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Abstract: Community detection is the most common and growing area of interest in social and real-time network applications. 

In recent years, several community detection methods have been developed. Particularly, community detection in Local 

expansion methods have been proved as effective and efficiently. However, there are some fundamental issues to uncover the 

overlapping communities. The maximum methods are sensitive to enable the seeds initialization and construct the parameters, 

while others are insufficient to establish the pervasive overlaps. In this paper, we proposed the new unsupervised Map Reduce 

based local expansion method for uncovering overlapping communities depends seed nodes. The goal of the proposed method 

is to locate the leader nodes (seed nodes) of communities with the basic graph measures such as degree, betweenness and 

closeness centralities and then derive the communities based on the leader nodes. We proposed Map-Reduce based Fuzzy C- 

Means Clustering Algorithm to derive the overlapping communities based on leader nodes. We tested our proposed method 

Leader based Community Detection (LBCD) on the real-world data sets of totals of 11 and the experimental results shows the 

more effective and optimistic in terms of network graph enabled overlapping community structures evaluation. 
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1. Introduction  

An essential issue in complex social network research is 

community identification [8]. It is essential to 

comprehending how these networks operate. Networks 

originating from various application fields, such as 

online social networks, collaborative networks, 

information networks, networks of web pages, 

biological networks, etc., are addressed. A community 

in a network graph is a collection of nodes with a 

disproportionately higher density of edges between 

them than between them and the other nodes [5]. 

Community detection's goal may vary depending on the 

application domain. For instance, recognizing 

communities in online social networks is akin to 

locating individuals who have a shared interest. In web 

page networks, it entails assembling web sites that are 

pertinent to one or more themes. Many studies have 

been done on finding communities in networks. The 

most widely used techniques include improving the 

modularity quality function. Unfortunately, a number of 

issues with the modularity optimization techniques have 

been discovered. In fact, because of its resolution 

limitations, even loosely related tiny groups are often 

merged to produce bigger ones. Moreover, it often splits 

sizable groupings, even when they are quite dense. We 

propose a new approach that enables the detection of 

more realistic communities while maintaining 

modularity score as close as possible to the maximum. 

This method aims to overcome some of the limitations  

 
of the modularity optimization technics, particularly the 

splitting of large dense groups and the overfitting. 

In this paper, community detection problems to a 

given network graph modeled as a clustering problem. 

We have proposed the leader-based community 

detection technique based on fuzzy clustering algorithm 

[10]. We integrate fuzzy logic into clustering process to 

find the overlapping communities. Here we have 

proposed a modified version of Parallel Fuzzy C-Means 

(FCM) clustering based on HADOOP Map-Reduce 

Framework. We identify the communities from the 

given network using our Parallel FCM clustering 

algorithm, based on the leader nodes. Leader nodes are 

identified from the structural centrality of the node. The 

structural centrality is extracted from the basic centrality 

measurements (degree, closeness, and betwenness) and 

the relative distance of the nodes in the network. In this 

article we are dividing our work to following sections: 

section 2 related work of proposed method. Section 3. 

Architecture of our proposed work; section 4. Finding 

all pair shortest path using giraph Application 

Programming Interface (API); section 5. Calculating the 

degree of influence; section 6. Leader node 

identification; section 7. Community generation; 

section 8. Results and discussions; section 9 Conclusion 

and future work. 
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2. Related Work 

