
852 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

A Hadoop Based Approach for Community

Detection on Social Networks Using Leader Nodes

Mohamed Iqbal

School of Computer Science and Engineering,

VIT-AP University, India

iqbalmecse@gmail.com

Kesavarao Latha

Department of Computer Science and

Engineering, Anna University, India

drklatha@aubit.edu.in

Abstract: Community detection is the most common and growing area of interest in social and real-time network applications.

In recent years, several community detection methods have been developed. Particularly, community detection in Local

expansion methods have been proved as effective and efficiently. However, there are some fundamental issues to uncover the

overlapping communities. The maximum methods are sensitive to enable the seeds initialization and construct the parameters,

while others are insufficient to establish the pervasive overlaps. In this paper, we proposed the new unsupervised Map Reduce

based local expansion method for uncovering overlapping communities depends seed nodes. The goal of the proposed method

is to locate the leader nodes (seed nodes) of communities with the basic graph measures such as degree, betweenness and

closeness centralities and then derive the communities based on the leader nodes. We proposed Map-Reduce based Fuzzy C-

Means Clustering Algorithm to derive the overlapping communities based on leader nodes. We tested our proposed method

Leader based Community Detection (LBCD) on the real-world data sets of totals of 11 and the experimental results shows the

more effective and optimistic in terms of network graph enabled overlapping community structures evaluation.

Keywords: Social network, big data, map reduce, community detection, leader nodes.

Received February 22, 2022; accepted March 12, 2023

https://doi.org/10.34028/iajit/20/6/2

1. Introduction

An essential issue in complex social network research is

community identification [8]. It is essential to

comprehending how these networks operate. Networks

originating from various application fields, such as

online social networks, collaborative networks,

information networks, networks of web pages,

biological networks, etc., are addressed. A community

in a network graph is a collection of nodes with a

disproportionately higher density of edges between

them than between them and the other nodes [5].

Community detection's goal may vary depending on the

application domain. For instance, recognizing

communities in online social networks is akin to

locating individuals who have a shared interest. In web

page networks, it entails assembling web sites that are

pertinent to one or more themes. Many studies have

been done on finding communities in networks. The

most widely used techniques include improving the

modularity quality function. Unfortunately, a number of

issues with the modularity optimization techniques have

been discovered. In fact, because of its resolution

limitations, even loosely related tiny groups are often

merged to produce bigger ones. Moreover, it often splits

sizable groupings, even when they are quite dense. We

propose a new approach that enables the detection of

more realistic communities while maintaining

modularity score as close as possible to the maximum.

This method aims to overcome some of the limitations

of the modularity optimization technics, particularly the

splitting of large dense groups and the overfitting.

In this paper, community detection problems to a

given network graph modeled as a clustering problem.

We have proposed the leader-based community

detection technique based on fuzzy clustering algorithm

[10]. We integrate fuzzy logic into clustering process to

find the overlapping communities. Here we have

proposed a modified version of Parallel Fuzzy C-Means

(FCM) clustering based on HADOOP Map-Reduce

Framework. We identify the communities from the

given network using our Parallel FCM clustering

algorithm, based on the leader nodes. Leader nodes are

identified from the structural centrality of the node. The

structural centrality is extracted from the basic centrality

measurements (degree, closeness, and betwenness) and

the relative distance of the nodes in the network. In this

article we are dividing our work to following sections:

section 2 related work of proposed method. Section 3.

Architecture of our proposed work; section 4. Finding

all pair shortest path using giraph Application

Programming Interface (API); section 5. Calculating the

degree of influence; section 6. Leader node

identification; section 7. Community generation;

section 8. Results and discussions; section 9 Conclusion

and future work.

https://doi.org/10.34028/iajit/20/6/2

A Hadoop Based Approach for Community Detection on Social Networks Using Leader Nodes 853

