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Abstract: Standard Convolution (StdConv) is the main technique used in the state of the art Deep Convolutional Neural 

Networks (DCNNs). Fewer computations are achieved if Depthwise Separable Convolution technique (SepConv) is used as an 

alternative. A crucial issue in many applications like smart cameras and autonomous vehicles where low latency is essential 

stems from deploying a lightweight and low cost inference models. An acceptable accuracy should be kept with tolerable 

computations and memory access load. A flexible architecture for different DCNN convolution types and models is proposed. 

The flexibility comes from the sharing of one memory access unit with different types of layers regardless of the selected kernel 

size, by multiplying each weight vector by local operators with variant aperture. Moreover, one depthwise computation unit can 

be used for both standard and pointwise layers. The learnable parameters are quantized to 8-bits fixed point representation and 

that gives very limited reduction of accuracy and a considerable reduction of the Field-Programmable Gate Array (FPGA) 

resources. To reduce processing time, inter layer parallel computations are performed. The experiment is conducted by using 

grey scale ORL database with shallow Convolutional Neural Network (CNN) and the colored Canadian Institute for Advanced 

Research 10 classes (CIFAR-10) database with DCNN, and a comparable accuracies of 93% and 85.7% are achieved 

respectively using very low cost of Spartan 3E and moderate cost of zynq FPGA platforms. 
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1. Introduction 

The shallow Convolutional Neural Network (CNN) is 

usually used to classify image in an efficient 

performance. Rather than using traditional image 

processing techniques, CNN can process raw images or 

video frames in a productive way. When Deep 

Convolutional Neural Network (DCNN) is used, the 

performance in specific object recognition tasks 

sometime achieve the level of human [8]. The DCNN is 

proved to be an efficient choice to process image and 

video for different applications such as sign language 

recognition [20], character recognition [2], medical 

diagnosis [30], video surveillance [22], and etc. 

However, the better efficiency and performance comes 

at the expense of high computations and memory 

requirements. In most of embedded platforms or edge 

devices, where resources for computing, memory 

storage, and energy are constrained, DCNN is difficult 

to be implemented unless an efficient data and 

processing management is followed. To reduce the 

implementation cost, and preserve the parameters 

accuracy, the training is often offloaded using powerful 

computers provided with high performance multicore 

Central Processing Unit (CPU) and Graphics Processing 

Units (GPUs).While light inference model can only be 

embedded in the edge devices (such as mobile devices).  

 
An abstract inference model can then be used to match 

the application with devices of restricted size and 

latency. 

This abstractness is usually achieved by two way: 

dimensionality reduction and parameters compression. 

Dimensionality reduction is the process of reducing the 

number of features in a dataset while retaining as much 

information as possible. This can be done to reduce the 

complexity of a model, improve the performance of a 

learning algorithm, or make it easier to visualize the 

data. On the other hand, parameters compression is used 

to compress the model parameters as long as accuracy 

effect is negligible. A considerable saving in cost is 

achieved by compressing of the pre-trained network 

using quantization [26] and pruning [23]. The 

quantization is used to reduce the word length gradually 

and the pruning is used to optimize the model by 

eliminating the weight connections or nodes that are 

close to zero form the model. 

With DCNN of dozens or even close to a hundred of 

layers, using the above techniques are not sufficient to 

save cost effectively. Thus, the researchers searched for 

other mechanisms including dealing with the problem 

mathematically. One of the most active solutions in 

reducing the mathematical computations is the use of 

different type of convolution like SepConv [1, 19], 
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where the Standard Convolution (StdConv) process is 

divided into two phases: depthwise and pointwise 

convolution. The intermediate results from depthwise to 

pointwise are stored temporarily in buffers [1]. 

Reducing the required number of computations can 

positively reflects to the time taken to perform the task, 

which in turn reduce the total latency. The MobileNet 

deep model [13] primarily uses SepConv and deals with 

latency and size optimization. However, if the network 

is already small, the SepConv may fail to properly learn 

during training due to the compactness of its parameters. 

This leads to accuracy degradation in many cases and 

makes the StdConv is preferable. The early versions of 

LeNet, AlexNet, Visual Geometry Group (VGG) and 

deep Residual Network (ResNet) models use StdConv 

type. On the other hand, some works take advantage of 

the favourable characteristics of both convolution types, 

for example, the ResNet model proposed in [27] is 

modified and uses full SepConv layers in its residual 

network. 