There are two basic kinds of community identification 

methods: discovering communities without overlaps, 

where a node may only belong to one community, and 

detecting communities that overlap. A node can be 

shared by many communities in overlapping 

communities. In recent years there are several 

community detection methods without overlap are 

proposed like graph partitioning [20], hierarchical 

clustering [15], Spectral Clustering [4], optimization 

algorithms enabled modularity approach [11, 19]. These 

methods enable the social networks of complex 

structures to produce the reasonable communities. The 

graph partitioning method focus on the improvement in 

the modularity function. This method divides the 

optimisation process into two steps that are iteratively 

repeated. The first stage begins by giving each network 

node its own community (each community contains one 

and only one node). The next step is to relocate each 

node to the nearby community that produces the greatest 

gain in modularity (if no increase is possible, then node 

remains in its original community). A community to 

which node is connected is referred to as a neighbouring 

community. The algorithm gathers nodes belonging to 

the same community in the second phase and “builds” a 

new network with the communities from the first phase 

as its nodes. The connections linking the two matching 

communities are used to compute the edges between the 

new nodes. Up until the modularity achieves its local 

maximum, these procedures are repeated. In 

Hierarchical clustering, multilevel graph of grouping 

structures is established. This grouping is determined 

based on similarity score between the nodes in the 

graph. Here the similarity score is calculated using the 

neighbourhood similarity-based indices. The spectral 

methods enable to the spectral characteristics used to 

point out the communities. Here, computing the first k 

eigenvectors of the Laplacian or other matrix is 

necessary for spectral clustering. In general, spectral 

techniques are computationally intensive, and 

computing the eigenvectors for huge networks is 

mathematically impossible. Modularity-based 

approaches try to finding the community structure that 

maximizes the modularity function. This approach is 

greedy technique which is repeatedly looking the 

maximum modularity score. The inability of 

modularity-based algorithms to discover divisions with 

various sizes is one of its inherent limitations. All the 

algorithms discusses so far only assign the single 

community to each node and failures to detect the 

structures of overlapping community in networks. So 

there is rapid growth of interest underlying in 

uncovering overlapping community and the nodes. The 

several detecting methods for overlapping communities 

established currently. Pallaet et al. [16] proposed an 

overlapping sets of cliques enabled Clique Percolation 

Method (CPM) depending on the assumption of the 

community. CPM detects all the size k cliques and 

identifies the structures of the community for 

neighbourhood cliques by searching. The community 

structure with the dense connected parts that enables 

unsuit for the networks. Based on link clustering for 

community detection, Ahn et al. [2] introduced a Link 

Clustering (LC) technique grouping extensively the 

nearest links with an equality measurement. LC 

commonly specifies the overlap of between 

communities in node communities from making the 

transformation among the link communities. Moreover, 

there is no LC displays guarantee as to attain the high-

performance results. Because it emphasizes internal 

community links then avoids the unwanted links, which 

creates the multiple small communities. Also, to 

identify the overlapping community structures through 

the use of label propagation algorithm [17] by 

permitting a node to exposes the several labels like 

COPRA [7] and Speaker-listener Label Propagation 

Algorithm (SLPA) [21]. The distribution of label attains 

the detection of overlapping community with a liner 

time but also show some label clustering in as non-

determinacy manner in the network. The proposed 

method utilizes the seed nodes to generate the 

community clusters. The seed nodes are identified based 

on proposed Degree of influence measure. The proposed 

method avoids the generating of small no of giant 

communities and large no of small communities by 

generating reasonable size communities with good 

modularity score described in results and discussion 

section. 

2.1. Discussions 

The main objective of the proposed work is to derive the 

overlapping communities from the given social 

network. Since social network is logically represented 

as directed or undirected graph, the basic centrality 

measures of the graph such as Degree, closeness and 

betweenness are utilized in this work. A new measure of 

Degree of Influence is proposed to find the seed nodes 

from the social network graph in order to start the 

community detection process. The Fuzzy c means based 

community detection process is proposed to find the 

overlapping community structure in the given social 

network graph. The entire process of the proposed work 

is parallelized under the Hadoop Map Reduce 

framework and the designed Map Reduce jobs are tested 

on variable size Hadoop clusters. 

2.2. Managerial Benefits 

Detecting the communities are useful in many 

applications such as detecting criminal in social 

network, detecting spam in emails, developing 

recommendation systems [12]. The proposed method 

having following benefits compare to other existing 

methods, 
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 The proposed work detects the communities using 

only basic graph measures without the need of 

personal information of each node in social network. 

 Since the entire proposed work is parallelized, so that 

time complexity will be reduced. 

 Community information can be utilized for 

predicting new links in social networks such as 

suggesting new friends on Facebook and Twitter. 

 In real world social networks, a user always 

associates with many communities. So, the proposed 

method focused on this aspect and derived the 

overlapping communities based on Fuzzy C means 

clustering method. 

3. Proposed Architecture 

The proposed method’s architecture depicted in Figure 

1. The proposed methodology have the following six 

steps. 

 Step 1: Finding all pair shortest path for given social 

network graph using Giraph API. 

 Step 2: Finding degree, betweenness and closeness 

centralities using HADOOP Map Reduce. 

 Step 3: Calculating Degree of Influence (DI) by 

aggregating all the centralities identified in step 2.  

 Step 4: Identifying leader nodes by calculating the 

structural centralities 

 Step 5: Node vector formation using leader nodes 

 Step 6: Generating soft and hard community clusters 

using Parallel Fuzzy C-Means Clustering (FCM) 

Algorithm. 

 

Figure 1. Architecture of proposed method. 

