear Feedback Shift

Registers.,” in Proceedings of the 2nd

International Conference on Cryptology,

Chennai, pp. 297-307, 2001.

https://doi.org/10.1007/3-540-45311-3_28.

[8] Delgado-Mohatar O. and Fúster-Sabater A.,

“Software Implementation of Linear Feedback

Shift Registers over Extended Fields,” in

Proceedings of the International Joint Conference

CISIS’12-ICEUTE´ 12-SOCO´ 12 Special

Sessions, Ostrava, pp. 117-126, 2013.
https://doi.org/10.1007/978-3-642-33018-6_12

[9] Espinosa García J., Cotrina G., Peinado A., and

Ortiz A., “Security and Efficiency of Linear

Feedback Shift Registers in GF(2n) Using n-Bit

Grouped Operations,” Mathematics, vol. 10, no.

6, 2022. https://www.mdpi.com/2227-

7390/10/6/996#

[10] Ferguson N., Schneier B., and Kohno T.,

Cryptography Engineering: Design Principles

and Practical Applications, Wily, 2015.

https://doi.org/10.1002/9781118722367.ch9

[11] Hassan S. and Bokhari M., “Design of Pseudo

Random Number Generator using Linear

Feedback Shift Register,” International Journal

of Engineering and Advanced Technology, vol. 9,

no. 2, 2019. DOI: 10.35940/ijeat.B2912.129219

[12] Krivenko S. and Krivenko S., “Many-to-Many

Linear-Feedback Shift Register,” in Proceedings

of the IEEE 34th International Scientific

Conference on Electronics and Nanotechnology,

Kyiv, pp. 176-178, 2014. doi:

10.1109/ELNANO.2014.6873939

[13] Kumar A. and Mishra A., “Evaluation of

Cryptographically Secure Pseudo Random

Number Generators for Post Quantum Era,” in

Proceedings of the IEEE 7th International

Conference for Convergence in Technology,

Mumbai, pp. 1-5, 2022. doi:

10.1109/I2CT54291.2022.9824543.

[14] Laarhoven T., “Sieving for Closest Lattice

Vectors (With Preprocessing),” in Proceedings of

the International Conference on Selected Areas in

Cryptography, Canada, pp. 523-542, 2017.

https://doi.org/10.48550/arXiv.1607.04789

[15] L’Ecuyer P., Random Number Generation,

Springer Berlin Heidelberg, 2012.

[16] Naor M. and Reingold O., “Constructing Pseudo-

Random Permutations with A Prescribed

Structure,” Journal of Cryptology, vol. 15, pp. 97-

https://www.inderscience.com/jhome.php?jcode=ijipsi
https://www.inderscience.com/jhome.php?jcode=ijipsi
https://www.inderscience.com/info/inarticletoc.php?jcode=ijipsi&year=2018&vol=3&issue=3
http://dx.doi.org/10.1504/IJIPSI.2018.10013222
http://dx.doi.org/10.1515/jmc-2015-0016
http://dx.doi.org/10.1145/3335741.3335751
https://doi.org/10.1007/3-540-45311-3_28

918 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

102, 2002. https://doi.org/10.1007/s00145-001-

0008-5

[17] Nejatollahi H., Dutt N., Ray S., Regazzoni F.,

Banerjee I., and Cammarota R., “Post-quantum

Lattice-Based Cryptography Implementations: A

Survey,” ACM Computing Surveys, vol. 51 no. 6,

pp. 1-41, 2019. https://doi.org/10.1145/3292548

[18] Pandit A., Kumar A., and Mishra A., “Lwr-based

Quantum-Safe Pseudo-Random Number

Generator,” Journal of Information Security and

Applications, vol. 73, 2023.
https://doi.org/10.1016/j.jisa.2023.103431

[19] PCG, A Family of Better Random Number

Generators | PCG, A Better Random Number

Generator. https://www.pcg-

random.org/index.html.

[20] Peikert C., SVP, Gram-Schmidt, LLL. 1, pp. 1-5,

2013.

[21] Rai V., Tripathy S., and Mathew J., “Memristor

Based Random Number Generator: Architectures

and Evaluation,” Procedia Computer Science, vol.

125, pp. 576-583, 2018.

https://doi.org/10.1016/j.procs.2017.12.074

[22] Regev O., “CS 294.1 The Learning with Errors

Problem: Introduction and Basic Cryptography

Solving Systems of Linear Equations,” 2018.

[23] Rukhin A., Soto J., Nechvatal J., Smid M., Barker

E., and Leigh S., A Statistical Test Suite for

Random and Pseudorandom Number Generators

for Cryptographic Applications, National Institute

of Standards and Technology, 2010.

[24] Shaheen S., Yousaf M., and Jalil M., “A Smart

Card Oriented Secure Electronic Voting Machine

Built on NTRU,” The International Arab Journal

of Information Technology, vol. 17, no. 3, pp. 386-

393, 2020. doi: 10.34028/iajit/17/3/12

[25] Shrestha B., Multiprime Blum-Blum-Shub

Pseudorandom Number Generator, Master Thesis,

Naval Postgraduate School Monterey United

States, 2016.

[26] Tang X., Xu J., and Duan B., “A Memory-efficient

Simulation Method of Grover's Search

Algorithm,” Computers, Materials and Continua,

vol. 57, no. 2,

2018. https://doi.org/10.32604/cmc.2018.03693

[27] Tsaban B. and Vishne U., “Efficient Linear

Feedback Shift Registers with Maximal Period,”

Finite Fields and Their Applications, vol. 8, no. 2,

pp. 256-267, 2002.

https://doi.org/10.1006/ffta.2001.0339

[28] Ugwuishiwu C., Orji U., Ugwu C, and Asogwa,

C., “An Overview of Quantum Cryptography and

Shor’s Algorithm,” International Journal of

Advanced Trends in Computer Science and

Engineering, vol. 9, no. 5, 2020.

https://doi.org/10.30534/ijatcse/2020/214952020

[29] Xoroshiro128+ — RandomGen 1.23.1

Documentation.https://bashtage.github.io/random

gen/devel/bit_generators/xoroshiro128.html.

[30] Yi X., Paulet R., and Bertino E., Homomorphic

Encryption and Applications, Springer, 2014.

Atul Kumar is working in R&D

organization in India. He completed

his M.Tech. In Cyber Security from

Computer Science and Engineering

Department at Defence Institute of

Advanced Technology, Pune. His

area of interest is Post Quantum

Cryptography.

Arun Mishra is working as an

Associate Professor in Computer

Science and Engineering

Department at Defence Institute of

Advanced Technology, Pune. He

completed his Ph.D. from MNNIT,

Allahabad in 2012. He has more than

40 research publications in peer-reviewed journals &

international conference proceedings. His area of

interest is Cryptography, Blockchain Technology, Post

Quantum Cryptography (Code-based Cryptography,

Lattice-based Cryptography and Hashed based

Cryptography), Secure Software Engineering, and

Secure Systems Design (isolation/ secure execution/

secure computations). In the current project, he

contributed to the development of the concept and

technique.

https://doi.org/10.1145/3292548
https://doi.org/10.1016/j.jisa.2023.103431
https://www.pcg-random.org/index.html
https://www.pcg-random.org/index.html
https://doi.org/10.32604/cmc.2018.03693
https://doi.org/10.1006/ffta.2001.0339

