
874                                                   The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 

Induction of Co-existing Items Available in 

Distributed Version Control Systems for Software 

Development 
Sibel Özyer 

Department of Computer Engineering, Ankara Medipol University, Turkey 
sbltariyan@gmail.com  

Abstract: Software development in Open-Source Software systems (OSS) allow developers to share their code and modify other 

developers' code. That leads to collaboration in the development. They can either discuss on the items to be developed, including 

the errors and technical problems that were faced. One popular OSS platform is github which already has a large number of 

developers and projects. The data residing in the issues part of github is sufficiently large, complex and unstructured. It could 

be processed to find novel discoveries. This work concentrates on one selected project to be analyzed systematically. Routine 

Extract, Transform and Load (ETL) steps have been identified to clean the data before applying natural language processing 

for prioritizing and taking actions for the requirements. In a collaborative environment. Our work uses terms and guides 

developers for tracking the co-occurrence of the terms used together to help them focus on the important issues.  

Keywords: Version control systems, requirement analysis, co-occurrence analysis, natural language processing. 

Received August 31, 2022; accepted July 20, 2022 

https://doi.org/10.34028/iajit/20/6/4 
 

 

1. Introduction 

The Open-Source Systems (OSS) domain is prevalent in 

software development. Distribution policy with a 

licence allows developers to access the codes and 

redistribute them for their derivations and use. It 

includes its structure, ownership, membership, and 

contribution policy [1]. The developers had the 

motivation to participate in OSS organizations such as 

altruism, identification of their community, marketing 

themselves, increasing their skill base, selling their 

similar products and their personal needs [5]. Resource 

management and teamwork require version control 

systems.  

In OSS ecosystem, stakeholders are persons and 

firms who influence the system or are impacted by the 

system [4]. Requirement Engineering (RE) is concerned 

with the discovery of requirements imposed by 

stakeholders and documentation for the development 

activities. Stakeholders form a social network having 

core developers and passive users [1].   

RE predominantly involves the discovery of 

stakeholders' needs, which may be ambiguously 

described; this may need more elaboration for the 

resolution of the conflicting requirements [11].  

Requirement negotiation needs to elicit the problems 

that exist in the current system and are not identified in 

the development phase. Here, the requirements are 

refined further and validated. Meantime, quick 

development of software applications with minimal cost 

and shorter amount of time is another target that causes 

reusing existing products in a distributed development 

environment [7].  

Version Control System (VCS) is used for managing 

the evolution and development. It facilitates the 

management of the source code and keeps past versions. 

Developers collaborate in a coordinated and effective 

way [19].  

According to the description in [19], VCS is 

categorized in two classes: Centralized and distributed. 

Git is a typical example of Distributed VCS. It has been 

incorporated with the github web site.  

The popularity of git and Github is increasing due to 

their robustness, predisposition to teamwork from the 

aspects of collaboration, communication and carrying 

out the necessary part of the software engineering 

principles. As of 2022, GitHub reported over 83 million 

developers, 4 million organizations, and more than 327 

million repositories. 44 million of which are public 

repositories.   

During the software development, the developers and 

users in the community report errors using natural 

language. In general, issues are used to report bugs, or 

suggest new features [16]. Requirements are expressed 

in issues. Issues are transformed into relational 

information between the phrases to structure text data. 

Semi-automated detection of requirements would be 

feasible [17]. However, a full automation should be 

abstained [18].  Finally, there are attempts to extract 

requirement related data from text [17].   

This study addresses the issues in software 

development by concentrating on a particular project 

from Github, namely, the MS Typescript project. It is a 

syntactical superset of javascript. The target is to 

https://doi.org/10.34028/iajit/20/6/4


Induction of Co-existing Items Available in Distributed Version Control Systems ...                                                                 875 

analyze and describe the issues and prioritize frequent 

items as requirements. Issues have been manually 

categorized into four requirement types, namely, 

performance, documentation, installation, and 

information. These types have been inspected 

individually. After part of speech tagging of the data, 

nouns and adjectives have been particularly used for co-

occurrence analysis by employing association rule 

mining [6].  

An issue may be related to one or more classified 

requirement types. It will help us get sensitized to the 

problem. An accurate forecast of the resources includes 

budget, manpower and project work package 

identification with time planning. Critical parts can be 

overly tested and improved. 

The rest of the paper is organized as follows. The 

scope of work is covered in section 2. The developed 

methodology is described in section 3. The experiments 

and results are included in section 4. Section 5 is 

conclusions and future work. 