4. Finding All Pair Shortest Path Using 

Giraph 

The social network file (CSV format) goes to the Giraph 

[9] job input, which performs the processing needed and 

produces the shortest output paths and writes them into 

a file. From a source node in the network, the shortest 

path algorithm used for one or several super steps to find 

the shortest path. A superstep is defined as the 

interaction, barrier synchrization, and the association of 

computation. In each superstep, a subset of nodes or all 

the nodes perform the local computation. The 

participating nodes after computation alter the 

information with their neighbors in a superstep by the 

set of nodes. Each node has the interest to the next 

superstep participation after the message(s) received. If 

during the interaction process a node receives nothing, 

it never executes in the next superstep condition. In 

current superstep, active node indirectly stops from the 

participation in the next superstep when the 

computation communication approach. But there may 

be some scenario that its neighbors have also received 

some messages from an active node. In such instances, 

in the next superstep must remain active in the active 

node. In the current superstep, the next superstep never 

starts unless the completed computation of all the nodes 

computation-communication. This is referred to as 

synchronization of barriers. The next step never starts 

until all the exchange of information in the participation 

nodes across the current superstep. The algorithm ends 

when there is no information exchange in the nodes. 

This state of halting can be done implicitly or explicitly 

stated. One can impose high number of supersteps and 

compel all nodes to stop if that limit exceeds the number 

of supersteps. Thus, the goal is achieved in one or more 

supersteps. Giraph framework writes each node's values 

in an output file at the end of the execution. The 

important keep in mind as, before starting the 

computation of the shortest path identification, to know 

from each node's prospective. To reach the shortest path 

in the each node and it also knows, and when it finds a 

shorter path updates its value. Tool Runner.run (arg1; 

arg2) [1] method invoked to start the process. The 

method begins the Giraph job, for example, from a 

single node, SHORTEST PATH operation. Image 

Figure 2 shows Giraph's execution template. 

5. Calculating Degree of Influence Using 

Map-Reduce Framework 

In this proposed method, the Degree of Influence (DI) 

illustrates the given social network with the importance 

of a node, which evaluated by the basic centrality 

measurement of the given graph. We are taking 

three cores degree, closeness and betweenness for DI 

calculation. The degree centrality depends on the 

neighbors  node is called as the node of local 

density of the node. The remaining betweenness and 
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closeness centralities are purely based on the shortest 

distance to all other nodes in the network, so we 

are combinedly calling these as global density. In this 

section, we have proposed the Map-Reduce 

mbased centralities calculations and finally these 

centralities are aggregated to find the DI is described.  

5.1. Finding Betweenness Centrality Using Map 

Reduce  

Betweenness centrality establishes among the two 

nodes over the shortest path and the total node acts as a 

bridge. In a social network, it is the quantifying control 

measurement for human that enabled communication 

between the any two human discussed by Linton 

Freeman [6]. By the concept, the vertices to chosen the 

random condition that have a high probability of 

smallest path amid two non-linear selected vertices with 

a consideration of higher betweenness. 

 

Figure 2. Giraph's execution model. 

The betweenness of a vertex v in a graph G=(V, E) 

with V vertices is evaluated as below: 

1. Calculate the shortest paths for each node pair (s, t). 

2. Calculate the shortest path fractions for each node 

pair (s, t) allow through the vertex v. 

3. Over all pairs of vertices (s, t) gets sum this fraction. 

The betweenness centrality represented as below:  

𝐶𝐵𝑣=𝑆≠𝑣≠𝑡є𝑉 = 𝜌𝑠𝑡(𝑣)/𝜌𝑠𝑡 

Where ⍴𝑠𝑡 is the overall shortest paths from‘s’ node to 

node t and ⍴𝑠𝑡 (𝑣) is the total paths to pass through v.  

We have proposed the map-reduce based 

betweenness centrality in Algorithms (1) and (2). For 

the map task, the file contains the shortest path for all 

the possible node of pairs, which is generated by Giraph 

is given as input. The input is (key, value) pairs, here 

node_id is taken as key and path along with the cost is 

taken as value. Each node that appears in the path is 

emitted as an output key along with the value of 1. 

The output of the Map process is given as input for 

reduce job which is described in Algorithm (3). The 

reduce task takes each node and aggregates the values 

of every selected node. The aggregated value is 

standardized by dividing the total no of the shortest path 

in a given network graph. The final normalized value 

along with the node id is written in the output file. 

Algorithm 1:  Betweeness centrality Map Job 

Input: file contains list of shortest path created by Giraph API 

key: <node_id> 

value:<path, path_weight> 

1. begin 

2. P value. Path  // extract the path P from value 

3. for each vi𝟄 P do 

4. emit (vi, 1) 

5. end-for 

6. end 

Algorithm 2: Betweeness centrality reduce Job 

Input: key, value pairs of algorithm 1 

key: <node_id> 

value:<array of occurrence of paths for node_id> 

Output: normalized betweenness value of each node. 

 

1.      begin 

2. sum ← 0; 

3. for i=0 to values. Length do 

4. sum← sum+values[i]; // aggregating the occurrence 

of node vi in all the path P. 

5. normalized_sum ← sum / |P| ; // betweeneess value is 

normalized between 0 to 1. 