2. Related Work

There are two basic kinds of community identification

methods: discovering communities without overlaps,

where a node may only belong to one community, and

detecting communities that overlap. A node can be

shared by many communities in overlapping

communities. In recent years there are several

community detection methods without overlap are

proposed like graph partitioning [20], hierarchical

clustering [15], Spectral Clustering [4], optimization

algorithms enabled modularity approach [11, 19]. These

methods enable the social networks of complex

structures to produce the reasonable communities. The

graph partitioning method focus on the improvement in

the modularity function. This method divides the

optimisation process into two steps that are iteratively

repeated. The first stage begins by giving each network

node its own community (each community contains one

and only one node). The next step is to relocate each

node to the nearby community that produces the greatest

gain in modularity (if no increase is possible, then node

remains in its original community). A community to

which node is connected is referred to as a neighbouring

community. The algorithm gathers nodes belonging to

the same community in the second phase and “builds” a

new network with the communities from the first phase

as its nodes. The connections linking the two matching

communities are used to compute the edges between the

new nodes. Up until the modularity achieves its local

maximum, these procedures are repeated. In

Hierarchical clustering, multilevel graph of grouping

structures is established. This grouping is determined

based on similarity score between the nodes in the

graph. Here the similarity score is calculated using the

neighbourhood similarity-based indices. The spectral

methods enable to the spectral characteristics used to

point out the communities. Here, computing the first k

eigenvectors of the Laplacian or other matrix is

necessary for spectral clustering. In general, spectral

techniques are computationally intensive, and

computing the eigenvectors for huge networks is

mathematically impossible. Modularity-based

approaches try to finding the community structure that

maximizes the modularity function. This approach is

greedy technique which is repeatedly looking the

maximum modularity score. The inability of

modularity-based algorithms to discover divisions with

various sizes is one of its inherent limitations. All the

algorithms discusses so far only assign the single

community to each node and failures to detect the

structures of overlapping community in networks. So

there is rapid growth of interest underlying in

uncovering overlapping community and the nodes. The

several detecting methods for overlapping communities

established currently. Pallaet et al. [16] proposed an

overlapping sets of cliques enabled Clique Percolation

Method (CPM) depending on the assumption of the

community. CPM detects all the size k cliques and

identifies the structures of the community for

neighbourhood cliques by searching. The community

structure with the dense connected parts that enables

unsuit for the networks. Based on link clustering for

community detection, Ahn et al. [2] introduced a Link

Clustering (LC) technique grouping extensively the

nearest links with an equality measurement. LC

commonly specifies the overlap of between

communities in node communities from making the

transformation among the link communities. Moreover,

there is no LC displays guarantee as to attain the high-

performance results. Because it emphasizes internal

community links then avoids the unwanted links, which

creates the multiple small communities. Also, to

identify the overlapping community structures through

the use of label propagation algorithm [17] by

permitting a node to exposes the several labels like

COPRA [7] and Speaker-listener Label Propagation

Algorithm (SLPA) [21]. The distribution of label attains

the detection of overlapping community with a liner

time but also show some label clustering in as non-

determinacy manner in the network. The proposed

method utilizes the seed nodes to generate the

community clusters. The seed nodes are identified based

on proposed Degree of influence measure. The proposed

method avoids the generating of small no of giant

communities and large no of small communities by

generating reasonable size communities with good

modularity score described in results and discussion

section.

2.1. Discussions

The main objective of the proposed work is to derive the

overlapping communities from the given social

network. Since social network is logically represented

as directed or undirected graph, the basic centrality

measures of the graph such as Degree, closeness and

betweenness are utilized in this work. A new measure of

Degree of Influence is proposed to find the seed nodes

from the social network graph in order to start the

community detection process. The Fuzzy c means based

community detection process is proposed to find the

overlapping community structure in the given social

network graph. The entire process of the proposed work

is parallelized under the Hadoop Map Reduce

framework and the designed Map Reduce jobs are tested

on variable size Hadoop clusters.

2.2. Managerial Benefits

Detecting the communities are useful in many

applications such as detecting criminal in social

network, detecting spam in emails, developing

recommendation systems [12]. The proposed method

having following benefits compare to other existing

methods,

854 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

 The proposed work detects the communities using

only basic graph measures without the need of

personal information of each node in social network.

 Since the entire proposed work is parallelized, so that

time complexity will be reduced.

 Community information can be utilized for

predicting new links in social networks such as

suggesting new friends on Facebook and Twitter.

 In real world social networks, a user always

associates with many communities. So, the proposed

method focused on this aspect and derived the

overlapping communities based on Fuzzy C means

clustering method.

3. Proposed Architecture

The proposed method’s architecture depicted in Figure

1. The proposed methodology have the following six

steps.

 Step 1: Finding all pair shortest path for given social

network graph using Giraph API.

 Step 2: Finding degree, betweenness and closeness

centralities using HADOOP Map Reduce.

 Step 3: Calculating Degree of Influence (DI) by

aggregating all the centralities identified in step 2.

 Step 4: Identifying leader nodes by calculating the

structural centralities

 Step 5: Node vector formation using leader nodes

 Step 6: Generating soft and hard community clusters

using Parallel Fuzzy C-Means Clustering (FCM)

Algorithm.

Figure 1. Architecture of proposed method.

4. Finding All Pair Shortest Path Using

Giraph

The social network file (CSV format) goes to the Giraph

[9] job input, which performs the processing needed and

produces the shortest output paths and writes them into

a file. From a source node in the network, the shortest

path algorithm used for one or several super steps to find

the shortest path. A superstep is defined as the

interaction, barrier synchrization, and the association of

computation. In each superstep, a subset of nodes or all

the nodes perform the local computation. The

participating nodes after computation alter the

information with their neighbors in a superstep by the

set of nodes. Each node has the interest to the next

superstep participation after the message(s) received. If

during the interaction process a node receives nothing,

it never executes in the next superstep condition. In

current superstep, active node indirectly stops from the

participation in the next superstep when the

computation communication approach. But there may

be some scenario that its neighbors have also received

some messages from an active node. In such instances,

in the next superstep must remain active in the active

node. In the current superstep, the next superstep never

starts unless the completed computation of all the nodes

computation-communication. This is referred to as

synchronization of barriers. The next step never starts

until all the exchange of information in the participation

nodes across the current superstep. The algorithm ends

when there is no information exchange in the nodes.

This state of halting can be done implicitly or explicitly

stated. One can impose high number of supersteps and

compel all nodes to stop if that limit exceeds the number

of supersteps. Thus, the goal is achieved in one or more

supersteps. Giraph framework writes each node's values

in an output file at the end of the execution. The

important keep in mind as, before starting the

computation of the shortest path identification, to know

from each node's prospective. To reach the shortest path

in the each node and it also knows, and when it finds a

shorter path updates its value. Tool Runner.run (arg1;

arg2) [1] method invoked to start the process. The

method begins the Giraph job, for example, from a

single node, SHORTEST PATH operation. Image

Figure 2 shows Giraph's execution template.

