
408 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

FPGA based Flexible Implementation of Light

Weight Inference on Deep Convolutional Neural

Networks
Shefa Dawwd

Department of Computer Engineering, University of Mosul, Iraq

shefa.dawwd@uomosul.edu.iq

Abstract: Standard Convolution (StdConv) is the main technique used in the state of the art Deep Convolutional Neural

Networks (DCNNs). Fewer computations are achieved if Depthwise Separable Convolution technique (SepConv) is used as an

alternative. A crucial issue in many applications like smart cameras and autonomous vehicles where low latency is essential

stems from deploying a lightweight and low cost inference models. An acceptable accuracy should be kept with tolerable

computations and memory access load. A flexible architecture for different DCNN convolution types and models is proposed.

The flexibility comes from the sharing of one memory access unit with different types of layers regardless of the selected kernel

size, by multiplying each weight vector by local operators with variant aperture. Moreover, one depthwise computation unit can

be used for both standard and pointwise layers. The learnable parameters are quantized to 8-bits fixed point representation and

that gives very limited reduction of accuracy and a considerable reduction of the Field-Programmable Gate Array (FPGA)

resources. To reduce processing time, inter layer parallel computations are performed. The experiment is conducted by using

grey scale ORL database with shallow Convolutional Neural Network (CNN) and the colored Canadian Institute for Advanced

Research 10 classes (CIFAR-10) database with DCNN, and a comparable accuracies of 93% and 85.7% are achieved

respectively using very low cost of Spartan 3E and moderate cost of zynq FPGA platforms.

Keywords: Standard convolution, depthwise separable convolution, inference, deep convolutional neural networks, FPGA.

Received December 31, 2023; accepted March 18, 2024

https://doi.org/10.34028/iajit/21/3/5

1. Introduction

The shallow Convolutional Neural Network (CNN) is

usually used to classify image in an efficient

performance. Rather than using traditional image

processing techniques, CNN can process raw images or

video frames in a productive way. When Deep

Convolutional Neural Network (DCNN) is used, the

performance in specific object recognition tasks

sometime achieve the level of human [8]. The DCNN is

proved to be an efficient choice to process image and

video for different applications such as sign language

recognition [20], character recognition [2], medical

diagnosis [30], video surveillance [22], and etc.

However, the better efficiency and performance comes

at the expense of high computations and memory

requirements. In most of embedded platforms or edge

devices, where resources for computing, memory

storage, and energy are constrained, DCNN is difficult

to be implemented unless an efficient data and

processing management is followed. To reduce the

implementation cost, and preserve the parameters

accuracy, the training is often offloaded using powerful

computers provided with high performance multicore

Central Processing Unit (CPU) and Graphics Processing

Units (GPUs).While light inference model can only be

embedded in the edge devices (such as mobile devices).

An abstract inference model can then be used to match

the application with devices of restricted size and

latency.

This abstractness is usually achieved by two way:

dimensionality reduction and parameters compression.

Dimensionality reduction is the process of reducing the

number of features in a dataset while retaining as much

information as possible. This can be done to reduce the

complexity of a model, improve the performance of a

learning algorithm, or make it easier to visualize the

data. On the other hand, parameters compression is used

to compress the model parameters as long as accuracy

effect is negligible. A considerable saving in cost is

achieved by compressing of the pre-trained network

using quantization [26] and pruning [23]. The

quantization is used to reduce the word length gradually

and the pruning is used to optimize the model by

eliminating the weight connections or nodes that are

close to zero form the model.

With DCNN of dozens or even close to a hundred of

layers, using the above techniques are not sufficient to

save cost effectively. Thus, the researchers searched for

other mechanisms including dealing with the problem

mathematically. One of the most active solutions in

reducing the mathematical computations is the use of

different type of convolution like SepConv [1, 19],

FPGA based Flexible Implementation of Light Weight Inference on Deep ... 409

where the Standard Convolution (StdConv) process is

divided into two phases: depthwise and pointwise

convolution. The intermediate results from depthwise to

pointwise are stored temporarily in buffers [1].

Reducing the required number of computations can

positively reflects to the time taken to perform the task,

which in turn reduce the total latency. The MobileNet

deep model [13] primarily uses SepConv and deals with

latency and size optimization. However, if the network

is already small, the SepConv may fail to properly learn

during training due to the compactness of its parameters.

This leads to accuracy degradation in many cases and

makes the StdConv is preferable. The early versions of

LeNet, AlexNet, Visual Geometry Group (VGG) and

deep Residual Network (ResNet) models use StdConv

type. On the other hand, some works take advantage of

the favourable characteristics of both convolution types,

for example, the ResNet model proposed in [27] is

modified and uses full SepConv layers in its residual

network.

In this paper, a low cost model that can be used in

both of the mentioned convolution types and can

address the reduction and compression issues is

proposed. The proposed technique can be flexibly used

for both convolution schemes StdConv and SepConv for

small and large network sizes. The rest of paper is

organized as follows: Section 2 presents a state-of-the-

art design and implementation of DCNN models

followed by problem statement which introduced in

section 3. In section 4 a brief background of DCNN and

its mathematical representation is introduced. The

details of SepConv vs. StdConv are described in section

5, while the training methodology and the hardware

architectural design are presented in sections 6 and 7

respectively. The experimental results are shown and

discussed in section 8. Finally, most important

conclusions and future works are summarized in

sections 9 and 10 respectively.