6. end-for 

7. output(key,normalized_sum); 

8. end 

5.2. Finding Closeness Centrality Using Map 

Reduce 

In connected graph network, the centrality of closeness 

[3] of a node is the shortest path with an average 

length in the graph between the neighbourhood nodes. 

The higher central of a node is, the closer it is to every 

other node, which can be stated in Equation (2). 

𝐶(𝑣) =
𝑁 − 1

∑ 𝑑𝑖𝑠𝑡(𝑣, 𝑢)𝑢
 

Here, dist (v,u) describes the smallest path 

distance between vertices v and u, N denotes the total 

nodes in a provided network.  

We have proposed the Map-Reduce based closeness 

centrality in Algorithms (3) and (4). For the Map task, 
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the file contains the shortest path for all the possible 

pairs of nodes are given as input. Here the input is (key, 

value) pairs, node id is taken as key and path along with 

the cost is taken as value. For each path, the source node 

id and cost of the path are extracted and emitted as the 

key output, pairs of value. The output of the Map 

process is given as input for reduce job which is 

described in Algorithm (4). The reduce task takes each 

source node and aggregates the cost of all the paths of 

the selected node to all other nodes. The aggregated 

value gets normalized by taking the reciprocal of 

aggregated value and multiplying with N-1. The final 

normalized value along with the node id is written in the 

output file. 

Algorithm 3: Closeness Centrality Map Job 

Input: files contain list of shortest paths generated by Giraph 

API 

key: <node_id> 

value:<path, path_weight> 

Output: node_id and array of path weights. 

1.  begin 

2. For each node vi do 

//extract the path weight  

3. PW← value.pathWeight 

//extract source node id from the path 

4. SourceNode<-extracSourcenode(value.path)  

 

5. Emit(SourceNode,PW) 

6. end-for 

7. end 

Algorithm 4: Closeness Centrality Reduce Job  

Input: Output of Map job in Algorithm 3 

key: <node_id> 

value:<array of shortest path weights> 

Output: normalized closeness value of each node. 
 

1. begin 

2. sum = 0; 

3. for i = 0 to value. Length do 

// aggregate the total cost of each path from node vi to all 

other nodes. 

 

4.  sum = sum + value[i];  

5. end-for 

// closeness value normalized between 0 to 1. 

6. if sum≠ 0 then 

7. sum =1/sum; 

8. output. Write (key, sum); 

9. end-if 

10. end 

5.3. Finding Degree Centrality Using Map 

Reduce 

Degree centrality [18] is a simple centrality measure that 

counts how many neighbors a node has. This centrality 

can be mathematically represented in (3), and we can 

normalize this value between 0 to 1 by dividing it with 

number of anticipated links (N-1) of each node. Here we 

are calling this centrality as local density of given node. 

𝐶𝑑(𝑣) =
deg(𝑣)

𝑛 − 1
 

Deg (v) - represents the count of actual links of node 

v.n-1- no of anticipated links of each vertex. 

We have proposed the Map-Reduce based degree 

centrality in Algorithms (5) and (6). The input contains 

node_id and its adjacency list of neighborhood nodes for 

all the nodes in the form of <node id, <adjacency list>> 

is given to Map task. Here the input is <key, value> 

pairs; node_id is taken as key and list of adjacency 

nodes is taken as value. For each node and it's, each 

neighbor node the map job emits the (key, value) pair as 

(node_id, 1). The output of the Map process is given as 

input for Reduce job which is described in Algorithm 

6. The Reduce task takes each node_id and aggregates 

its neighborhood count. The aggregated value is 

standardized by dividing the total count of nodes in the 

given network graph. The final normalized value along 

with the node id is written in the output file. 

Algorithm 5: Map Job for Degree centrality 

Input: file contains node id and adjacency list of 

neighborhood nodes 

key: <node_id> 

value:<adjacency list> 

Output: degree value of each node. 
 

1. Begin 

2. For each node_id 

      // finding size of adjacency list 

3. deg=sizeof(adjacency_list);  

4. emit(node_id, deg) 

5. end-for 

6. end 

Algorithm 6: Reduce Job for Degree centrality 

Input: file contains node id and adjacency list of neighborhood 

nodes 

key: <node_id> 

value:<array of degree values> 

Output: normalized degree centrality. 

 

1. begin 

// degree of each node initially set to 0 

2. deg []={0} 

3. for i=0 to values. length do 

// degree of each node is calculated. 

4. deg[i]=deg[i]+values[i]  

5. end-for 

6. for i=0 to values.length do 

// degree centrality is aggregated between 0 to 1. 