In this paper, a low cost model that can be used in 

both of the mentioned convolution types and can 

address the reduction and compression issues is 

proposed. The proposed technique can be flexibly used 

for both convolution schemes StdConv and SepConv for 

small and large network sizes. The rest of paper is 

organized as follows: Section 2 presents a state-of-the-

art design and implementation of DCNN models 

followed by problem statement which introduced in 

section 3. In section 4 a brief background of DCNN and 

its mathematical representation is introduced. The 

details of SepConv vs. StdConv are described in section 

5, while the training methodology and the hardware 

architectural design are presented in sections 6 and 7 

respectively. The experimental results are shown and 

discussed in section 8. Finally, most important 

conclusions and future works are summarized in 

sections 9 and 10 respectively. 

2. Related Works 

Two phases are involved in training a neural network: 

forward or inference phase and backward parameters 

adjustment phase. Accelerating either of these two 

phases leads to accelerate the training or inference 

separately. Or one could say: when training is 

accelerated, the inference will be implicitly taken into 

account and vice versa. In many system, the inference 

model is connected with larger system and used as an 

accelerator for forward learning phase [17]. The 

flexibility offered by CPU and GPU makes them 

preferable to perform training compared to Application-

Specific Integrated Circuit (ASIC) or Field-

Programmable Gate Array (FPGA). The capacity of 

using CPU does not offer the enough computations to 

implement an efficient large DCNN model. The GPU 

that use different development frameworks can be a 

good candidate to perform efficient training or inference 

of DCNN models [24] regardless of the network size. 

The technology that could outperform GPU in terms of 

energy and speed efficiency is the ASIC and FPGA, but 

with no re-programming flexibility [10]. Although, the 

power and speed provided by ASIC is superior to 

FPGA, the configurability feature makes the latter more 

flexible. 

For lightweight CNNs, the SepConv is demonstrated 

to be very effective technique. An FPGA based 

MobileNet is the most famous example that use 

SepConv in its processing flow. Two dedicated 

computing engines for pointwise and depthwise 

convolutions are utilized in the work presented by Wu 

et al. [28] to train the MobileNet model on ZU2 and 

ZU9 MPSoC FPGAs. An inference FPGA based 

accelerator is implemented by Kuramochi and Nakahara 

[17] on Xilinx Alveo U50 FPGA platform. Since no 

direct dependencies are included among the DCNN 

layers, the pipeline techniques is efficiently used in their 

architecture. 

Also, efficient and light weight implementation of 

StdConv of DCNN have been a subject of intensive 

research. Hou and Chen [12] use OpenCL-based zynq7 

FPGA to improve the training of LeNet5. A good effect 

is achieved on term of efficiency and accuracy. Gilan et 

al. [9] accelerates the inference of AlexNet architecture 

using ZC706 FPGA evalution board. Their proposed 

architecture is fully configurable and flexible to perform 

different DCNN models. While Hadnagy et al. [11] 

deals with inference acceleration of LeNet model. To 

make a hardware friendlier, an optimization techniques 

that deals with reducing the word length size and 

pruning for AlexNet, VGG, ResNet and MobileNet is 

shown in the survey presented by Dhouibi et al. [7]. 

Also, a good review can be found in the survey of 

Dhilleswararao et al. [6] that discusses the description 

of specialized hardware based accelerators employed in 

training and/or inference of different DCNN models. 

According to the survey work [10], the most 

contribution (99%) of operations and weights in all 

DCNN models is found in the convolution and fully 

connected layers, while 1% contribution is left to the 

ReLU and pooling layers. So the acceleration focuses 

on the convolution and fully connected layers. In this 

paper, we only concentrate on the convolution layers 

acceleration and for simplicity, the kernel and feature 

map of fully connected layer is assumed to be of size 

1×1. A flexible depthwise separable processing unit 

based FPGA of reduced multiplications is designed for 

inference DCNN using either the SepConv or StdConv. 