5. Calculating Degree of Influence Using

Map-Reduce Framework

In this proposed method, the Degree of Influence (DI)

illustrates the given social network with the importance

of a node, which evaluated by the basic centrality

measurement of the given graph. We are taking

three cores degree, closeness and betweenness for DI

calculation. The degree centrality depends on the

neighbors node is called as the node of local

density of the node. The remaining betweenness and

Giraph API

Hadoop Framework

(Map/Reduce)

Leader node selection using

structural centrality

Betweenness and

closeness
Degree centrality

Centrality Based on Shortest Path Centrality Based on

Neighbourhood

(Degree, betweenness, closeness)

Vector formation of

each node

Generating communities using

Proposed Parallel FCM

1. Shortest Path

Calculation

2. Calculating centralities using

Hadoop Map/Reduce

3. Degree of Influence (DI)Calculation

4. Leader Node Selection

5. Node Vector Formation

6. Generating Soft and

Hard communities

Hard clusters

Soft clusters

CSV File

A Hadoop Based Approach for Community Detection on Social Networks Using Leader Nodes 855

closeness centralities are purely based on the shortest

distance to all other nodes in the network, so we

are combinedly calling these as global density. In this

section, we have proposed the Map-Reduce

mbased centralities calculations and finally these

centralities are aggregated to find the DI is described.

5.1. Finding Betweenness Centrality Using Map

Reduce

Betweenness centrality establishes among the two

nodes over the shortest path and the total node acts as a

bridge. In a social network, it is the quantifying control

measurement for human that enabled communication

between the any two human discussed by Linton

Freeman [6]. By the concept, the vertices to chosen the

random condition that have a high probability of

smallest path amid two non-linear selected vertices with

a consideration of higher betweenness.

Figure 2. Giraph's execution model.

The betweenness of a vertex v in a graph G=(V, E)

with V vertices is evaluated as below:

1. Calculate the shortest paths for each node pair (s, t).

2. Calculate the shortest path fractions for each node

pair (s, t) allow through the vertex v.

3. Over all pairs of vertices (s, t) gets sum this fraction.

The betweenness centrality represented as below:

𝐶𝐵𝑣=𝑆≠𝑣≠𝑡є𝑉 = 𝜌𝑠𝑡(𝑣)/𝜌𝑠𝑡

Where ⍴𝑠𝑡 is the overall shortest paths from‘s’ node to

node t and ⍴𝑠𝑡 (𝑣) is the total paths to pass through v.

We have proposed the map-reduce based

betweenness centrality in Algorithms (1) and (2). For

the map task, the file contains the shortest path for all

the possible node of pairs, which is generated by Giraph

is given as input. The input is (key, value) pairs, here

node_id is taken as key and path along with the cost is

taken as value. Each node that appears in the path is

emitted as an output key along with the value of 1.

The output of the Map process is given as input for

reduce job which is described in Algorithm (3). The

reduce task takes each node and aggregates the values

of every selected node. The aggregated value is

standardized by dividing the total no of the shortest path

in a given network graph. The final normalized value

along with the node id is written in the output file.

Algorithm 1: Betweeness centrality Map Job

Input: file contains list of shortest path created by Giraph API

key: <node_id>

value:<path, path_weight>

1. begin

2. P value. Path // extract the path P from value

3. for each vi𝟄 P do

4. emit (vi, 1)

5. end-for

6. end

Algorithm 2: Betweeness centrality reduce Job

Input: key, value pairs of algorithm 1

key: <node_id>

value:<array of occurrence of paths for node_id>

Output: normalized betweenness value of each node.

1. begin

2. sum ← 0;

3. for i=0 to values. Length do

4. sum← sum+values[i]; // aggregating the occurrence

of node vi in all the path P.

5. normalized_sum ← sum / |P| ; // betweeneess value is

normalized between 0 to 1.

6. end-for

7. output(key,normalized_sum);

8. end

5.2. Finding Closeness Centrality Using Map

Reduce

In connected graph network, the centrality of closeness

[3] of a node is the shortest path with an average

length in the graph between the neighbourhood nodes.

The higher central of a node is, the closer it is to every

other node, which can be stated in Equation (2).

𝐶(𝑣) =
𝑁 − 1

∑ 𝑑𝑖𝑠𝑡(𝑣, 𝑢)𝑢

Here, dist (v,u) describes the smallest path

distance between vertices v and u, N denotes the total

nodes in a provided network.

We have proposed the Map-Reduce based closeness

centrality in Algorithms (3) and (4). For the Map task,

1 2 3 n

Barrier Synchronization

Compute Compute Compute Compute

1 2 3 n

Compute Compute Compute

1 2 3 n

...

M
e

ss
a

g
e

M
e

ss
a

g
e

M
e

ss
a

g
e

Barrier Synchronization

.........

Compute Compute

M
e

ss
a

g
e

M
e

ss
a

g
e

.........

Barrier Synchronization

1 2 3 n.........

All n nodes
participate

in super step 0

Communication via message passing

End of super step 1

Nodes that
receive

messages during
previous super
step remains

active in current
step

End of super step 0

No new messages
indicating end of
super steps

End of super step n

output
Active node Inactive node

Communication via
message passing

At the end every node
write its value to output

file

(1)

(2)

https://en.wikipedia.org/wiki/Linton_Freeman
https://en.wikipedia.org/wiki/Linton_Freeman
https://en.wikipedia.org/wiki/Centrality#cite_note-freeman1977-19
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Distance_(graph_theory)

856 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

the file contains the shortest path for all the possible

pairs of nodes are given as input. Here the input is (key,

value) pairs, node id is taken as key and path along with

the cost is taken as value. For each path, the source node

id and cost of the path are extracted and emitted as the

key output, pairs of value. The output of the Map

process is given as input for reduce job which is

described in Algorithm (4). The reduce task takes each

source node and aggregates the cost of all the paths of

the selected node to all other nodes. The aggregated

value gets normalized by taking the reciprocal of

aggregated value and multiplying with N-1. The final

normalized value along with the node id is written in the

output file.