2. Scope of Work 

Issues that have been collected as text can be processed 

for knowledge discovery. Co-occurrence of words in a 

particular domain reveals the strength of an important 

role for better analysis. Natural language processing has 

been employed from different perspectives to extract 

important terms, topics, and entities, optionally 

including their sentimental polarity with their 

relationships [9].  

Requirement engineering may also need to be 

processed for the elicitation step. Because of the 

previously mentioned reasons, a semi-automated 

system would be preferred.  

Part Of Speech (POS) Tagging has been used to link 

the words with tags to connect them to different types, 

such as noun phrase, adjective, verb, proposition, 

interjection, etc., [12]. Semantic Tagging is another 

direction for extracting elements and annotate them to 

ontological terms [15]. A framework for stakeholder 

profiling has been proposed by clustering the needs. 

Needs in a cluster are prioritized [2].  

Described in [8] is another study that proposes a deep 

learning-based approach for recommending a new 

repository. Topic modeling also plays an important role 

in RE [13]. 

3. System Overview 

Open source systems data, especially github data, is 

resourceful for RE which contains issues for the projects 

under development. Our system first, collects the issues. 

After they are collected from the github site, they are 

categorized as documentation, informative, 

performance and installation issues.  Collected data is 

cleansed; a pos tagger is employed following the stop 

word removal process. Next, the co-occurrence 

analysis, the association rule mining approach was 

applied on the processed data. It uncovers the 

association rules that lead to identifying significant 

results; they are ranked. In the following steps, actions 

that were taken have been described.  

 Issue Collection: the issues have been collected from 

MS Typescript (github.com/Microsoft/TypeScript) 

project which is a superset of the popular JavaScript. 

The reason for the selection of this project is its 

continuous support and development by a large 

number of developers and users. The common 

approach is that the breakdown of the requirements 

can be under four types, including documentation, 

informative, installation and performance type 

issues. In this study, the collected data have 143 

issues in total. They have been inspected manually, 

and have been categorized thoroughly. After 

categorizing the data, further pre-processing steps 

have been taken. For better analysis, descriptions 

which had more user comments were given more 

preference. The collected data has been categorized, 

and its distribution has been given as the total number 

of issues, which are distributed as follows: 20 are 

installation, 28 are performance, 36 are 

documentation, and 50 are informative.  

 Cleansing the Content: the content can intertwine 

since it is in unstructured and natural form. The data 

has been cleansed with regular expressions; the mark 

up content, emotions, and icons have been 

eliminated. After cleansing the data, stop word 

elimination is applied at the next step.  

 Eliminating Insignificant Words: textual content can 

be disorganized; it may contain the same word 

repeated at several locations. Besides, commonly 

used insignificant words, the so called stop words 

must be eliminated. A list of 421 stop words has been 

compiled [3]. 

 Applying the POS Tagger: in this study, after POS 

tagging, only nouns and adjectives have been 

considered and kept for further use. Others have been 

discarded. Empirical results indicate that nouns and 

adjectives give promising results. For this purpose, 

the Stanford CoreNLP POS Tagger has been used.  

 Employing Market Basket Analysis: market basket 

analysis of data mining has been utilized in several 

areas, including software engineering such as defect 

analysis, bug analysis, false test alarming, and 

change in source code analysis with impact analysis 

[10, 14].     

 Scoring the Extracted Words: after getting the words 

as frequent patterns, words co-occurring will lead to 

the rules. At this step, the top k rules are selected 

based on their confidence values.  

The rules related to the issues have been represented 

with the frequency count of each item. Items stand for 

the words. For each item ti its support value freqi is 

https://github.com/Microsoft/TypeScript


876                                                   The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 

assessed. Then items are ranked based on the occurrence 

number. Here, term t1 exists with a support value of 

freq1; other terms that coexist with t1 are detected. When 

t2 occurs with t1 with a support value of freq2, then t2 

contributes with a support value of freq2. The higher the 

value of freq2 is, the more influence t2 has on t1. The 

ranked results of item combinations with the frequency 

proportion can be presented to the decision makers for 

better interpretation of the issue types in four directions.  

Experiments and discussions are given in section 4. 

4. Experiments and Discussion 

Four issue types, namely documentation, installation, 

performance and informative have been considered. 