3. Problem Statement 

As demonstrated in the preceding sections, various 

methods and architecture have been employed to 

minimize the expenses associated with DCNN. Yet, 

none of these approaches can effectively adapt to the 

diverse nature of deep models, extensive layers, 

https://ieeexplore.ieee.org/author/37085526197
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processing techniques, and memory access. This paper 

introduces a roadmap for designing and implementing 

DCNNs in a flexible manner, aiming for low costs and 

minimal or negligible degradation of accuracy, as 

elaborated in the subsequent sections. 

4. Deep Convolutional Neural Networks 

The CNN is a network of succeeded convolutional 

layers arranged in pyramid architecture (Figure 1). Each 

layer alternates between convolution and down-

sampling (pooling) layer. Each layer is represented by 

2D array of neurons. Simple features are extracted in the 

first layer(s), then the complexity (filter size) and 

abstractness of feature map are gradually increased from 

layer to layer. The layer's input resolution are decreased 

until a limited set of specified complex features are 

extracted in the final convolutional layer. Flattening 

is used to convert all the resultant 2D arrays of features 

in the final layer into a single long continuous linear 

vector. The flattened matrix is fed as input to the fully 

connected layer(s) for image/frame classification [14]. 

A DCNN nowadays can make use of hundreds or even 

thousands of layers. The number of layers does not 

strictly distinguish between shallow and DCNN. 

However, any architecture more than two or three layers 

can be considered as deep. Two main types of 

convolution are used in DCNN: StdConv and SepConv. 

The StdConv is used in early CNN and later DCNN. The 

following equation dictates the convolution operation in 

this type:  

, ,
Conv( , ) .

( , ) ( , , ) ( , , ), ,

K L M
W y W y

i j k l m i k j l mk l m


 
 

where W denotes to the weight of filter k of layer l in 

channel m convolves with y in spatial position i and j. 

Taking into account the transfer function, the final 

output of Equation (1) passes to a selected transfer 

function. The Rectified Linear Unit transfer function 

(ReLU) is used in DCNN to overcome the vanishing 

gradient problem, allowing models to learn faster and 

perform better performance. The max pooling is the 

transfer function of down sampling layers. However, in 

last fully connected layer, softmax transfer function is 

used for multiclass classification. 

 
Figure 1. Two layers CNN structure. 

5. Depthwise Separable Convolution 

To reduce the intensive computations in deeply 

convolutional layers, the SepConv is performed. This 

technique is introduced in [25] by breaking down the 

Standard Convolution (StdConv) into two separated 

process: a depthwise convolutional followed by a 

pointwise 1×1 convolutional (Figure 2). The SepConv 

can be performed in three steps as follows in Equations 

(2), (3), and (4) respectively [16]:  

PointConv( , ) .
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M
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SepConv( , , ) PointConv ( , DepthConv ( , ))( , ) ( , ) ( , )Z W y Z W yi j i j i j  

where ◦ denotes to the element wise products. Z, W are 

the pointwise and depthwise weight matrices 

respectively.  

The reduction of computations can be achieved by a 

computations comparison between the StdConv using 

Equation (1) with separable convolution that uses 

Equation (4). Suppose K filters of kernel dimension 

dk×dk of F pixels applied to input of channel M, each 

channel has Dm×Dm receptive fields, the dimension of 

each receptive field usually equals to the filter kernel 

dimension. Then the computations that use Equation (1) 

are:  

dk×dk×M×K×Dm×Dm 

The total computations that use Equation (4) are the 

addition results of depthwise (left) and pointwise (right) 

convolutions when stride factor (s) equals to 1: 

dk×dk×M×Dm×Dm+M×K×Dm×Dm 

A reduction ratio in computations can be achieved by 

expressing convolution as a two-step process of filtering 

and combining: 

 
1 1

2

d × d × M × D × D + M × K × D × D    m m m mk k

d × d × M × K × D × D  K dm mk k k

   

If 3×3 filter kernel is used as MobileNet, an 8 to 9 times 

less computations can be achieved by using Depthwise 

Separable Convolution (SepConv) vs. standard one. As 

shown in Equation (6) and Figure 2, as filter size (K) 

becomes larger, the pointwise computations will be 

dominant. According to Equation (3), the pointwise part 

of Equation (6) is a combination of Multiply 

Accumulate Operations (MACs). 