Algorithm 3: Closeness Centrality Map Job

Input: files contain list of shortest paths generated by Giraph

API

key: <node_id>

value:<path, path_weight>

Output: node_id and array of path weights.

1. begin

2. For each node vi do

//extract the path weight

3. PW← value.pathWeight

//extract source node id from the path

4. SourceNode<-extracSourcenode(value.path)

5. Emit(SourceNode,PW)

6. end-for

7. end

Algorithm 4: Closeness Centrality Reduce Job

Input: Output of Map job in Algorithm 3

key: <node_id>

value:<array of shortest path weights>

Output: normalized closeness value of each node.

1. begin

2. sum = 0;

3. for i = 0 to value. Length do

// aggregate the total cost of each path from node vi to all

other nodes.

4. sum = sum + value[i];

5. end-for

// closeness value normalized between 0 to 1.

6. if sum≠ 0 then

7. sum =1/sum;

8. output. Write (key, sum);

9. end-if

10. end

5.3. Finding Degree Centrality Using Map

Reduce

Degree centrality [18] is a simple centrality measure that

counts how many neighbors a node has. This centrality

can be mathematically represented in (3), and we can

normalize this value between 0 to 1 by dividing it with

number of anticipated links (N-1) of each node. Here we

are calling this centrality as local density of given node.

𝐶𝑑(𝑣) =
deg(𝑣)

𝑛 − 1

Deg (v) - represents the count of actual links of node

v.n-1- no of anticipated links of each vertex.

We have proposed the Map-Reduce based degree

centrality in Algorithms (5) and (6). The input contains

node_id and its adjacency list of neighborhood nodes for

all the nodes in the form of <node id, <adjacency list>>

is given to Map task. Here the input is <key, value>

pairs; node_id is taken as key and list of adjacency

nodes is taken as value. For each node and it's, each

neighbor node the map job emits the (key, value) pair as

(node_id, 1). The output of the Map process is given as

input for Reduce job which is described in Algorithm

6. The Reduce task takes each node_id and aggregates

its neighborhood count. The aggregated value is

standardized by dividing the total count of nodes in the

given network graph. The final normalized value along

with the node id is written in the output file.

Algorithm 5: Map Job for Degree centrality

Input: file contains node id and adjacency list of

neighborhood nodes

key: <node_id>

value:<adjacency list>

Output: degree value of each node.

1. Begin

2. For each node_id

 // finding size of adjacency list

3. deg=sizeof(adjacency_list);

4. emit(node_id, deg)

5. end-for

6. end

Algorithm 6: Reduce Job for Degree centrality

Input: file contains node id and adjacency list of neighborhood

nodes

key: <node_id>

value:<array of degree values>

Output: normalized degree centrality.

1. begin

// degree of each node initially set to 0

2. deg []={0}

3. for i=0 to values. length do

// degree of each node is calculated.

4. deg[i]=deg[i]+values[i]

5. end-for

6. for i=0 to values.length do

// degree centrality is aggregated between 0 to 1.

7. emit(vi, deg[i]/n-1)

8. end-for

9. end

5.4. Calculating the Degree of Influence

Here we aggregated both the local density (degree

centrality) and global density (closeness and

betweenness centralities) of the network graph. Before

aggregation, we are calculating the ratio of all the

centralities for every node in a given network graph. The

centrality ratios are defined in Equations (4), (5) and

(6). Then the ratio of all the centralities taken for

aggregation process and also, we have assigned the (3)

A Hadoop Based Approach for Community Detection on Social Networks Using Leader Nodes 857

(8)

(9)

weightage for each centrality ratio in order to provide

the importance for global density, because it is more

common in large networks that having small value for

closeness and betweenness centrality than degree

centrality. The aggregation is defined in (7) and we

called as Degree of Influence (DI) and it is normalized

between 0 to 1. Here we have taken α, β=0.4 and γ=0.2.

degratio(𝑣𝑖) =
deg(v𝑖)

∑ deg(v𝑖)v𝑖ϵV

betweenratio(𝑣𝑖) =
between(v𝑖)

∑ between(v𝑖)v𝑖ϵV

closenessratio(𝑣𝑖) =
closeness(v𝑖)

∑ closeness(v𝑖)v𝑖ϵV

𝐷𝐼(𝑣𝑖) = α ∗ degratio(v𝑖) + β ∗ closenessratio(v𝑖) + γ
∗ betweenratio(v𝑖)

 DI (vi) represents Degree of influence of node vi.

 α, β, γ represents weightage parameters such that β ≥

γ>𝜆and α+ β+ γ=1

6. Identification of Leader Nodes

6.1. Relative Distance

The relative distance ⍴i of node vi described as the

minimum distance between the node vi and any other

nodes with the larger DI value, which represented as,

⍴𝑖 = min
𝑗:𝐷𝐼j>𝐷𝐼𝑖

(𝑑𝑖𝑗)

Conventionally with the largest density for the node that

take ⍴i=maxj(dij). By consider for the nodes that

conclude the relative distance with the maximum of

local density that attained higher and significantly than

the adjacent nodes in the network. So, the anomalous

condition of large value in the nodes enable both in the

relative distance and the local density could identified

as leader nodes.

6.2. Structural Centrality

Here we are calculating the structural centrality of every

node. It can be evaluated by the relative distance and

degree of effect of a node in the network. To

characterized the structural centers by a higher DI value

than the nearby nodes and by a large distance relatively

from nodes with high DI value. The structural centrality

sci of the node vi is stated in Equation (9):

𝑆𝑐𝑖 = 𝐷𝐼𝑖 ∗ 𝜌𝑖

The structural centrality measures the degree of

influence of a node and the nodes effect with the higher

density, which enables the metric as effectively ignores

the situation that neighboring nodes with the maximum

degree of influence are identified as structural centers.