Each of these issue types has been analyzed separately 

in the following sections. The terms have been assessed 

and their analysis have been conducted for each 

individual issue type. In our study association rule 

mining has been run with minimum support value 

specified as minsup=.08 and minimum confidence value 

specified as minconf=.8.  We have taken top k=10 rules 

out of the list of all rules. Rules containing similar items 

have been removed. 
 

 Informative Type Issues: the methodology we have 

described in section 3 has been applied for the 

informative type issues. The association rules mining 

algorithm has been run with the abovementioned 

parameter values. Tables 1 and 2 list the nine rules 

after eliminating one duplicate; they are ranked. 

Table 1. Frequent item sets of informative type issues. 

Items Count Confidence 

value, variable 7  

1 

 
code, type, variable  5 

string, type 5 

function, variable 10 0.91 

statement, variable 6 0.86 

behaviour, variable 5 

0.83 
behaviour, typescript 5 

line, typescript 5 

fine, variable 5 

 

The calculations have been derived from the rules 

that were extracted from the data, mainly the data 

related to the informative type issues. Here, Table 2 

displays the final results in ranking the terms. It relies 

on the narrowed list in Table 1. Here the two 

components, initial term and the accompanying terms 

which define the influence to the initial term. 

Table 2. Analysis of frequent item sets of informative issue type. 

Initial Term Accompanying Terms Count/Over  

variable function 10/38 

variable value 7/38 

variable statement 6/38 

variable behaviour  

5/38 

 
variable fine 

variable code, type  

type string 

5/10 

type code, variable 

behaviour typescript 

behaviour variable 

typescript behaviour 

typescript line 

The study on the information type issues takes the 

proportion of frequencies into account. It requires the 

observations of 50 issues containing these terms.  The 

prominent initial terms in Table 2 are type, behaviour, 

typescript and variable. Using these terms with the 

accompanying terms, Informative issues are analyzed 

manually. For the informative issues type, among the 

issues, it has been realized that variable declarations 

were inconsistently used in the code for some values and 

data types. Here, the data type string stands out. It is 

considered as problematic, in particular for lines 

existing under function declarations in the code. 

After pointing out the problems in the software, test 

scenarios should be created for debugging purposes.  

These findings pave the way for the detailed analysis of 

relevant descriptions. Test cases are constructed after 

the analysis by looking at the influence of the terms. 

Test cases are investigated and the main reason can be 

figured out.  

An accurate identification of the problem, will 

diminish the effort to solve. Problems can be prioritized 

and they can be assessed for scheduling and for 

determining the number of developers needed. This 

knowledge will help us predict when the next release 

would be possible.  
 

 Installation Type Issues: the methodology we have 

described in section 3 has been applied for the 

informative type issues. Association rule mining 

algorithm has been run with the abovementioned 

parameter values. Tables 3 and 4 show the ranked 

nine rules after removing duplication. 

The results have been obtained by looking at the rules 

that are the by-product of the installation type issues. 

According to the results, it can be clearly stated that 

visual and studio terms coexist together as one phrase. 

It appears that it is the subpart of the whole expression, 

MS Visual Studio IDE. Table 4 displays the finalized 

list. The list is ranked.  Initial terms are taken and the 

accompanying terms are the co-occurring terms. They 

point to the contribution of each accompanying term to 

the initial term.  

Table 3. Frequent item sets of installation issue types. 

Items Count Confidence 

studio, typescript, visual 8 

1 

file, typescript 7 

studio, typescript 6 

typescript, compiler 6 

visual, studio 6 

file, project, typescript  5 

version, visual, studio 5 

file, version, typescript  5 

fine, variable 5 

 

The study on the installation type issues takes the 

proportions of frequencies into account. It requires the 

observations of 29 issues containing these terms.   

Initial terms that are notable are the terms: version, 

typescript, file, visual-studio, and studio. By looking at 



Induction of Co-existing Items Available in Distributed Version Control Systems ...                                                                 877 

these initial terms and accompanying terms manually, it 

is inferred that the typescript project points to some 

discrepancies for a particular version while compiling 

under MS Visual Studio IDE. 

Table 4. Analysis of Frequent item sets of the installation issue types. 

Initial Term Accompanying Terms Count/Over  

typescript file 
6/40 

 
typescript compiler 

typescript studio 

typescript visual-studio 

5/40 
typescript file, project 

typescript file, version  

typescript studio, version 

studio typescript 6/11 

studio typescript, version 5/11 

visual-studio type 6/19 

visual-studio version 5/19 

file typescript, project 
5/17 

file version, typescript 

file typescript 7/17 

version line 5/15 

Another inference from Table 4 is that the terms 

relating to the aspects mentioned above often exist. 