7. emit(vi, deg[i]/n-1)  

8. end-for 

9. end 

5.4. Calculating the Degree of Influence 

Here we aggregated both the local density (degree 

centrality) and global density (closeness and 

betweenness centralities) of the network graph. Before 

aggregation, we are calculating the ratio of all the 

centralities for every node in a given network graph. The 

centrality ratios are defined in Equations (4), (5) and 

(6). Then the ratio of all the centralities taken for 

aggregation process and also, we have assigned the (3) 
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(8) 

(9) 

weightage for each centrality ratio in order to provide 

the importance for global density, because it is more 

common in large networks that having small value for 

closeness and betweenness centrality than degree 

centrality. The aggregation is defined in (7) and we 

called as Degree of Influence (DI) and it is normalized 

between 0 to 1. Here we have taken α, β=0.4 and γ=0.2.  

degratio(𝑣𝑖) =
deg(v𝑖)

∑ deg(v𝑖)v𝑖ϵV
 

betweenratio(𝑣𝑖) =
between(v𝑖)

∑ between(v𝑖)v𝑖ϵV
 

closenessratio(𝑣𝑖) =
closeness(v𝑖)

∑ closeness(v𝑖)v𝑖ϵV
  

𝐷𝐼(𝑣𝑖) = α ∗ degratio(v𝑖) + β ∗ closenessratio(v𝑖) + γ
∗ betweenratio(v𝑖) 

 DI (vi) represents Degree of influence of node vi. 

 α, β, γ represents weightage parameters such that β ≥ 

γ>𝜆and α+ β+ γ=1 

6. Identification of Leader Nodes 

6.1. Relative Distance  

The relative distance ⍴i of node vi described as the 

minimum distance between the node vi and any other 

nodes with the larger DI value, which represented as, 

⍴𝑖 = min
𝑗:𝐷𝐼j>𝐷𝐼𝑖

(𝑑𝑖𝑗) 

Conventionally with the largest density for the node that 

take ⍴i=maxj(dij). By consider for the nodes that 

conclude the relative distance with the maximum of 

local density that attained higher and significantly than 

the adjacent nodes in the network. So, the anomalous 

condition of large value in the nodes enable both in the 

relative distance and the local density could identified 

as leader nodes. 

6.2. Structural Centrality 

Here we are calculating the structural centrality of every 

node. It can be evaluated by the relative distance and 

degree of effect of a node in the network. To 

characterized the structural centers by a higher DI value 

than the nearby nodes and by a large distance relatively 

from nodes with high DI value. The structural centrality 

sci of the node vi is stated in Equation (9):  

𝑆𝑐𝑖 = 𝐷𝐼𝑖 ∗ 𝜌𝑖 

The structural centrality measures the degree of 

influence of a node and the nodes effect with the higher 

density, which enables the metric as effectively ignores 

the situation that neighboring nodes with the maximum 

degree of influence are identified as structural centers. 

We are selecting some of the nodes which are having 

higher structural centrality as Leader nodes. The process 

of identifying the leader nodes centers are specified in 

the Algorithm (7). Here we are calling these leader 

nodes as structural centers and these leader nodes state 

the count of communities to be identified in the network. 

Algorithm 7: Finding Leader Nodes 

Input: Vertex set V, Adjacency Matrix, DI(Degree of influence) 

vector  

Output: Leader nodes set S. 

1. Begin  

2. Sc=0 

3. Cc={ф} 

4. S={ф} 

5. for each vi𝟄 V  

6. 𝞵= 𝑚𝑖𝑛
𝑗:𝐷𝐼𝑗>𝐷𝐼𝑖

𝑑𝑖𝑗 

      Sci= DIi* 𝞵i 

7. end-for 

8. Scut=avg(Sc); 

9. for each vi𝟄V 

10. if Sci≥Scut 

11. Cc=Cc∪vi; 

12. End-for  

13. //Cc=sort Cc in descending order based on Sc. 

14. while Cc≠ф 

15. do 

16. Cmax=max(Cc)  

17. Cc=Cc-Cmax 

18. S=S∪Cmax 

19. For each vi𝟄 Cc 

20. If dst(Cmax,vi)≤⍴ 

21. remove vi from Cc 

22. end-for  

23. end-while 

24. End 

7. Community Generation 

In this section, the detection of community clusters 

based on the leader nodes derived from the previous 

section is discussed. First, the node vector for every 

node in the given network is generated. Then the 

community clusters are derived by using the proposed 

Parallel FCM Algorithm.  

7.1. Node Vector Set Generation 

We have generated the node vector for each node of 

given network by using the leader nodes identified by 

the pervious process. Here we have taken each leader 

node as the dimension (origin) of the node vector and 

the distance (shortest path) from the given node to 

leader node taken as dimensional value. The node 

vectors of some of the nodes for karathe network is 

depicted in Figure 3. 

(4) 

(5) 

(6) 

(7) 
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Figure 3. Seed nodes and node vector of karathe network. 