We are selecting some of the nodes which are having

higher structural centrality as Leader nodes. The process

of identifying the leader nodes centers are specified in

the Algorithm (7). Here we are calling these leader

nodes as structural centers and these leader nodes state

the count of communities to be identified in the network.

Algorithm 7: Finding Leader Nodes

Input: Vertex set V, Adjacency Matrix, DI(Degree of influence)

vector

Output: Leader nodes set S.

1. Begin

2. Sc=0

3. Cc={ф}

4. S={ф}

5. for each vi𝟄 V

6. 𝞵= 𝑚𝑖𝑛
𝑗:𝐷𝐼𝑗>𝐷𝐼𝑖

𝑑𝑖𝑗

 Sci= DIi* 𝞵i

7. end-for

8. Scut=avg(Sc);

9. for each vi𝟄V

10. if Sci≥Scut

11. Cc=Cc∪vi;

12. End-for

13. //Cc=sort Cc in descending order based on Sc.

14. while Cc≠ф

15. do

16. Cmax=max(Cc)

17. Cc=Cc-Cmax

18. S=S∪Cmax

19. For each vi𝟄 Cc

20. If dst(Cmax,vi)≤⍴

21. remove vi from Cc

22. end-for

23. end-while

24. End

7. Community Generation

In this section, the detection of community clusters

based on the leader nodes derived from the previous

section is discussed. First, the node vector for every

node in the given network is generated. Then the

community clusters are derived by using the proposed

Parallel FCM Algorithm.

7.1. Node Vector Set Generation

We have generated the node vector for each node of

given network by using the leader nodes identified by

the pervious process. Here we have taken each leader

node as the dimension (origin) of the node vector and

the distance (shortest path) from the given node to

leader node taken as dimensional value. The node

vectors of some of the nodes for karathe network is

depicted in Figure 3.

(4)

(5)

(6)

(7)

858 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 3. Seed nodes and node vector of karathe network.

7.2. Soft Community Clusters Generation

To generate the soft community structures, we have

proposed the modified version of parallel FCM

clustering algorithm which is shown in Algorithm 8.

This algorithm generates the membership matrix of size

n*k of all the possible communities. Here n represents

count of nodes in the network, k denotes count of

possible communities in the network. Here we have

parallelized the clustering process using HADOOP

Map-Reduce logic. The algorithm having two major

steps:

1. Updating the cluster centers.

2. Updating membership matrix.

Here both the steps are parallelized separately using

HADOOP Map-Reduce logic that is represented in

Algorithms (9) to (12). Initially we have selected k

nodes randomly as cluster centers from the given

candidate nodes (nodes excluding the leader nodes) and

perform the Fuzzy clustering process by means of two

major steps iteratively.

Because we are assuming that count of communities is

dependent on the leader nodes available in the given

network, so we are setting value for k as |S|. In this

algorithm we are assuming that the nodes which are

located with the similar distances from the leader nodes

are similar to each other. Thus, we have utilized the

cosine similarity to measure the similarity between the

pair of any nodes of given network graph which is

described in Algorithms (11). Here we have taken

fuzziness index m=2 and threshold parameter Δ as

0.0001 for small datasets and 0.00001 for larger data

sets.

Algorithm 8: Map_Reduce_FCM

Input: node_id& its dimensional vector, threshold Δ

Output: Final membership matrix M

1. Begin

2. Choose k initial cluster centers

3. Initialize Membership matrix M(0)

4. X=1, i=0

5. while X> Δ

6. Call cluster_center_MapReduce

7. Call membership_MapReduce

8. X=M(i+1)-M(i)

9. end-while

10. return M(i)

11. end

Algorithm 9: Cluster_Centre_Mapper

Input: List of<Key,Value> pairs

[node_id:d1,d2,…,dn|m1,m2,..,mk]

Output: List of <key,value> pairs[cluster_idi:mij*Xj|miJ]

1. Begin

2. for each (key,value) do

3. Mi= Take Membership vector from value;

4. Xi=Take dimensions vector from value;

5. J=1

6. for each mi𝟄 Mi

7. u=mi
m*Xi

8. emit(j:u|mi
m)

9. j=j+1

10. end-for

11. end-for

12. end

Algorithm 10: Cluster_Center_Reducer

Input: List of key values[cluster_noi: mij*Xj|mij]

Output: List of key values [Cluster_no:Cluster_center]

1. Begin

2. for each cluster_No Ci

3. Sum1= aggregate mij*Xjbelongs to Ci

4. Sum2=aggregate mij belongs to Ci

5. Cnew= Sum1/Sum2;

6. emit(Ci:Cnew)

7. end-for

8. End

Algorithm 11: Membership_Mapper

Input: list of key value pairs[node_id: d1,d2,…,dn] , and cluster

centers C={C1,C2, …,Ck}

Output: List of key value pairs[node_id:m1,m2,….,mk]

1. Begin

2. for each node_id do

3. for each ciєC

4. for each cjєC

5. 𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑚+= (
𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑐𝑗,𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑎𝑡𝑎)

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑐𝑖,𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑎𝑡𝑎)
)

2

𝑚−1

6. 𝑚𝑖 =
1

𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑚

7. emit(node_id, mi)

8. end-for

9. end-for

10. end-for

11. end

Algorithm 12: Membership_Reducer

Input: list of key value pairs [node_id:membership_degree(m)]

Output: list of key value pairs[node_id:m1,m2,…..,mk]

1. Begin

2. for each node_idi𝟄 keys

3. Mi=φ

4. for each m𝟄 values

5. Mi =Mi ∪ m

6. end-for

A Hadoop Based Approach for Community Detection on Social Networks Using Leader Nodes 859

7. Emit(node_id,Mi)

8. end-for

9. end

7.3. Assigning Leader Nodes to Communities

The communities identified in the previous step not

containing the leader nodes in the network. The leader

nodes also one of the members in the identified

communities and they will be center of identified

communities. Here we are assigning the leader nodes to

the identified communities by using the cluster

centroids generated during the parallel FCM algorithm.