Installation issues form critical criteria for using any 

scripting language. Ease in practical use and 

compatibility come first. These aspects turn it into a 

popular language.  

Varying IDEs may run under differing platforms. 

They must be compatible. Developers are sensitive to 

IDE’s they have been using.  

Domain experts can easily figure out the problems 

with the version by checking the relevant issues.  This 

may also reduce the time for detecting the problem with 

the version. 

A clear explanation for the issue of the installation, 

this may be any problem varying from the compilation 

within a IDE to platform specific installation. The team 

responsible for that particular task is notified with the 

detailed requirement description.   

This will also require the preparation of the testing 

stage and maintaining the code.  

Finally, actions that are taken are expected to be 

finished timely. Addressing the issues will be a good 

start for better planning. 
 

 Documentation Type Issues: the methodology we 

have described in section 3 has been applied for the 

documentation issues. The association rule mining 

algorithm has been run with the abovementioned 

parameter values. Tables 5 and 6 show the ranked 

eight rules after removing the duplication.  Below, 

there are items that are considered to be important; 

they have been ranked. The calculations have been 

done by using the issues of type documentation. 

Based on the pre-specified support and confidence 

parameter values, the rules that have been discovered 

present the items in Table 6. During the frequency 

computation, it has been concluded that the two 

terms, visual and studio occur together, so they are 

taken as one phrase. 

Table 5. Frequent item sets of documentation type. 

Items Count Confidence 

new, typescript 4 

1 

issue, documentation 3 

good, typescript 3 

topic, language 3 

node, typescript 3 

visual, studio 3 

way, typescript 3 

language, typescript 4 0.8 

Table 6 resorts the terms. The initial term stays under 

inspection, and the accompanying terms represent their 

impact on the initial term.   

The study on the documentation type issues takes the 

proportions of the frequencies into account. It requires 

the observations of 36 issues containing these terms.   
Initial terms that are notable are the terms: language and 
typescript. It can be stated that there are limited number 
of issues of type documentation. The subject of the 
concerns are more common among the issues. In 
parallel, this is also supported when its content is 
inspected. One direction is the fact that there is a need 
to clarify the language of the documentation due to its 
ambiguity.    

Initial and accompanying terms together reveal the 

fact that the layout and the way it is disseminated are the 

main concerns. These concerns have been supported 

when the documents are elaborated. The issues expose 

the need for introducing features not existing or 

undetailed.  

Table 6. Analysis of frequent item sets of documentation issue type. 

Initial term Accompanying terms Count/Over 

typescript language 
4/17 

typescript new 

typescript good 

3/17 typescript node 

typescript way 

language typescript 4/7 

language topic 3/7 

 

All of these findings lead us to the corrections in the 

document. It should be imminent to revise the 

document. Apart from the software itself, one of its 

supportive parts is documentation which gives the hints 

on understanding and using the language. Insufficient 

documentation of a software may hinder the use of a 

software in development. Detection of weak points 

besides its ambiguity can be addressed easily after 

focusing on the necessary parts. Selected developers 

who are in charge of the development may give more 

information or examples on particular parts of it.   

 Performance Type Issues: the methodology we have 

described in section 3 has been applied for the 

performance issues. Association rule mining 

algorithm is run with the abovementioned parameter 

values. Table 7 show the initial results. Here, 

performance is common across all the rows. Here, 

that shows us that terms other than the performance 

will be the accompanying terms. The ranking will not 

change. 



878                                                   The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 

Table 7. Frequent item sets of performance type. 

Item sets Count Confidence 

way, performance 7 

1 

output, performance 5 

compilation, performance 5 

great, performance 5 

possible, performance 4 

class, performance 4 

module, performance 4 

Tsc (compiler), performance 4 

performance 4 

compilation, file 4 

useful, performance 4 

 

The study on the performance type issues takes the 

proportion of frequencies into account. It requires the 

observations of 28 issues containing these terms.   

Performance is the sole term. By taking into account 

both the initial and accompanying terms, when the 

issues having these terms are analysed, some classes and 

modules are hard to use. Because of trials and errors, the 

expected results according to the issues may not be 

giving.  This also causes hard time in compiling the code 

snippets in terms of the performance; translating it to 

another script in shorter amount of time. 