7.2. Soft Community Clusters Generation 

To generate the soft community structures, we have 

proposed the modified version of parallel FCM 

clustering algorithm which is shown in Algorithm 8. 

This algorithm generates the membership matrix of size 

n*k of all the possible communities. Here n represents 

count of nodes in the network, k denotes count of 

possible communities in the network. Here we have 

parallelized the clustering process using HADOOP 

Map-Reduce logic. The algorithm having two major 

steps: 

1. Updating the cluster centers.  

2. Updating membership matrix.  

Here both the steps are parallelized separately using 

HADOOP Map-Reduce logic that is represented in 

Algorithms (9) to (12). Initially we have selected k 

nodes randomly as cluster centers from the given 

candidate nodes (nodes excluding the leader nodes) and 

perform the Fuzzy clustering process by means of two 

major steps iteratively.  

Because we are assuming that count of communities is 

dependent on the leader nodes available in the given 

network, so we are setting value for k as |S|. In this 

algorithm we are assuming that the nodes which are 

located with the similar distances from the leader nodes 

are similar to each other. Thus, we have utilized the 

cosine similarity to measure the similarity between the 

pair of any nodes of given network graph which is 

described in Algorithms (11). Here we have taken 

fuzziness index m=2 and threshold parameter Δ as 

0.0001 for small datasets and 0.00001 for larger data 

sets. 

Algorithm 8: Map_Reduce_FCM 

Input: node_id& its dimensional vector, threshold Δ 

Output: Final membership matrix M 

1. Begin 

2. Choose k initial cluster centers 

3. Initialize Membership matrix M(0) 

4. X=1, i=0 

5. while  X> Δ 

6. Call cluster_center_MapReduce 

7. Call membership_MapReduce 

8. X=M(i+1)-M(i) 

9. end-while 

10. return M(i) 

11. end 

Algorithm 9: Cluster_Centre_Mapper 

Input: List of<Key,Value> pairs 

[node_id:d1,d2,…,dn|m1,m2,..,mk] 

Output: List of <key,value> pairs[cluster_idi:mij*Xj|miJ] 

1. Begin 

2. for each (key,value) do 

3. Mi= Take Membership vector from value; 

4. Xi=Take dimensions vector from value; 

5. J=1 

6. for each mi𝟄 Mi 

7. u=mi
m*Xi 

8. emit(j:u|mi
m) 

9. j=j+1 

10. end-for 

11. end-for 

12. end 

Algorithm 10: Cluster_Center_Reducer 

Input: List of key values[cluster_noi: mij*Xj|mij] 

Output: List of key values [Cluster_no:Cluster_center] 

1. Begin 

2. for each cluster_No Ci 

3. Sum1= aggregate mij*Xjbelongs to Ci 

4. Sum2=aggregate mij belongs to Ci 

5. Cnew= Sum1/Sum2; 

6. emit(Ci:Cnew) 

7. end-for 

8. End 

Algorithm 11: Membership_Mapper 

Input: list of key value pairs[node_id: d1,d2,…,dn] , and cluster 

centers C={C1,C2, …,Ck} 

Output: List of key value pairs[node_id:m1,m2,….,mk] 

1. Begin 

2. for each node_id do 

3. for each ciєC 

4. for each cjєC 

5. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑚+= (
𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑐𝑗,𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑎𝑡𝑎)

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑐𝑖,𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑎𝑡𝑎)
)

2

𝑚−1
 

6. 𝑚𝑖 =
1

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑚
 

7. emit(node_id, mi) 

8. end-for 

9. end-for 

10. end-for 

11. end 

Algorithm 12: Membership_Reducer 

Input: list of key value pairs [node_id:membership_degree(m)] 

Output: list of key value pairs[node_id:m1,m2,…..,mk] 

1. Begin 

2. for each node_idi𝟄 keys 

3. Mi=φ 

4. for each m𝟄 values 

5. Mi   =Mi ∪ m 

6. end-for 
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7. Emit(node_id,Mi) 

8. end-for 

9. end 

7.3. Assigning Leader Nodes to Communities 

The communities identified in the previous step not 

containing the leader nodes in the network. The leader 

nodes also one of the members in the identified 

communities and they will be center of identified 

communities. Here we are assigning the leader nodes to 

the identified communities by using the cluster 

centroids generated during the parallel FCM algorithm. 

We are calculating the cosine similarity between leader 

nodes and all the centroids; the leader node is assigned 

to community cluster whose centroid having most 

similar with that leader node. This is depicted as follow. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(V𝑙𝑒𝑎𝑑𝑒𝑟) = max
𝑐𝑖∈𝐶

{𝐶𝑜𝑠𝑖𝑛𝑒(𝑐𝑖 , 𝑉𝑙𝑒𝑎𝑑𝑒𝑟)} 

Vleader represents Leader node of ith cluster 

Ci represents centroid of ith cluster 

7.4. Hard Community Clusters Generation 

So far, we have generated the soft clusters by using 

parallel FCM algorithm. This FCM algorithm generates 

the community membership matrix. Based on the matrix 

score the hard community clusters are generated by 

assigning the node to community having more 

membership scores. And we are generating the 

overlapping clusters by assigning more than one 

community labels for the node which having at most 

similar membership score for multiple top scorer 

communities.  