We are calculating the cosine similarity between leader

nodes and all the centroids; the leader node is assigned

to community cluster whose centroid having most

similar with that leader node. This is depicted as follow.

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(V𝑙𝑒𝑎𝑑𝑒𝑟) = max
𝑐𝑖∈𝐶

{𝐶𝑜𝑠𝑖𝑛𝑒(𝑐𝑖 , 𝑉𝑙𝑒𝑎𝑑𝑒𝑟)}

Vleader represents Leader node of ith cluster

Ci represents centroid of ith cluster

7.4. Hard Community Clusters Generation

So far, we have generated the soft clusters by using

parallel FCM algorithm. This FCM algorithm generates

the community membership matrix. Based on the matrix

score the hard community clusters are generated by

assigning the node to community having more

membership scores. And we are generating the

overlapping clusters by assigning more than one

community labels for the node which having at most

similar membership score for multiple top scorer

communities.

8. Results and Discussions

8.1. Dataset Description

The proposed approach is tested on 11 real world data

sets [13]. The detailed information regarding the

datasets is described in Table 1. |V| and |E| are the total

vertices and links; Davg denotes the network’s average

degree; C-coef is the clustering coefficient; PLavg

denotes the average path length.

Table 1. Graph properties of the different data sets.

Networks ∣V∣ ∣E∣ Davg C-coef PLavg

Football 115 613 10.661 0.403 2.508

Dolphin 62 159 5.129 0.303 3.357

Karathe 34 78 4.588 0.285 1.274

Jazz 198 2742 27.7 0.52 2.21

Poll blocks 1490 19025 25.537 0.172 3.39

Power 4941 6594 2.669 0.107 18.989

Yeast 2375 11693 9.847 0.153 4.14

Polbooks 105 441 8.40 0.4875 2.341

Email 1133 5451 9.62 0.166 3.65

Netscience 1589 2742 3.45 0.123 2.123

Word 112 425 7.59 0.1431 3.214

8.2. Results on Data Sets

We have investigated our proposed method Leader

Based Community Detection (LBCD) and some current

SLPA, LFM, LBCD, LC, CORPA, and CPM methods

on 10 real-world data sets here. Table 2 lists the results

generated by these methods which include both the EQ

[14] (Extended Modularity) values and detected the

total communities. Extended modularity is a standard

metric to evaluate the overlapping communities as

purity. Some of these comparative approaches, namely

SLPA, COPRA, and LFM, are indeterminate and

difficult to obtain reliable performance, and others are

prone to built-in parameters. Therefore, by adjusting the

parameters for every network, to execute every

algorithm 10 times to get the several results and took the

largest EQ values as optimum results.

The following observations depicted in Table 2. In

general, due to the strict concept of clique group, CPM

struggles to deal with the complex networks. LC

displays the community detection weakness, because

the node similarity computation in the large networks

that leads the multiple smaller communities. So, in

larger networks, CPM and LC get minimum EQ scores

and the datasets (power, poll blocks) compared to other

approaches, but SLPA, COPRA, GCE, LFM and LBCD

to attained maximum efficiency on the same datasets.

Furthermore, some of the comparative algorithms are

immune to unique network structure. For example, in

some extremely sparsely organized networks such as

Word, the methods COPRA and GCE detects only one

single giant group structure which results EQ value near

to zero. And another statement is that some algorithms

incline to over detect the communities and the overlap.

Table 2. Comparison of EQ values for different algorithms on real world data sets.

Data sets EQ (Extended Modularity score) / no. of communities

 CPM LC SLPA LFM GCE COPRA LBCD

Karathe 0.2708 / 3 0.2251 / 2 0.5192/2 0.4852/2 0.3474/2 0.2610/3 0.5295 /2

Dolphin 0.4195 / 4 0.216/10 0.4997/5 0.5183/5 0.4706/5 0.4640/4 0.5486/2

Football 0.4897 /15 0.1729/15 0.4712/11 0.4816/14 0.5907/12 0.3729/18 0.6212/10

Jazz 0.2396 /8 0.0381/6 0.4944/6 0.5198/4 0.3206/2 0.4560/4 0.4816/5

Polbooks 0.5008/5 0.0244/3 0.4959/3 0.4550/3 0.4865/3 0.5115/3 0.4996/3

Pollblocks 0.0106 /28 0.0118/27 0.4328/6 0.4425/8 0.2901/2 0.4290/9 0.4815/4

Power 0.1567/301 0.2149/322 0.559/661 0.5649/167 0.468/300 0.435/427 0.5105/290

Yeast 0.1153/17 0.6388/47 0.6268/53 0.6623/27 0.3544/40 0.2742/52 0.6667/28

Email 0.1163/4 0.0469/21 0.3634/16 0.4272/13 0.4273/35 0.00001/1 0.5619/7

Netscience 0.5745/169 0.8718/334 0.8683/325 0.8816/331 0.7250/126 0.6853/703 0.8980/310

Word 0.1003/4 0.0472/5 0.0910/3 0.0983/4 0.00001/1 0.00001/1 0.1386/7

(10)

860 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

For example, LC creates multiple overlapping nodes

and the small community’s networks such as Dolphin

and poll blocks. Such over-detection for other

algorithms, like COPRA in net science data set, CPM in

poll blocks data set leads a poor performance due to the

large number of small communities. Based on the above

comparison results in terms of EQ, LBCD of better

performance in relation to others. This conforms to the

fact that our approach with complex network structures

that demonstrated better performance for real-world

networks. Specifically, in 8 of the 11 real-world

networks LBCD acquires the highest EQ values and also

nearly better results with remaining 3 data sets.