2. Related Works

Two phases are involved in training a neural network:

forward or inference phase and backward parameters

adjustment phase. Accelerating either of these two

phases leads to accelerate the training or inference

separately. Or one could say: when training is

accelerated, the inference will be implicitly taken into

account and vice versa. In many system, the inference

model is connected with larger system and used as an

accelerator for forward learning phase [17]. The

flexibility offered by CPU and GPU makes them

preferable to perform training compared to Application-

Specific Integrated Circuit (ASIC) or Field-

Programmable Gate Array (FPGA). The capacity of

using CPU does not offer the enough computations to

implement an efficient large DCNN model. The GPU

that use different development frameworks can be a

good candidate to perform efficient training or inference

of DCNN models [24] regardless of the network size.

The technology that could outperform GPU in terms of

energy and speed efficiency is the ASIC and FPGA, but

with no re-programming flexibility [10]. Although, the

power and speed provided by ASIC is superior to

FPGA, the configurability feature makes the latter more

flexible.

For lightweight CNNs, the SepConv is demonstrated

to be very effective technique. An FPGA based

MobileNet is the most famous example that use

SepConv in its processing flow. Two dedicated

computing engines for pointwise and depthwise

convolutions are utilized in the work presented by Wu

et al. [28] to train the MobileNet model on ZU2 and

ZU9 MPSoC FPGAs. An inference FPGA based

accelerator is implemented by Kuramochi and Nakahara

[17] on Xilinx Alveo U50 FPGA platform. Since no

direct dependencies are included among the DCNN

layers, the pipeline techniques is efficiently used in their

architecture.

Also, efficient and light weight implementation of

StdConv of DCNN have been a subject of intensive

research. Hou and Chen [12] use OpenCL-based zynq7

FPGA to improve the training of LeNet5. A good effect

is achieved on term of efficiency and accuracy. Gilan et

al. [9] accelerates the inference of AlexNet architecture

using ZC706 FPGA evalution board. Their proposed

architecture is fully configurable and flexible to perform

different DCNN models. While Hadnagy et al. [11]

deals with inference acceleration of LeNet model. To

make a hardware friendlier, an optimization techniques

that deals with reducing the word length size and

pruning for AlexNet, VGG, ResNet and MobileNet is

shown in the survey presented by Dhouibi et al. [7].

Also, a good review can be found in the survey of

Dhilleswararao et al. [6] that discusses the description

of specialized hardware based accelerators employed in

training and/or inference of different DCNN models.

According to the survey work [10], the most

contribution (99%) of operations and weights in all

DCNN models is found in the convolution and fully

connected layers, while 1% contribution is left to the

ReLU and pooling layers. So the acceleration focuses

on the convolution and fully connected layers. In this

paper, we only concentrate on the convolution layers

acceleration and for simplicity, the kernel and feature

map of fully connected layer is assumed to be of size

1×1. A flexible depthwise separable processing unit

based FPGA of reduced multiplications is designed for

inference DCNN using either the SepConv or StdConv.

3. Problem Statement

As demonstrated in the preceding sections, various

methods and architecture have been employed to

minimize the expenses associated with DCNN. Yet,

none of these approaches can effectively adapt to the

diverse nature of deep models, extensive layers,

https://ieeexplore.ieee.org/author/37085526197

410 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

(1)

(2)

(3)

(4)

(5)

(6)

(7)

processing techniques, and memory access. This paper

introduces a roadmap for designing and implementing

DCNNs in a flexible manner, aiming for low costs and

minimal or negligible degradation of accuracy, as

elaborated in the subsequent sections.

4. Deep Convolutional Neural Networks

The CNN is a network of succeeded convolutional

layers arranged in pyramid architecture (Figure 1). Each

layer alternates between convolution and down-

sampling (pooling) layer. Each layer is represented by

2D array of neurons. Simple features are extracted in the

first layer(s), then the complexity (filter size) and

abstractness of feature map are gradually increased from

layer to layer. The layer's input resolution are decreased

until a limited set of specified complex features are

extracted in the final convolutional layer. Flattening

is used to convert all the resultant 2D arrays of features

in the final layer into a single long continuous linear

vector. The flattened matrix is fed as input to the fully

connected layer(s) for image/frame classification [14].

A DCNN nowadays can make use of hundreds or even

thousands of layers. The number of layers does not

strictly distinguish between shallow and DCNN.

However, any architecture more than two or three layers

can be considered as deep. Two main types of

convolution are used in DCNN: StdConv and SepConv.

The StdConv is used in early CNN and later DCNN. The

following equation dictates the convolution operation in

this type:

, ,
Conv(,) .

(,) (, ,) (, ,), ,

K L M
W y W y

i j k l m i k j l mk l m

where W denotes to the weight of filter k of layer l in

channel m convolves with y in spatial position i and j.

Taking into account the transfer function, the final

output of Equation (1) passes to a selected transfer

function. The Rectified Linear Unit transfer function

(ReLU) is used in DCNN to overcome the vanishing

gradient problem, allowing models to learn faster and

perform better performance. The max pooling is the

transfer function of down sampling layers. However, in

last fully connected layer, softmax transfer function is

used for multiclass classification.

Figure 1. Two layers CNN structure.