These issues can be addressed easily by the team. 

They may be included in the to do list with some 

priorities. Furthermore, next versions will be arranged 

so that critical portions of the software can be improved 

(using typescript) to the developers satisfaction.  

5. Conclusions  

We have studied the open source software development 

environments. One of the important OSS was git and 

github together. They alleviate the development of a 

software in a distributed environment. It may be public 

or private. Especially when the development 

environment is public, developers and users may 

together serve to the improvement of the software with 

the issues they have created. They are expressed with 

natural language.  

These issues are helpful for grasping the needs of the 

software. A system requiring human involvement has 

been proposed, with the help of managers, an 

affirmation of the needs is necessary because the 

absolute accuracy must exist to prefer a fully automated 

system. Differences in software would also cause the 

shift in concepts. However, any missing understanding 

in the requirement or priorities would cause the software 

to fail or at least hamper the next versions. It also will 

affect the schedule and resource plan of the 

development in terms of money, time and human.  

Natural language processing yet presents us an 

opportunity for the reuse of the issues in github to 

elaborate the needs for the software. A categorization of 

the requirements has been identified. A manual 

categorization of issues has been performed to robustly 

work on the terms. A pre-processing step cleanses the 

date, removes the outliers and only considers nouns and 

adjectives selectively. A market basket data analysis has 

been performed on the terms. Frequently occurring 

terms in sets have been retained and ranked for 

prioritization. This facilitates to understand the needs. 

An efficient resource planning can be possible.  

6. Future Work  

There is still room to be developed. A semi-automated 

system can be improved. Manually categorizing issues 

also can be performed automatically while transitioning 

to another software with transfer learning methods. At 

least, a metric can be devised to reduce the time spent 

for manual categorization.  

We have studied a limited amount of time for limited 

number of issues. It may also be scaled out for larger 

projects. Sentiment analysis in this work can also be 

incorporated to fully understand positive and negative 

aspects. It would also help us reviewing the expectations 

against the feedbacks.  

In the future one more direction would be to overlook 

the evolution of the software throughout the versions to 

understand how the software has improved and what 

needs are realistic with a lookback option. Our work 

will also be validated by the existing methods in the 

future.   

References 

[1] Androutsellis-Theotokis S., Spinellis D., 

Kechagia M., and Gousios G., “Open Source 

Software: A Survey from 10,000 Feet,” 

Foundations and Trends® in Technology, 

Information and Operations Management, vol.  4, 

no. 3-4, pp. 187-347, 2011. 

DOI:10.1561/0200000026 

[2] Castro-Herrera C., Cleland-Huang J., and 

Mobasher B., “Enhancing Stakeholder Profiles to 

Improve Recommendations in Online 

Requirements Elicitation,” in Proceeding of the 

17th IEEE International Requirements 

Engineering Conference, Atlanta, pp. 37-46, 

2009. doi: 10.1109/RE.2009.20. 

[3] Fox C., “A Stop List for General Text,” ACM 

SIGIR Forum, vol. 24, no. 1-2, pp. 19-21, 1989. 

https://doi.org/10.1145/378881.378888 

[4] Glinz M. and Wieringa R., “Guest Editors' 

Introduction: Stakeholders in Requirements 

Engineering,” IEEE Software, vol. 24, no. 2, pp. 

18-20, 2007. 

[5] Hars A. and Ou S., “Working for Free? 

Motivations for Participating in Open-Source 

Projects,” International Journal of Electronic 

Commerce, vol. 6, no. 3, pp. 25-39, 2002. doi: 

10.1109/HICSS.2001.927045.  

[6] Kaushik M., Sharma R., Peious S., Shahin M., 

Yahia SB., and Draheim D., “A Systematic 

Assessment of Numerical Association Rule 

Mining Methods,” SN Computer Science, vol. 2 

https://dl.acm.org/toc/sigir/1989/24/1-2
https://dl.acm.org/toc/sigir/1989/24/1-2


Induction of Co-existing Items Available in Distributed Version Control Systems ...                                                                 879 

no. 5. pp. 348, 2021. 

https://doi.org/10.1007/s42979-021-00725-2 

[7] Khan H., Niazi M., El-Attar M., Ikram N., Khan 

S., and Gill A., “Empirical Investigation of 

Critical Requirements Engineering Practices for 

Global Software Development,” IEEE Access, 

vol. 9, pp. 93593-613, 2021. doi: 

10.1109/ACCESS.2021.3092679. 