Conversely, LFM, SLPA and COPRA perform better on

one network of each, respectively. On almost all

networks except the Poll blocks network, LBCD yields

better performance than CPM and outperforms LC on

all 11 data sets. It means that there are significant

advantages to the local expansion strategy based on

structural centers. Moreover, LBCD has a better

performance compared to SLPA and COPRA

algorithms based on label propagation. LBCD also

exhibits highly stable results and compared to LFM on

nearly except two other networks. The visualization of

overlapped communities identified for karathe,

Dolphins, Jazz and Email networks by our proposed

method are shown in Figure 4. Here, some of the nodes

are colored with more than one color indicates that

belonging to more than one community (overlapping

communities). The relationship between EQ and β

parameter is depicted in Figure 5. EQ value is increased

gradually along with β parameter and it reaches highest

value between 0.4 to 0.45 in small datasets (Karathe,

Dolphin, Football, Jazz and Word) as show in Figure 5

and it reaches the highest value during 0.35 to 0.4 in

large datasets (power, yeast, Email, Netscience and

Pollblocks) as show in Figure 5. The EQ is reached to

least value whenever the β parameter reaches the

maximum value (β =0.5), from the Equation (7). It is

clear that the value of γ parameter reaches to 0 at β =0.5.

From this it is clear that both global (Closeness and

Betweenness centralities) and local measures (Degree

centrality) are participated to derive the quality

communities which having higher EQ value, but the

participation of global measure is more than the local

measures in community detection process. Since our

method is HADOOP based Parallel community

detection algorithm. Our proposed method is

experimented on the HADOOP clusters. Here we have

formed the Hadoop cluster of nodes and 8 nodes and

experimented our methods. Intel octa Cores with i5-

4440M 3.1GHz processor, 16GB memory and1TB Hard

Disk. The execution time of our algorithms on each

cluster for different data sets are specified in Table1.

Here we are listed only listed the reasonable sized data

sets to compare the execution time on different sized

clusters. Here the execution time is measured in

seconds. From the Table 3 it clears that execution time

of our algorithm gradually decreases depending on the

count of nodes in the HADOOP cluster increases. This

scenario is visualized in Figure 6.

a) Communities detected in Karathe network.

b) Communities detected in Dolphin network.

c) Communities detected in jazz network.

d) Communities detected in email network.

Figure 4. Communities generated in 4 social networks by proposed

method.

A Hadoop Based Approach for Community Detection on Social Networks Using Leader Nodes 861

a) Small networks.

b) Large networks.

Figure 5. EQ value against β parameter in small and large datasets.

Table 3. Execution time of four real world datasets.

Dataset

Time taken in seconds

Processor count(p)

|c|=1 |c|=2 |c|=4 |c|=8 |c|=16

Power 15,500 9850 4550 2560 1752

Yeast 8150 4456 2386 1326 786

NetScience 5256 3001 1656 932 532

PollBlock 4932 2621 1412 802 486

Figure 6. Execution time of four real world dataset.

9. Conclusions and Future Work

We have introduced an unsupervised machine learning

based method of local expanding that depends on

structural centers, to uncover the structures effectively

in the overlapping community. A structural centrality

introduced as a strategy location to compute the leader

nodes in networks. Depends on these leader nodes we

derived the Parallel MapReduce based FCM Clustering

algorithm to find the overlapping communities from the

given network. The proposed method (LBCD) defines

the merits in experiments that can be concluded into two

features. Initially, the count of community structures for

a network calculated by the locating leader (seed) nodes.

Secondly, to compared with other methods, the strategy

of expansion leads around to the leader nodes that

eliminates the seeds selection non-linearly and

manually adjusting the parameters, which speeds up the

convergence to optimal results and enables the most

stable algorithm. Since we have experienced lot of disk

access during map reduce jobs of proposed work, we are

planned to upgrade this proposed work in spark

environment in future. In future, we also planned to

extend this leader-based technique to predict the future

link and finding the influential users in social network

graph.

 References

[1] Apache Hadoop Manual. Available online:

https://hadoop.apache.org/docs/r2.8.0/api/org/apa

che/hadoop/util/ToolRunner.html, Last Visited,

2023.

[2] Ahn Y., Bagrow J., and Lehmann S., “Link

Communities Reveal Multiscale Complexity in

Networks,” Nature, vol. 466, no. 7307, pp. 761-

764, 2010. https://doi.org/10.1038/nature09182

[3] Dangalchev C., “Residual Closeness of

Generalized Thorn Graphs,” Fundamenta

Informaticae, vol. 162, no. 1, pp. 1-15, 2018. DOI:

10.3233/FI-2018-1710

[4] Filippone M., Camastra F., Masulli F., and

Rovetta S., “A Survey of Kernel and Spectral

Methods for Clustering,” Pattern Recognition,

vol. 41, no. 1, pp. 176-190, 2008.

https://doi.org/10.1016/j.patcog.2007.05.018

[5] Fortunato S., “Community Detection in Graphs,”

Physics Reports, vol. 486, no. 3, pp. 75-174, 2010.

https://doi.org/10.1016/j.physrep.2009.11.002

[6] Freeman L., Borgatti S., and White D., “Centrality

in Valued Graphs: A Measure of Betweenness

Based on Network Flow,” Social Networks, vol.