5. Depthwise Separable Convolution

To reduce the intensive computations in deeply

convolutional layers, the SepConv is performed. This

technique is introduced in [25] by breaking down the

Standard Convolution (StdConv) into two separated

process: a depthwise convolutional followed by a

pointwise 1×1 convolutional (Figure 2). The SepConv

can be performed in three steps as follows in Equations

(2), (3), and (4) respectively [16]:

PointConv(,) .
(,) (,)

M
Z y Z ymi j i jm

,
DepthConv(,)

(,) (,) (,),

K L
W y W y

i j k l i k j lk l

SepConv(, ,) PointConv (, DepthConv (,))(,) (,) (,)Z W y Z W yi j i j i j

where ◦ denotes to the element wise products. Z, W are

the pointwise and depthwise weight matrices

respectively.

The reduction of computations can be achieved by a

computations comparison between the StdConv using

Equation (1) with separable convolution that uses

Equation (4). Suppose K filters of kernel dimension

dk×dk of F pixels applied to input of channel M, each

channel has Dm×Dm receptive fields, the dimension of

each receptive field usually equals to the filter kernel

dimension. Then the computations that use Equation (1)

are:

dk×dk×M×K×Dm×Dm

The total computations that use Equation (4) are the

addition results of depthwise (left) and pointwise (right)

convolutions when stride factor (s) equals to 1:

dk×dk×M×Dm×Dm+M×K×Dm×Dm

A reduction ratio in computations can be achieved by

expressing convolution as a two-step process of filtering

and combining:

1 1

2

d × d × M × D × D + M × K × D × D m m m mk k

d × d × M × K × D × D K dm mk k k

If 3×3 filter kernel is used as MobileNet, an 8 to 9 times

less computations can be achieved by using Depthwise

Separable Convolution (SepConv) vs. standard one. As

shown in Equation (6) and Figure 2, as filter size (K)

becomes larger, the pointwise computations will be

dominant. According to Equation (3), the pointwise part

of Equation (6) is a combination of Multiply

Accumulate Operations (MACs).

6. Training the DCNN

The fundamental difference in training the CNN with

training DCNN is that, rather than using consequent

layer-to-layer learning, an end-to-end learning approach

is used to train the DCNN using supervised back

propagation algorithm.

The training exploit the precision provided by

floating point based calculations that implemented on

high performance CPU with GPU. Besides that, in

FPGA based Flexible Implementation of Light Weight Inference on Deep ... 411

SepConv, to keep the spatial interaction between

channels and inter-channel correlations, the depthwise

and pointwise convolution are used respectively to

adjust the layer's parameters. The SepConv is used in

inference for resource constrained devices. In this paper,

leveraging the strength of both types of convolution is

achieved: the compactness of SepConvs and the

accuracy of ordinary convolutions.

a) StdConv.

b) SepConv.

Figure 2. Convolution types.

7. Hardware Inference of Deep

Convolutional Neural Networks

Due to the high precision and accuracy requirements in

updating parameters of DCNN, floating point

calculations are used in learning. However, according to

the limitations imposed of the hardware resources, a

quantized fixed point calculations are used in inference.

First, the hardware description and architecture of

SepConv is presented, then the same hardware can be

modified to be used for StdConv.

7.1. Memory Access Optimization

The input image/channel is typically stored in frame

buffer in a sequential manner. However, because the

two dimensional nature of the image, the adjacent pixels

may not be located at adjacent addresses. Then the

caching schemes may not effectively speed up or reduce

the number of memory accesses. Unless an efficient

addressing strategy is used, fast and direct access to a

particular pixel becomes difficult. The DCNN use data

in an infrequently and a non-sequential fashion. Thus,

and according to work presented in [4], using window

registers with First In First Out (FIFO) buffers approach

can be a suitable solution to address the above

mentioned issues (Figure 3). In this approach apart from

the size of window (kernel size) and input channel, the

chennel is fed through the window instead of feeding the

window across the chennel, due to using of FIFOs.

The input chennel of size Dm×Dm pixels and the

window of dk×dk pixels require dk×dk registers and dk -1

of FIFOs each of Dm-dk locations. The only one pixel

width bits is required as a bandwidth between the

memory and register buffers. The up and down striding

become very simple, no matter the size of the input

channel or kernel. Each processing element can access

each register individually. Also, the restriction of I/O

memory port is released and multiple block element can

access the register buffer in parallel. In other word, the

benefit of using the above optimized memory access is

speeding up the possible I/O bound computations that

performed afterhand.

a) kernel size 5x5.

b) kernel size 3x3.

c) kernel size 1x1.

Figure 3. 2D memory access for input channel of Dm×Dm pixel and

different kernel sizes.

From the above figure, one can see that different

hardware is required when kernel size changes. To use

the same architecture and avoid changing the hardware

with different types of layers. The idea of using central

apertere to deal with image reciptive field that is used in

our previos work [3] can be employed here but with

hardware implementation. The weights can be

manipulated and multiplied with local operators for

border of zeros and a central aperture of one(s) (Figure

4). Now the same depthwise processing unit of 5×5

basic convolutional kernel size can be used for another

412 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

convolutional layer such as for 3×3 kernel size or in

pointwise layers and in fully connected layer for kernel

size of 1×1.

a) Kernel size 5x5. b) Kenel size 3x3. c) Kernel size 1x1.

Figure 4. Local operators used in 5×5 registers buffers and employed

in different kernel size.

For example, if the hardware is fixed to 3×3 register

buffers for depthwise phase, the same hardware can be

used in pointwise phase. If the local operator matrix is

assumed to be w(i,j), where i and j are the row and column

indexes respectively, then we can represent the center

pixel (w(2,2)) as Zk weight and all border pixels (w(1,1) to

w(1,3), w(2,1),w(2,3), and w(3,1) to w(3,3)) are zeros.