6. Training the DCNN 

The fundamental difference in training the CNN with 

training DCNN is that, rather than using consequent 

layer-to-layer learning, an end-to-end learning approach 

is used to train the DCNN using supervised back 

propagation algorithm. 

The training exploit the precision provided by 

floating point based calculations that implemented on 

high performance CPU with GPU. Besides that, in 
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SepConv, to keep the spatial interaction between 

channels and inter-channel correlations, the depthwise 

and pointwise convolution are used respectively to 

adjust the layer's parameters. The SepConv is used in 

inference for resource constrained devices. In this paper, 

leveraging the strength of both types of convolution is 

achieved: the compactness of SepConvs and the 

accuracy of ordinary convolutions. 

 
a) StdConv. 

 
b) SepConv. 

Figure 2. Convolution types. 

7. Hardware Inference of Deep 

Convolutional Neural Networks 

Due to the high precision and accuracy requirements in 

updating parameters of DCNN, floating point 

calculations are used in learning. However, according to 

the limitations imposed of the hardware resources, a 

quantized fixed point calculations are used in inference. 

First, the hardware description and architecture of 

SepConv is presented, then the same hardware can be 

modified to be used for StdConv. 

7.1. Memory Access Optimization 

The input image/channel is typically stored in frame 

buffer in a sequential manner. However, because the 

two dimensional nature of the image, the adjacent pixels 

may not be located at adjacent addresses. Then the 

caching schemes may not effectively speed up or reduce 

the number of memory accesses. Unless an efficient 

addressing strategy is used, fast and direct access to a 

particular pixel becomes difficult. The DCNN use data 

in an infrequently and a non-sequential fashion. Thus, 

and according to work presented in [4], using window 

registers with First In First Out (FIFO) buffers approach 

can be a suitable solution to address the above 

mentioned issues (Figure 3). In this approach apart from 

the size of window (kernel size) and input channel, the 

chennel is fed through the window instead of feeding the 

window across the chennel, due to using of FIFOs.  

The input chennel of size Dm×Dm pixels and the 

window of dk×dk pixels require dk×dk registers and dk -1 

of FIFOs each of Dm-dk locations. The only one pixel 

width bits is required as a bandwidth between the 

memory and register buffers. The up and down striding 

become very simple, no matter the size of the input 

channel or kernel. Each processing element can access 

each register individually. Also, the restriction of I/O 

memory port is released and multiple block element can 

access the register buffer in parallel. In other word, the 

benefit of using the above optimized memory access is 

speeding up the possible I/O bound computations that 

performed afterhand. 

 
a) kernel size 5x5. 

 
b) kernel size 3x3. 

 
c) kernel size 1x1. 

Figure 3. 2D memory access for input channel of Dm×Dm pixel and 

different kernel sizes. 

From the above figure, one can see that different 

hardware is required when kernel size changes. To use 

the same architecture and avoid changing the hardware 

with different types of layers. The idea of using central 

apertere to deal with image reciptive field that is used in 

our previos work [3] can be employed here but with 

hardware implementation. The weights can be 

manipulated and multiplied with local operators for 

border of zeros and a central aperture of one(s) (Figure 

4). Now the same depthwise processing unit of 5×5 

basic convolutional kernel size can be used for another 
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convolutional layer such as for 3×3 kernel size or in 

pointwise layers and in fully connected layer for kernel 

size of 1×1. 

   
a) Kernel size 5x5. b) Kenel size 3x3. c) Kernel size 1x1. 

Figure 4. Local operators used in 5×5 registers buffers and employed 

in different kernel size. 

For example, if the hardware is fixed to 3×3 register 

buffers for depthwise phase, the same hardware can be 

used in pointwise phase. If the local operator matrix is 

assumed to be w(i,j), where i and j are the row and column 

indexes respectively, then we can represent the center 

pixel (w(2,2)) as Zk weight and all border pixels (w(1,1) to 

w(1,3), w(2,1),w(2,3), and w(3,1) to w(3,3)) are zeros. 

Since the outer borders of the 3×3 MAC is multiplied 

by zeros, then no accumulation is performed. The 

central pixel of Iidx is only multiplied by Zk. That is 

equivalent of pointwise multiplication of 1×1 window. 