[8] Kim J., Wi J., and Kim Y., “Sequential 

Recommendations on GitHub Repository,” 

Applied Sciences, vol. 11, no. 4, pp. 1585, 2021. 

https://doi.org/10.3390/app11041585  

[9] Mahmoud A. and Zrigui M., “Semantic Similarity 

Analysis for Corpus Development and Paraphrase 

Detection,” The International Arab Journal of 

Information Technology, vol. 18, no. 1, pp. 1-7, 

2021. https://doi.org/10.34028/iajit/18/1/1 

[10] Morisaki S., Monden A., Matsumura T., Tamada 

H., and Matsumoto KI., “Defect Data Analysis 

Based on Extended Association Rule Mining,” in 

Proceedings of the 4th International Workshop on 

Mining Software Repositories, Minneapolis, pp. 

3-3, 2007. doi: 10.1109/MSR.2007.5. 

[11] Nawaz S., Zai A., Imtiaz S., and Ashraf H., 

“Systematic Literature Review: Causes of Rework 

in GSD,” The International Arab Journal of 

Information Technology, vol. 19, no. 1, pp. 97-

109, 2022. https://doi.org/10.34028/iajit/19/1/12 

[12] Portugal R., Li T., Silva L., Almentero E., Leite J., 

“Nfrfinder: A Knowledge Based Strategy for 

Mining Non-Functional Requirements,” in 

Proceedings of the XXXII Brazilian Symposium on 

Software Engineering, Sao Carlos Brazil, pp. 102-

111, 2018. 

https://doi.org/10.1145/3266237.3266269 

[13] Ray B., Posnett D., Filkov V., and Devanbu P., “A 

Large Scale Study of Programming Languages 

and Code Quality in Github,” in Proceedings of 

the 22nd ACM SIGSOFT International Symposium 

on Foundations of Software Engineering, Hong 

Kong, pp. 155-165, 2014. 

https://doi.org/10.1145/3126905 

[14] Sharma M., Kumari M., and Singh V., “Bug 

Assignee Prediction Using Association Rule 

Mining,” in Proceedings of the International 

Conference on Computational Science and Its 

Applications, Banff, pp. 444-457, 2015. 
https://doi.org/10.1007/978-3-319-21410-8_35 

[15] Sonbol R., Rebdawi G., and Ghneim N., “Towards 

a Semantic Representation for Functional 

Software Requirements,” in Proceedings of the 

IEEE 7th International Workshop on Artificial 

Intelligence for Requirements Engineering, 

Zurich, pp. 1-8, 2020. doi: 

10.1109/AIRE51212.2020.00007. 

[16] Xiao W., He H., Xu W., Tan X., Dong J., and Zhou 

M., “Recommending Good First Issues in GitHub 

OSS Projects,” in Proceedings of the 44th 

International Conference on Software 

Engineering, pp. 1830-1842, 2022. 

https://doi.org/10.1145/3510003.3510196 

[17] Yang Y., Xia X., Lo D., Bi T., Grundy J., and 

Yang X., “Predictive Models in Software 

Engineering: Challenges and Opportunities,” 

ACM Transactions on Software Engineering and 

Methodology, vol. 31, no. 3, pp. 1-72, 2022. 

https://doi.org/10.1145/3503509 

[18] Ziora L., “Natural Language Processing in the 

Support of Business Organization Management,” 

in Proceedings of SAI Intelligent Systems 

Conference, Amsterdam, pp. 76-83, 2021.  
https://doi.org/10.1007/978-3-030-82199-9_6  

[19] Zolkifli N., Ngah A., and Deraman A., “Version 

Control System: A Review,” Procedia Computer 

Science, vol. 135, pp. 408-15, 2018. 

DOI:10.1016/j.procs.2018.08.191  
 

Sibel Özyer received her BSc and 

MSc from Cankaya University, and 

PhD degree from Atilim University. 

She is currently assistant professor at 

Ankara Medipol University. Her 

research interests are social 

networks, computer networks, data 

mining, internet of things and cloud computing.  
 
 

 

https://doi.org/10.3390/app11041585
https://link.springer.com/conference/iccsa%20iccsa
https://link.springer.com/conference/iccsa%20iccsa
https://link.springer.com/conference/iccsa%20iccsa
https://link.springer.com/conference/intellisys
https://link.springer.com/conference/intellisys