Since the outer borders of the 3×3 MAC is multiplied

by zeros, then no accumulation is performed. The

central pixel of Iidx is only multiplied by Zk. That is

equivalent of pointwise multiplication of 1×1 window.

Thus, no need to change the available hardware used for

depthwise convolution that shown in the middle part of

Figure 3 to implement the pointwise convolution (no

need to use the specific hardware that shown in the

Figure 3-c).

7.2. Hardware Inference of Depthwise

Separable Convolution

According to the available hardware resources, 2D array

of multipliers is used to multiply each depthwise

weights vector with channel receptive field (Figure 5-a).

To avoid redundant memory access for every

overlapping receptive field in input channel, and to

make data reusing, the memory optimization technique

is employed. Now, in every clock cycle, one receptive

field of 3×3 kernel size is available and all of its pixels

can be accessed in parallel. The output of 2D array is

connected to adder tree to achieve MAC operations. The

adder tree output is multiplied with pointwise weight

associated with this channel. These components are

grouped together to form the depthwise processing unit.

Now each channel only requires one multiplication to

process the pointwise part of the separable convolution.

By scanning all the channel receptive fields, one

depthwise channel map is produced. If enough hardware

resource are available, multiple depthwise channel

operations can be achieved in parallel by using multiple

depthwise processing units (Figure 5-b). Each resulted

map is stored in temporal buffer. Then a pointwise

calculation for kernel size of 1×1 is performed by

sequentially multiplying each map's pixel by a 1×1

pointwise kernel (Zk) to produce each of the k output

map. Algorithm (1) show the hardware procedure to

implement the SepConv.

Algorithm 1: Depthwise Separable Convolution

Input stride s; Wm , ∀ m∈ {1,…,M}; Zk , ∀ k∈ {1,…,K}; Iidx ,
∀idx∈{1,…, Dm

2}

Output reduction(+:yk(i,j)), ∀ i∈ {1,…,Dm},∀ j∈ {1,…,Dm}

Initialization

parallel for m=1….M do

 for idx=1,…..,Dm
2 step s do

 ym(i ,j)←(∑Wm . Im,idx)

end

end

for k =1….K do

 for m =1….M do

 for idx=1,…..,Dm
2 do

 yk(i,j)+ ← ym(i,j). Zk

 end

 end

end

a) Architecture of depthwise processing unit.

b) Channel wise parallelism using multiple processing units.

Figure 5. Hardware Implementation of SepConv.

7.3. Hardware Inference of Standard

Convolution

Simple modification to the depthwise processing unit

shown in Figure 5-a) can be performed to implement the

StdConv (Figure 6). However, the same channel wise

parallelism can be used for both types of convolution.

The only difference is in the access of different weight

vectors each for a specified kernel (k).

In Figure 6, one can see that the first modification is

the use of another index (k) that attached with the weight

matric. The attached index refers to the different weight

vector used for each iteration (see Figure 2-a) and

Equation (1)). The StdConv operation flow is described

in Algorithm (2). The second modification is the delete

of pointwise weight matrix. Hence that the channel wise

FPGA based Flexible Implementation of Light Weight Inference on Deep ... 413

and point wise convolution are fused and be used to

combine the output of each channel.

Algorithm 2: Procedure Standard Convolution

Input stride s; Wmk , ∀ m∈ {1,…,M},∀ k∈ {1,…,K}; Iidx ,
∀idx∈{1,…, Dm

2}

Output reduction(+:yk(i,j)), ∀ i∈ {1,…,Dm}, ∀ j∈ {1,…,Dm}

Initialization

for k =1…..K do

 parallel for m=1….M do{

 for idx=1,…..,Dm2 step s do

 ym(i ,j)←(∑Wmk . Im,idx)

 yk(i,j)+ ← ym(i,j)

 end

 end }

end

Figure 6. Architecture of depthwise processing unit used to

implement the StdConv.

8. Results and Discussions

The performance of Most DCNNs is benchmarked for

image classification. Thus, this application is

considered in this paper. The ORL database for faces

classification (32×32 pixel's image) are used in training

a shallow DCNN of three convolutional layers and one

fully connected layer. The number of filter taps (K) are

4, 8, and 16 for 1st, 2nd, and 3rd layers respectively, and

the filters kernel size is 3×3. Multiple networks with

different specifications and parameters are proposed.

These networks are completely built and trained from

scratch using software models running in Matlab

R2020a. Table 1 shows the specifications analysis of the

designed DCNNs using StdConv.

Table 1. Specification analysis of DCNN using StdConv(dk×dk:
3×3), s=1.

Layers
Feature

maps
Learnable # param #MAC

Input 32×32×1
*SC1 34×34×4 weights: 3×3×1×4, bias: 1×1×4 40 36864

Pool1 17×17×4

SC2 19×19×8 weights: 3×3×4×8, bias: 1×1×8 296 83232

Pool2 9×9×8

SC3 11×11×16
weights: 3×3×8×16,bias:

1×1×16
1168 93312

Pool3 5×5×16

FC 1×1×40 weights: 40×400,bias: 40×1 16040 16040

Total 17544 229448

*SC denotes to StdConv.