Thus, no need to change the available hardware used for 

depthwise convolution that shown in the middle part of 

Figure 3 to implement the pointwise convolution (no 

need to use the specific hardware that shown in the 

Figure 3-c). 

7.2. Hardware Inference of Depthwise 

Separable Convolution 

According to the available hardware resources, 2D array 

of multipliers is used to multiply each depthwise 

weights vector with channel receptive field (Figure 5-a). 

To avoid redundant memory access for every 

overlapping receptive field in input channel, and to 

make data reusing, the memory optimization technique 

is employed. Now, in every clock cycle, one receptive 

field of 3×3 kernel size is available and all of its pixels 

can be accessed in parallel. The output of 2D array is 

connected to adder tree to achieve MAC operations. The 

adder tree output is multiplied with pointwise weight 

associated with this channel. These components are 

grouped together to form the depthwise processing unit. 

Now each channel only requires one multiplication to 

process the pointwise part of the separable convolution. 

By scanning all the channel receptive fields, one 

depthwise channel map is produced. If enough hardware 

resource are available, multiple depthwise channel 

operations can be achieved in parallel by using multiple 

depthwise processing units (Figure 5-b). Each resulted 

map is stored in temporal buffer. Then a pointwise 

calculation for kernel size of 1×1 is performed by 

sequentially multiplying each map's pixel by a 1×1 

pointwise kernel (Zk) to produce each of the k output 

map. Algorithm (1) show the hardware procedure to 

implement the SepConv. 

Algorithm 1: Depthwise Separable Convolution 

Input stride s; Wm , ∀ m∈ {1,…,M}; Zk , ∀ k∈ {1,…,K}; Iidx , 
∀idx∈{1,…, Dm

2} 

Output reduction(+:yk(i,j)), ∀ i∈ {1,…,Dm},∀ j∈ {1,…,Dm} 

Initialization  

parallel for m=1….M  do 

    for idx=1,…..,Dm
2 step s do 

          ym(i ,j)←(∑Wm . Im,idx)     

end 

 

end                   

for k =1….K  do 

    for m =1….M  do 

        for idx=1,…..,Dm
2 do 

             yk(i,j)+ ←  ym(i,j). Zk 

        end 

    end 

end 

 
a) Architecture of depthwise processing unit. 

 
b) Channel wise parallelism using multiple processing units. 

Figure 5. Hardware Implementation of SepConv. 

7.3. Hardware Inference of Standard 

Convolution 

Simple modification to the depthwise processing unit 

shown in Figure 5-a) can be performed to implement the 

StdConv (Figure 6). However, the same channel wise 

parallelism can be used for both types of convolution. 

The only difference is in the access of different weight 

vectors each for a specified kernel (k). 

In Figure 6, one can see that the first modification is 

the use of another index (k) that attached with the weight 

matric. The attached index refers to the different weight 

vector used for each iteration (see Figure 2-a) and 

Equation (1)). The StdConv operation flow is described 

in Algorithm (2). The second modification is the delete 

of pointwise weight matrix. Hence that the channel wise 
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and point wise convolution are fused and be used to 

combine the output of each channel. 

Algorithm 2: Procedure Standard Convolution 

Input stride s; Wmk , ∀ m∈ {1,…,M},∀ k∈ {1,…,K}; Iidx , 
∀idx∈{1,…, Dm

2} 

Output reduction(+:yk(i,j)), ∀ i∈ {1,…,Dm}, ∀ j∈ {1,…,Dm}  

Initialization  

for k =1…..K do 

         parallel for m=1….M  do{ 

                for idx=1,…..,Dm2 step s do 

                     ym(i ,j)←(∑Wmk . Im,idx)  

                      yk(i,j)+ ← ym(i,j) 

                end 

         end } 

end 

 
Figure 6. Architecture of depthwise processing unit used to 

implement the StdConv. 

8. Results and Discussions 

The performance of Most DCNNs is benchmarked for 

image classification. Thus, this application is 

considered in this paper. The ORL database for faces 

classification (32×32 pixel's image) are used in training 

a shallow DCNN of three convolutional layers and one 

fully connected layer. The number of filter taps (K) are 

4, 8, and 16 for 1st, 2nd, and 3rd layers respectively, and 

the filters kernel size is 3×3. Multiple networks with 

different specifications and parameters are proposed. 