8. Results and Discussions 

8.1. Dataset Description 

The proposed approach is tested on 11 real world data 

sets [13]. The detailed information regarding the 

datasets is described in Table 1. |V| and |E| are the total 

vertices and links; Davg denotes the network’s average 

degree; C-coef is the clustering coefficient; PLavg 

denotes the average path length. 

 

 

Table 1. Graph properties of the different data sets. 

Networks ∣V∣ ∣E∣ Davg C-coef PLavg 

Football 115 613 10.661 0.403 2.508 

Dolphin 62 159 5.129 0.303 3.357 

Karathe 34 78 4.588 0.285 1.274 

Jazz 198 2742 27.7 0.52 2.21 

Poll blocks 1490 19025 25.537 0.172 3.39 

Power 4941 6594 2.669 0.107 18.989 

Yeast 2375 11693 9.847 0.153 4.14 

Polbooks 105 441 8.40 0.4875 2.341 

Email 1133 5451 9.62 0.166 3.65 

Netscience 1589 2742 3.45 0.123 2.123 

Word 112 425 7.59 0.1431 3.214 

8.2. Results on Data Sets 

We have investigated our proposed method Leader 

Based Community Detection (LBCD) and some current 

SLPA, LFM, LBCD, LC, CORPA, and CPM methods 

on 10 real-world data sets here. Table 2 lists the results 

generated by these methods which include both the EQ 

[14] (Extended Modularity) values and detected the 

total communities. Extended modularity is a standard 

metric to evaluate the overlapping communities as 

purity. Some of these comparative approaches, namely 

SLPA, COPRA, and LFM, are indeterminate and 

difficult to obtain reliable performance, and others are 

prone to built-in parameters. Therefore, by adjusting the 

parameters for every network, to execute every 

algorithm 10 times to get the several results and took the 

largest EQ values as optimum results.  

The following observations depicted in Table 2. In 

general, due to the strict concept of clique group, CPM 

struggles to deal with the complex networks. LC 

displays the community detection weakness, because 

the node similarity computation in the large networks 

that leads the multiple smaller communities. So, in 

larger networks, CPM and LC get minimum EQ scores 

and the datasets (power, poll blocks) compared to other 

approaches, but SLPA, COPRA, GCE, LFM and LBCD 

to attained maximum efficiency on the same datasets. 

Furthermore, some of the comparative algorithms are 

immune to unique network structure. For example, in 

some extremely sparsely organized networks such as 

Word, the methods COPRA and GCE detects only one 

single giant group structure which results EQ value near 

to zero. And another statement is that some algorithms 

incline to over detect the communities and the overlap.

Table 2. Comparison of EQ values for different algorithms on real world data sets. 

Data sets EQ (Extended Modularity score) / no. of communities 

 CPM LC SLPA LFM GCE COPRA LBCD 

Karathe 0.2708 / 3 0.2251 / 2 0.5192/2 0.4852/2 0.3474/2 0.2610/3 0.5295 /2 

Dolphin 0.4195 / 4 0.216/10 0.4997/5 0.5183/5 0.4706/5 0.4640/4 0.5486/2 

Football 0.4897 /15 0.1729/15 0.4712/11 0.4816/14 0.5907/12 0.3729/18 0.6212/10 

Jazz 0.2396 /8 0.0381/6 0.4944/6 0.5198/4 0.3206/2 0.4560/4 0.4816/5 

Polbooks 0.5008/5 0.0244/3 0.4959/3 0.4550/3 0.4865/3 0.5115/3 0.4996/3 

Pollblocks 0.0106 /28 0.0118/27 0.4328/6 0.4425/8 0.2901/2 0.4290/9 0.4815/4 

Power 0.1567/301 0.2149/322 0.559/661 0.5649/167 0.468/300 0.435/427 0.5105/290 

Yeast 0.1153/17 0.6388/47 0.6268/53 0.6623/27 0.3544/40 0.2742/52 0.6667/28 

Email 0.1163/4 0.0469/21 0.3634/16 0.4272/13 0.4273/35 0.00001/1 0.5619/7 

Netscience 0.5745/169 0.8718/334 0.8683/325 0.8816/331 0.7250/126 0.6853/703 0.8980/310 

Word 0.1003/4 0.0472/5 0.0910/3 0.0983/4 0.00001/1 0.00001/1 0.1386/7 

(10) 
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For example, LC creates multiple overlapping nodes 

and the small community’s networks such as Dolphin 

and poll blocks. Such over-detection for other 

algorithms, like COPRA in net science data set, CPM in 

poll blocks data set leads a poor performance due to the 

large number of small communities. Based on the above 

comparison results in terms of EQ, LBCD of better 

performance in relation to others. This conforms to the 

fact that our approach with complex network structures 

that demonstrated better performance for real-world 

networks. Specifically, in 8 of the 11 real-world 

networks LBCD acquires the highest EQ values and also 

nearly better results with remaining 3 data sets. 