While the SepConv analysis is shown in Table 2. The

weight sharing property is not used in fully connected

layers. Therefor most of storage requirements are

conducted to the parameters of fully connected layers

rather than convolution layers.

Table 2. Specification analysis of DCNN using SepConv (dk×dk:
3×3), s=1.

Layers
Feature

maps
Learnable # param #MAC

Input 32×32×1

DWC1** 32×32×1 weights: 3×3,bias: 1×1 10 9216

SC1** 32×32×4 weights: 1×1×1×4,bias: 1×1×4 8 4096

Pool1 16×16×4

DWC2 16×16×1 weights: 3×3×4,bias: 1×1 37 9216

SC2 16×16×8 weights: 1×1×1×8,bias: 1×1×8 16 2048

Pool2 8×8×8

DWC3 8×8×1 weights: 3×3×8,bias: 1×1 73 4608

SC3 8×8×18 weights: 1×1×1×18,bias: 1×1 36 1152

Pool3 4×4×18

FC 1×1×40 weights: 40×288,bias: 40×1 11560 11560

Total 11740 41896

**DWC denotes to depthwise convolution while SC denotes to pointwise
convolution (1×1 StdConv).

By excluding the parameters of the fully connected

layer, one can see from the above tables that a

considerable reduction in parameters from 1476 to 147

of the convolution layers are achieved. About 6×

reduction of MAC operations are achieved to implement

the SepConv (5th columns in Tables 2 and 3). Another

comparison between StdConv and SepConv is shown in

Table 3. The positive effects of memory size when

reducing word length representation of data from

floating point to fixed point of 8 bits and 6 bits

respectively is shown in this table. Also, an enormous

reduction of required memory when using SepConv vs.

StdConv with only 2% scarification in accuracy can also

be seen in the last two columns of Table 3.

Table 3. Effect of quantization on StdConv vs SepConv on memory

and accuracy.

Type of

Conv.
Prec

Memory

(KB)

Reduction in

memory %

(Compared to

fp32)

Accur.%

Reduction in

accur %

(Compared to

fp32)

StdConv

fp32 5.76 --- 95 ---

fix8 1.44 75 95 0%

fix6 1.1 80 92 3%

SepConv

fp32 0.57 --- 93 ---

fix8 0.14 75 93 0%

fix6 0.11 80 91 2%

Due to random initialization of weights that imposed

by software training model, the presented accuracy is

measured as the average of three simulation runs for

70% of the total dataset that used in training and the rest

for testing. In contrast, for a network of reduced

capacity as the proposed in SepConv based model,

slower convergence (160 iterations vs. 145 iterations)

may arise as the model tries to generalize better (see

Figure 7).

414 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

a) Accuracy and loss convergence of StdConv.

b) Accuracy and loss convergence of SepConv.

Figure 7. Accuracy and loss convergence.

Another test for the proposed hardware is done for

large DCNN and dataset. The CIFAR-10 dataset which

contains 6000 colored images of 10 classes of 32×32

pixels is used (5000 images for training and the

remaining for testing). The MobileNet v1 model that

based on SepConv is investigated in the experiment.

The specification analysis is shown in Table 4.

Table 4. Specification analysis of MobileNet v1.

Operator Input×M s k n** #MAC MOP

SC 3×3 32×32×3 1 32 - 884736 0.9

DWC 3×3
32×32×32

1 32
1

29491 0.3

SC 1 ×1 1 64 2097152 2

DWC 3×3
32×32×64

2 64
1

147456 0.1

SC 1 ×1 1 128 2097152 2

DWC 3×3
16×16×128

1 128
2

294912*2 0.3

SC 1 ×1 1 128 4194304*2 8

DWC 3×3
16×16×128

2 128
1

294912 0.3

SC 1 ×1 1 256 8388608 8

DWC 3×3
8×8×256

1 256
3

147456*3 0.45

SC 1 ×1 1 256 4194304*3 4

Pool 8×8×256 - 256 3 221184 0.2

FC 1×1×256 - 10 - 2560 0.0025

Softmax 1×1×10 - - - - -

** n denotes to repeated identical layer.

A reduction of word length leads to an enormous

reduction on the utilized FPGA area. Relatively two low

cost Xilinx FPGA models: Spartan3E (XC3S500) and

zynq(XC7Z020) platforms are used to test the

performance of the proposed model. Table 5 shows the

utilization and performance comparisons among them.

The parallelism factor and the frequency depend on the

type and size of the selected FPGA platform. A

maximum of 8 depthwise processing unit is used in very

low cost FPGA (Spartan3E) vs. 18 (and more) is used in

zynq. As shown in Table 6, a low throughput is achieved

using Spartan3E even if it operates on maximum

frequency. While well performance can be achieved

when moderate FPGA cost (zynq) is used. This

performance can further be increased when increasing

the parallelism factor due to the availability of

redundant FPGA area (14% utilization is only

consumed). Exploiting the Digital Signal Processing

(DSP48E1S) embedded resources can improve the

performance and make the rest of the FPGA resources

available for further operations. Also, a comparison

with different models and platforms in terms of

accuracy, resource utilization, and performance, is

depicted in Table 6. One can see that an acceptable

accuracy and performance is achieved with lower

utilization area when ultra-low cost FPGA platform

(Spartan 3E: XC3S500) and moderate platform (zynq:

XC7Z020) are used respectively. Also, although the

resulted frame rate does not exceed what is achieved in

some of these works, but the reduction in the utilized

resources outperforms all the presented state of the art

works.