These networks are completely built and trained from 

scratch using software models running in Matlab 

R2020a. Table 1 shows the specifications analysis of the 

designed DCNNs using StdConv. 

Table 1. Specification analysis of DCNN using StdConv(dk×dk: 
3×3), s=1. 

Layers 
Feature 

maps 
Learnable # param #MAC 

Input 32×32×1    
*SC1 34×34×4 weights: 3×3×1×4, bias: 1×1×4 40 36864 

Pool1 17×17×4    

SC2 19×19×8 weights: 3×3×4×8, bias: 1×1×8 296 83232 

Pool2 9×9×8    

SC3 11×11×16 
weights: 3×3×8×16,bias: 

1×1×16 
1168 93312 

Pool3 5×5×16    

FC 1×1×40 weights: 40×400,bias: 40×1 16040 16040 

Total   17544 229448 

*SC denotes to StdConv. 

While the SepConv analysis is shown in Table 2. The 

weight sharing property is not used in fully connected 

layers. Therefor most of storage requirements are 

conducted to the parameters of fully connected layers 

rather than convolution layers. 

Table 2. Specification analysis of DCNN using SepConv (dk×dk: 
3×3), s=1. 

Layers 
Feature 

maps 
Learnable # param #MAC 

Input 32×32×1    

DWC1** 32×32×1 weights: 3×3,bias: 1×1 10 9216 

SC1** 32×32×4 weights: 1×1×1×4,bias: 1×1×4 8 4096 

Pool1 16×16×4    

DWC2 16×16×1 weights: 3×3×4,bias: 1×1 37 9216 

SC2 16×16×8 weights: 1×1×1×8,bias: 1×1×8 16 2048 

Pool2 8×8×8    

DWC3 8×8×1 weights: 3×3×8,bias: 1×1 73 4608 

SC3 8×8×18 weights: 1×1×1×18,bias: 1×1 36 1152 

Pool3 4×4×18    

FC 1×1×40 weights: 40×288,bias: 40×1 11560 11560 

Total   11740 41896 

**DWC denotes to depthwise convolution while SC denotes to pointwise 
convolution (1×1 StdConv). 

By excluding the parameters of the fully connected 

layer, one can see from the above tables that a 

considerable reduction in parameters from 1476 to 147 

of the convolution layers are achieved. About 6× 

reduction of MAC operations are achieved to implement 

the SepConv (5th columns in Tables 2 and 3). Another 

comparison between StdConv and SepConv is shown in 

Table 3. The positive effects of memory size when 

reducing word length representation of data from 

floating point to fixed point of 8 bits and 6 bits 

respectively is shown in this table. Also, an enormous 

reduction of required memory when using SepConv vs. 

StdConv with only 2% scarification in accuracy can also 

be seen in the last two columns of Table 3. 

Table 3. Effect of quantization on StdConv vs SepConv on memory 

and accuracy. 

Type of 

Conv. 
Prec 

Memory 

(KB) 

Reduction in 

memory % 

(Compared to 

fp32) 

Accur.% 

Reduction in 

accur % 

(Compared to 

fp32) 

StdConv 

fp32 5.76 --- 95 --- 

fix8 1.44 75 95 0% 

fix6 1.1 80 92 3% 

SepConv 

fp32 0.57 --- 93 --- 

fix8 0.14 75 93 0% 

fix6 0.11 80 91 2% 

Due to random initialization of weights that imposed 

by software training model, the presented accuracy is 

measured as the average of three simulation runs for 

70% of the total dataset that used in training and the rest 

for testing. In contrast, for a network of reduced 

capacity as the proposed in SepConv based model, 

slower convergence (160 iterations vs. 145 iterations) 

may arise as the model tries to generalize better (see 

Figure 7). 
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a) Accuracy and loss convergence of StdConv. 

  

b) Accuracy and loss convergence of SepConv. 

Figure 7. Accuracy and loss convergence. 

Another test for the proposed hardware is done for 

large DCNN and dataset. The CIFAR-10 dataset which 

contains 6000 colored images of 10 classes of 32×32 

pixels is used (5000 images for training and the 

remaining for testing). The MobileNet v1 model that 

based on SepConv is investigated in the experiment. 