13, no. 2, pp. 141-154, 1991.

https://doi.org/10.1016/0378-8733(91)90017-N

[7] Gregory S., “Finding Overlapping Communities

in Networks by Label Propagation,” New Journal

of Physics, vol. 12, no. 10, 2010.

DOI:10.1088/1367-2630/12/10/103018

[8] Gupta S. and Singh D., “Seed Community

Identification Framework for Community

Detection over Social Media,” Arabian Journal of

Science and Engineering, vol. 48, pp. 1829-1843,

2023. https://doi.org/10.1007/s13369-022-07020-

z

[9] Giraph API Manual. Available online:

(https://giraph.apache.org/, Last Visited, 2023.

https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/util/ToolRunner.html
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/util/ToolRunner.html
http://dx.doi.org/10.3233/FI-2018-1710
https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/0378-8733(91)90017-N
https://giraph.apache.org/

862 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

[10] Khang T., Vuong N., Tran M., and Fowler M.,

“Fuzzy C-Means Clustering Algorithm with

Multiple Fuzzification Coefficients,” Algorithms,

vol. 13, no. 7, pp. 158, 2020.

https://doi.org/10.3390/a13070158

[11] Lancichinetti A. and Fortunato S., “Limits of

Modularity Maximization in Community

Detection,” Physics Review E, vol. 84, no. 6, pp.

1-8, 2011.

https://doi.org/10.48550/arXiv.1107.1155

[12] Marwa M., Saber B., Laid K., and Okba K., “A

Personalized Recommendation for Web API,”

The International Arab Journal of Information

Technology, vol. 8, no. 3A, pp. 58-65, 2021. 2021

https://doi.org/10.34028/iajit/18/3A/7

[13] Mohamed M. and Latha K., “An Effective

Community based Link Prediction Model for

Improving Accuracy in Social Networks,”

Journal of Intelligent and Fuzzy Systems, vol. 42,

no. 3, pp. 2695-2711, 2022. 10.3233/JIFS-211821

[14] Newman M. and Girvan M., “Finding and

Evaluating Community Structure in Networks,”

Physical Review E, vol. 69, no. 2, 2004.

https://doi.org/10.48550/arXiv.cond-

mat/0308217

[15] Newman M., “Communities, Modules and Large-

Scale Structure in Networks,” Nature Physics, vol.

8, no. 1, pp. 25-31, 2012.

https://doi.org/10.1038/nphys2162

[16] Palla G., Derenyi I., Farkas I., and Vicsek T.,

“Uncovering the Overlapping Community

Structure of Complex Networks in Nature and

Society,” Nature, vol. 435, no. 7043, pp. 814-818,

2005. https://doi.org/10.1038/nature03607

[17] Raghavan U., Albert R., and Kumara S., “Near

Linear Time Algorithm to Detect Community

Structures in Large-Scale Networks,” Physics

Review E, vol. 76, no. 3, 2007.

https://doi.org/10.48550/arXiv.0709.2938

[18] Rusinowska A., Berghammer R., De Swart H.,

and Grabisch M., “Social Networks: Prestige,

Centrality, and Influence,” in Proceedings of the

International Conference on Relational and

Algebraic Methods in Computer Science,

Rotterdam, pp. 22-39, 2011.

https://doi.org/10.1007/978-3-642-21070-9_2

[19] Schaeffer S., “Graph Clustering,” Computer

Science Review, vol. 1, no. 1, pp. 27-64, 2007.
https://doi.org/10.1016/j.cosrev.2007.05.001

[20] Sun P., Gao L., and Yang Y., “Maximizing

Modularity Intensity for Community Partition and

Evolution,” Information Sciences, vol. 236, pp.

83-92, 2013.

https://doi.org/10.1016/j.ins.2013.02.032

[21] Xie J. and Szymanski B., “Towards Linear Time

Overlapping Community Detection in Social

Networks,” in Proceedings of the Pacific-Asia

Conference on Knowledge Discovery Data

Mining, Kuala Lumpur, pp. 25-36, 2012.

https://doi.org/10.48550/arXiv.1202.2465

Mohamed Iqbal completed his

Ph.D. Degree at Anna University,

India. He received B. Tech degree in

Information Technology from

Karpaga Vinayaga College of

Engineering and Technology

affiliated to Anna University,

Chennai, Tamilnadu in 2009. M.E

Degree in CSE from Anna University, BIT Campus,

Tiruchirappalli, India in 2011. He is currently working

as Assistant Professor (Senior Grade1) in the School of

Computer Science and Engineering (SCOPE) at VIT-

AP University, Andhra Pradesh, India. His research

interests include Social Networking, Big Data, Machine

Learning, Deep Learning and Natural Language

Processing.

Kesavarao Latha currently working

as Assistant Professor (Sr. Grade),

Department of computer science and

engineering in University College of

Engineering, Anna University (B.I.T

Campus), Trichirappalli-620024. She

Published papers in various Scopus

indexed journals, National and International

conferences and Journals. She is specialization in

Information Retrieval, Information Extraction, Data

Mining and Cloud Computing.

https://doi.org/10.48550/arXiv.1107.1155
https://doi.org/10.48550/arXiv.1107.1155
https://link.springer.com/conference/ramics
https://link.springer.com/conference/ramics
https://doi.org/10.1016/j.cosrev.2007.05.001