Table 5. Utilization summary and performance for Xilinx FPGA.

Design Parall. DSP LUT FF Slice
freq

(MHz)

Spartan

3E
8 0 7384 (80%) 4552 (48%) 4112 (88%) 80

Zynq 18 0 14364 (27%) 9720 (9%) 14364 (27%) 185

Zynq 18 180 (81%) 7380 (14%) 7200 (6%) 7380 (14%) 196

Table 6. Overall accuracy, resource utilization, and performance
comparison for CIFAR-10 classification for different platforms.

 Model
Accuracy

%
DSP FF LUT GOPS FPS platform

[5] MobileNetv1 79.92 - - - - 125
GPU Jetson

Xavier

[15] ResNet20 91 1054 - 181440 21.12 344
Xilinx

ZCU104

[18] BCNN 87.8 1096 70769 342126 7663 1000 Vertix 7

[21]
BCNN-based

ResNet18
92.14 465 112347 161306 - 4938

FPGA

Alevo

U280

[29]
HyBNN-

U5D3
89.8 205 99074 51927 - 4302

AMD-

Xilinx

Ultra96-V2

Ours MobileNetv1 85.7 0 4552 ↓ 7384 ↓ 11 170 Spartan3E

Ours MobileNetv1 85.7 0 9720 ↓ 14364 ↓ 60 909 zynq

Ours MobileNetv1 85.7 81 ↓ 7200 ↓ 7380 ↓ 64 1000
zynq with

DSP

FPGA based Flexible Implementation of Light Weight Inference on Deep ... 415

9. Conclusions

A road map to implement a DCNN of complex

computations and memory demands in low cost FPGA

is presented. Efficient compact hardware techniques are

used to achieve this goal: One depthwise unit is

alternatively used either in StdConv or SepConv. To

minimize the access to the memory where the input

channel data are stored, receptive fields’ pixels are

caches to local registers. Multiplying weight with local

operators of variant aperture add more flexibility to the

proposed architecture and makes it available to be used

with different types of layers. The designed processor

can process multiple convolutional channels in parallel.

A considerable reduction of memory storage and FPGA

resources are achieved due to quantizing the weights to

8-bits length of word. All these techniques led to

achieve a very low consumption of hardware resources.

The experiments that conducted on face recognition

application show that an acceptable performance

whether in the resulted accuracy or in the FPGA cost is

achieved. The architecture can be flexibly reconfigured

to be used for different DCNN models that used either

StdConv or SepConv techniques.

10. Future Works

Further reduction on cost can be achieved using the

pruning optimization technique. The weight, node,

channel and filter pruning can reduce the DCNN

parameters and memory demand and consequently

reduce the overall inference time. This technique can be

analyzed, then another tradeoff between cost and

accuracy can be achieved. Also further investigation of

the proposed methodology and architecture for either

StdConv or SepConv can be applied to more datasets

and deep models, and the results can then be compared

and discussed.

References

[1] Bai L., Zhao Y., and Huang X., “A CNN

Accelerator on FPGA Using Depthwise Separable

Convolution,” IEEE Transactions on Circuits and

Systems 2: Express Briefs, vol. 65, no. 10, pp.

1415-1419, 2018.

DOI:10.1109/TCSII.2018.2865896

[2] Belbachir K. and Tlemsani R., “Temporal Neural

System Applied to Arabic Online Characters

Recognition,” The International Arab Journal of

Information Technology, vol. 16, no. 3A, pp. 514-

424, 2019.

https://www.iajit.org/portal/PDF/Special%20Issu

e%202019,%20No.%203A/18597.pdf

[3] Dawwd S., “GLCM Based Parallel Texture

Segmentation Using A Multicore Processor,” The

International Arab Journal of Information

Technology, vol. 16, no. 1, pp. 8-16, 2019.

https://www.iajit.org/portal/PDF/January%20201

9,%20No.%201/9828.pdf

[4] Dawwd S., “The Multi 2D Systolic Design and

Implementation of Convolutional Neural

Networks,” in Proceedings of the IEEE 20th

International Conference on Electronics, Circuits,

and Systems, Abu Dhabi, pp. 221-224, 2013.

DOI:10.1109/ICECS.2013.6815394

[5] Dbouk H. and Shanbhag N., Advances in Neural

Information Processing Systems, Curran

Associates, 2021.

https://www.proceedings.com/content/063/06306

9webtoc.pdf

[6] Dhilleswararao P., Boppu S., Manikandan M., and

Cenkeramaddi L., “Efficient Hardware

Architectures for Accelerating Deep Neural

Networks: Survey,” IEEE Access, vol. 10, pp.

131788-131828, 2022.