Conversely, LFM, SLPA and COPRA perform better on 

one network of each, respectively. On almost all 

networks except the Poll blocks network, LBCD yields 

better performance than CPM and outperforms LC on 

all 11 data sets. It means that there are significant 

advantages to the local expansion strategy based on 

structural centers. Moreover, LBCD has a better 

performance compared to SLPA and COPRA 

algorithms based on label propagation. LBCD also 

exhibits highly stable results and compared to LFM on 

nearly except two other networks. The visualization of 

overlapped communities identified for karathe, 

Dolphins, Jazz and Email networks by our proposed 

method are shown in Figure 4. Here, some of the nodes 

are colored with more than one color indicates that 

belonging to more than one community (overlapping 

communities). The relationship between EQ and β 

parameter is depicted in Figure 5. EQ value is increased 

gradually along with β parameter and it reaches highest 

value between 0.4 to 0.45 in small datasets (Karathe, 

Dolphin, Football, Jazz and Word) as show in Figure 5 

and it reaches the highest value during 0.35 to 0.4 in 

large datasets (power, yeast, Email, Netscience and 

Pollblocks) as show in Figure 5. The EQ is reached to 

least value whenever the β parameter reaches the 

maximum value (β =0.5), from the Equation (7). It is 

clear that the value of γ parameter reaches to 0 at β =0.5. 

From this it is clear that both global (Closeness and 

Betweenness centralities) and local measures (Degree 

centrality) are participated to derive the quality 

communities which having higher EQ value, but the 

participation of global measure is more than the local 

measures in community detection process. Since our 

method is HADOOP based Parallel community 

detection algorithm. Our proposed method is 

experimented on the HADOOP clusters. Here we have 

formed the Hadoop cluster of nodes and 8 nodes and 

experimented our methods. Intel octa Cores with i5-

4440M 3.1GHz processor, 16GB memory and1TB Hard 

Disk. The execution time of our algorithms on each 

cluster for different data sets are specified in Table1. 

Here we are listed only listed the reasonable sized data 

sets to compare the execution time on different sized 

clusters. Here the execution time is measured in 

seconds. From the Table 3 it clears that execution time 

of our algorithm gradually decreases depending on the 

count of nodes in the HADOOP cluster increases. This 

scenario is visualized in Figure 6. 

 
a) Communities detected in Karathe network. 

 
b) Communities detected in Dolphin network. 

 
c) Communities detected in jazz network. 

 
d) Communities detected in email network. 

Figure 4. Communities generated in 4 social networks by proposed 

method. 
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a) Small networks. 

 
b) Large networks. 

Figure 5. EQ value against β parameter in small and large datasets. 

Table 3. Execution time of four real world datasets. 

Dataset  

Time taken in seconds 

Processor count(p) 

|c|=1 |c|=2 |c|=4 |c|=8 |c|=16 

Power 15,500 9850 4550 2560 1752 

Yeast 8150 4456 2386 1326 786 

NetScience 5256 3001 1656 932 532 

PollBlock 4932 2621 1412 802 486 

 

Figure 6. Execution time of four real world dataset. 

9. Conclusions and Future Work 

We have introduced an unsupervised machine learning 

based method of local expanding that depends on 

structural centers, to uncover the structures effectively 

in the overlapping community. A structural centrality 

introduced as a strategy location to compute the leader 

nodes in networks. Depends on these leader nodes we 

derived the Parallel MapReduce based FCM Clustering 

algorithm to find the overlapping communities from the 

given network. The proposed method (LBCD) defines 

the merits in experiments that can be concluded into two 

features. Initially, the count of community structures for 

a network calculated by the locating leader (seed) nodes. 

Secondly, to compared with other methods, the strategy 

of expansion leads around to the leader nodes that 

eliminates the seeds selection non-linearly and 

manually adjusting the parameters, which speeds up the 

convergence to optimal results and enables the most 

stable algorithm. Since we have experienced lot of disk 

access during map reduce jobs of proposed work, we are 

planned to upgrade this proposed work in spark 

environment in future. In future, we also planned to 

extend this leader-based technique to predict the future 

link and finding the influential users in social network 

graph. 
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