DOI:10.1109/ACCESS.2022.3229767

[7] Dhouibi M., Salem A., Saidi A., and Saoud S.,

“Accelerating Deep Neural Networks

Implementation: A Survey,” IET Computers and

Digital Techniques, vol. 15, no. 2, pp. 79-96, 2021.

https://doi.org/10.1049/cdt2.12016

[8] Geirhos R., Janssen D., Schütt H., Rauber J.,

Bethge M., and Wichmann F., “Comparing Deep

Neural Networks Against Humans: Object

Recognition When the Signal Gets Weaker,” arXiv

Preprint, arXiv:1706.06969v2, pp. 1-31, 2018.

https://arxiv.org/pdf/1706.06969.pdf

[9] Gilan A., Emad M., and Alizadeh B., “FPGA-

Based Implementation of a Real-Time Object

Recognition System Using Convolutional Neural

Network,” IEEE Transactions on Circuits and

Systems 2: Express Briefs, vol. 67, no. 4, pp. 755-

759, 2020. DOI:10.1109/TCSII.2019.2922372

[10] Guo K., Zeng S., Yu J., Wang Y., and Yang H.,

“[DL] A Survey of FPGA-Based Neural Network

Inference Accelerators,” ACM Transactions on

Reconfigurable Technology and Systems, vol. 12,

no. 1, pp. 1-26, 2018.

https://doi.org/10.1145/3289185

[11] Hadnagy A., Feher B., and Kovacshazy T.,

“Efficient Implementation of Convolutional

Neural Networks on FPGA,” in Proceedings of the

19th International Carpathian Control

Conference, Szilvasvarad, pp. 359-364, 2018.

https://ieeexplore.ieee.org/document/8399656

[12] Hou Y. and Chen Z., “LeNet-5 Improvement

Based on FPGA Acceleration,” The Journal of

Engineering, vol. 2020, no. 13, pp. 526-528, 2020.

https://doi.org/10.1049/joe.2019.1190

[13] Howard A., Zhu M., Chen B., Kalenichenko D.,

Wang W., and Weyand T., Andreetto M., Adam H.,

“MobileNet: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” arXiv

Preprint, arXiv:1704.04861, pp. 1-9, 2017.

https://doi.org/10.48550/arXiv.1704.04861

[14] Iba H. and Noman N., Deep Neural Evolution:

https://doi.org/10.1109/TCSII.2018.2865896
https://www.iajit.org/portal/PDF/Special%20Issue%202019,%20No.%203A/18597.pdf
https://www.iajit.org/portal/PDF/Special%20Issue%202019,%20No.%203A/18597.pdf
https://www.iajit.org/portal/PDF/January%202019,%20No.%201/9828.pdf
https://www.iajit.org/portal/PDF/January%202019,%20No.%201/9828.pdf
https://ieeexplore.ieee.org/xpl/conhome/6810206/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6810206/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6810206/proceeding
https://doi.org/10.1109/ICECS.2013.6815394
https://www.proceedings.com/content/063/063069webtoc.pdf
https://www.proceedings.com/content/063/063069webtoc.pdf
https://ieeexplore.ieee.org/author/37085526197
https://ieeexplore.ieee.org/author/37689651800
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://doi.org/10.1109/ACCESS.2022.3229767
https://www.researchgate.net/profile/Ahmed-Karim-Salem?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Afef-Saidi-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Slim-Ben-Saoud?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://doi.org/10.1049/cdt2.12016
https://arxiv.org/pdf/1706.06969.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8920
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8920
https://doi.org/10.1109/TCSII.2019.2922372
https://dl.acm.org/toc/trets/2019/12/1
https://dl.acm.org/toc/trets/2019/12/1
https://doi.org/10.1145/3289185
https://ieeexplore.ieee.org/xpl/conhome/8387527/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8387527/proceeding
https://ieeexplore.ieee.org/document/8399656
https://doi.org/10.1049/joe.2019.1190
https://doi.org/10.48550/arXiv.1704.04861

416 The International Arab Journal of Information Technology, Vol. 21, No. 3, May 2024

Deep Learning with Evolutionary Computation,

Springer, 2020. https://doi.org/10.1007/978-981-

15-3685-4

[15] Isik M., Inadagobo K., and Aktas H., “Design

Optimization for High-Performance Computing

Using FPGA,” arXiv Preprint, arXiv: 2304.12474,

pp. 1-19, 2023.

https://arxiv.org/pdf/2304.12474.pdf

[16] Kaiser L., Gomez A., and Chollet F., “Depthwise

Separable Convolutions for Neural Machine

Translation,” arXiv Preprint, arXiv:1706.03059,

pp. 1-10, 2017.

https://arxiv.org/pdf/1706.03059.pdf

[17] Kuramochi R. and Nakahara H., “A Low-Latency

Inference of RandomlyWired Convolutional

Neural Networks on an FPGA,” IEICE

Transactions on Information and System, vol.

E104.D, no. 12, pp. 2068-2077, 2021.

https://doi.org/10.1587/transinf.2021PAP0010

[18] Li Y., Liu Z., Xu H., Yu H., and Ren F., “A GPU-

Outperforming FPGA Accelerator Architecture

for Binary Convolutional Neural Networks,”

ACM Journal on Emerging Technologies in

Computing Systems, vol. 14, no. 2, pp. 1-16, 2018.

https://doi.org/10.1145/3154839

[19] Liang F., Tian Z., Dong M., Cheng S., Sun L., Li

H., Chen Y., and Zhang G., “Efficient Neural

Network Using Pointwise Convolution Kernels

with Linear Phase Constraint,” Neurocomputing,

vol. 423, no. 3, pp. 572-579, 2021.

https://doi.org/10.1016/j.neucom.2020.10.067

[20] Oguntimilehin A. and Balogun K., “Real-Time

Sign Language Fingerspelling Recognition Using

Convolutional Neural Network,” The

International Arab Journal of Information

Technology, vol. 21, no. 1, pp. 158-165, 2024.

https://doi.org/10.34028/iajit/21/1/14

[21] Peng H., Zhou S., Weitze S., Li J., and Islam S.,

Geng T., Li A., Zhang W., Song M., Xie M., Liu

H., and Ding C., “Binary Complex Neural

Network Acceleration on FPGA,” in Proceedings

of the IEEE 32nd International Conference on

Application-specific Systems, Architectures and

Processors, New Jersey, pp. 85-92, 2021.

DOI:10.1109/ASAP52443.2021.00021

[22] Pushparaj S. and Arumugam S., “Using 3D

Convolutional Neural Network in Surveillance

Videos for Recognizing Human,” The

International Arab Journal of Information

Technology, vol. 15, no. 4, pp. 693-700, 2018.

https://www.iajit.org/portal/PDF/July%202018,%

20No.%204/8768.pdf

[23] Salehinejad H. and Valaee S., “Edropout: Energy-

Based Dropout and Pruning of Deep Neural

Networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no.10,

pp. 5279-5292, 2022.

DOI:10.1109/TNNLS.2021.3069970

[24] Salim U., Dawwd S., and Ali F., “U-Net Cost

Analysis Using Roofline Model,” Al-Rafidain

Engineering Journal, vol. 27, no. 2, pp. 198-205,

2022. DOI: 10.33899/rengj.2022.133825.1172

[25] Sifre L. and Mallat S., Rigid-Motion Scattering for

Image Classification, Ph.D. Thesis, Ecole

Polytechnique, CMAP, 2014.

https://www.di.ens.fr/data/publications/papers/ph

d_sifre.pdf

[26] Wang P., He X., Chen Q., Cheng A., Liu Q., and

Cheng J., “Unsupervised Network Quantization

Via Fixed-Point Factorization,” IEEE

Transactions on Neural Networks and Learning

Systems, vol. 32, no. 6, pp. 2706-2720, 2021.

DOI:10.1109/TNNLS.2020.3007749

[27] Wang Y., Li K., Xu L., Wei Q., Wang F., and Chen

Y., “A Depthwise Separable Fully Convolutional

ResNet With ConvCRF for Semisupervised

Hyperspectral Image Classification,” IEEE

Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 14, pp.

4621-4632, 2021.

DOI:10.1109/JSTARS.2021.3073661

[28] Wu D., Zhang Y., Jia X., Tian L., Li T., Sui L., Xie

D., and Shan Y., “A High-Performance CNN

Processor Based on FPGA for MobileNets,” in

Proceedings of the 29th International Conference

on Field Programmable Logic and Applications,

Barcelona, pp. 136-143, 2019.

DOI:10.1109/FPL.2019.00030

[29] Yang G., Lei J., Fang Z., Li Y., Zhang J., and Xie

W., “HyBNN: Quantifying and Optimizing

Hardware Efficiency of Binary Neural Networks,”

ACM Transaction on Reconfigurable Technology

and Systems, vol. 1, no. 1, 2023.

https://www.sfu.ca/~zhenman/files/J16-FPT-

TRETS2023_HyBNN.pdf

[30] Zavalsız M., Alhajj S., Sailunaz K., Ozyer T., and

Alhajj R., “A Comparative Study of Different Pre-

Trained Deep Learning Models and Custom CNN

for Pancreatic Tumor Detection,” The

International Arab Journal of Information

Technology, vol. 20, no. 3A, pp. 515-526, 2023.

https://doi.org/10.34028/iajit/20/3A/9

https://doi.org/10.1007/978-981-15-3685-4
https://doi.org/10.1007/978-981-15-3685-4
https://arxiv.org/pdf/2304.12474.pdf
https://arxiv.org/pdf/1706.03059.pdf
https://doi.org/10.1587/transinf.2021PAP0010
https://doi.org/10.1145/3154839
https://www.researchgate.net/journal/Neurocomputing-0925-2312
https://doi.org/10.1016/j.neucom.2020.10.067
https://doi.org/10.34028/iajit/21/1/14
https://arxiv.org/search/cs?searchtype=author&query=Weitze,+S
https://doi.ieeecomputersociety.org/10.1109/ASAP52443.2021.00021
https://www.iajit.org/portal/PDF/July%202018,%20No.%204/8768.pdf
https://www.iajit.org/portal/PDF/July%202018,%20No.%204/8768.pdf
https://doi.org/10.1109/TNNLS.2021.3069970
https://doi.org/10.33899/rengj.2022.133825.1172
https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf
https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf
https://doi.org/10.1109/TNNLS.2020.3007749
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
https://doi.org/10.1109/JSTARS.2021.3073661
https://doi.org/10.1109/FPL.2019.00030
https://www.sfu.ca/~zhenman/files/J16-FPT-TRETS2023_HyBNN.pdf
https://www.sfu.ca/~zhenman/files/J16-FPT-TRETS2023_HyBNN.pdf
https://doi.org/10.34028/iajit/20/3A/9

FPGA based Flexible Implementation of Light Weight Inference on Deep ... 417

Shefa Dawwd is currently a

professor at the computer engineering

department-university of Mosul. He

received the B.Sc in Electronic and

Communication Engineering, M.Sc

and Ph.D in Computer Engineering.

He has authored more than 55

research papers and two book chapters. He has

completed the supervision of 12 M.Sc and Ph.D.

students. His research interest is in the Processing

Acceleration of 1D, 2D, and 3D signals, Parallel

Architecture, Real Time Applications, Deep Neural

Networks, and Heterogeneous Computing. He selected

as a chair, co-chair, and member in many scientific

committees of national and international conferences

and symposiums.