The specification analysis is shown in Table 4. 

Table 4. Specification analysis of MobileNet v1. 

Operator Input×M s k n** #MAC MOP 

SC 3×3 32×32×3 1 32 - 884736 0.9 

DWC 3×3 
32×32×32 

1 32 
1 

29491 0.3 

SC 1 ×1 1 64 2097152 2 

DWC 3×3 
32×32×64 

2 64 
1 

147456 0.1 

SC 1 ×1 1 128 2097152 2 

DWC 3×3 
16×16×128 

1 128 
2 

294912*2 0.3 

SC 1 ×1 1 128 4194304*2 8 

DWC 3×3 
16×16×128 

2 128 
1 

294912 0.3 

SC 1 ×1 1 256 8388608 8 

DWC 3×3 
8×8×256 

1 256 
3 

147456*3 0.45 

SC 1 ×1 1 256 4194304*3 4 

Pool 8×8×256 - 256 3 221184 0.2 

FC 1×1×256 - 10 - 2560 0.0025 

Softmax 1×1×10 - - - - - 

** n denotes to repeated identical layer. 

A reduction of word length leads to an enormous 

reduction on the utilized FPGA area. Relatively two low 

cost Xilinx FPGA models: Spartan3E (XC3S500) and 

zynq(XC7Z020) platforms are used to test the 

performance of the proposed model. Table 5 shows the 

utilization and performance comparisons among them. 

The parallelism factor and the frequency depend on the 

type and size of the selected FPGA platform. A 

maximum of 8 depthwise processing unit is used in very 

low cost FPGA (Spartan3E) vs. 18 (and more) is used in 

zynq. As shown in Table 6, a low throughput is achieved 

using Spartan3E even if it operates on maximum 

frequency. While well performance can be achieved 

when moderate FPGA cost (zynq) is used. This 

performance can further be increased when increasing 

the parallelism factor due to the availability of 

redundant FPGA area (14% utilization is only 

consumed). Exploiting the Digital Signal Processing 

(DSP48E1S) embedded resources can improve the 

performance and make the rest of the FPGA resources 

available for further operations. Also, a comparison 

with different models and platforms in terms of 

accuracy, resource utilization, and performance, is 

depicted in Table 6. One can see that an acceptable 

accuracy and performance is achieved with lower 

utilization area when ultra-low cost FPGA platform 

(Spartan 3E: XC3S500) and moderate platform (zynq: 

XC7Z020) are used respectively. Also, although the 

resulted frame rate does not exceed what is achieved in 

some of these works, but the reduction in the utilized 

resources outperforms all the presented state of the art 

works. 

Table 5. Utilization summary and performance for Xilinx FPGA. 

Design Parall. DSP LUT FF Slice 
freq 

(MHz) 

Spartan 

3E 
8 0 7384 (80%) 4552 (48%) 4112 (88%) 80 

Zynq 18 0 14364 (27%) 9720 (9%) 14364 (27%) 185 

Zynq 18 180 (81%) 7380 (14%) 7200 (6%) 7380 (14%) 196 

Table 6. Overall accuracy, resource utilization, and performance 
comparison for CIFAR-10 classification for different platforms. 

 Model 
Accuracy

% 
DSP FF LUT GOPS FPS platform 

[5] MobileNetv1 79.92 - - - - 125 
GPU Jetson 

Xavier 

[15] ResNet20 91 1054 - 181440 21.12 344 
Xilinx 

ZCU104 

[18] BCNN 87.8 1096 70769 342126 7663 1000 Vertix 7 

[21] 
BCNN-based 

ResNet18 
92.14 465 112347 161306 - 4938 

FPGA 

Alevo 

U280 

[29] 
HyBNN-

U5D3 
89.8 205 99074 51927 - 4302 

AMD-

Xilinx 

Ultra96-V2 

Ours MobileNetv1 85.7 0 4552 ↓ 7384 ↓ 11 170 Spartan3E 

Ours MobileNetv1 85.7 0 9720 ↓ 14364 ↓ 60 909 zynq 

Ours MobileNetv1 85.7 81 ↓ 7200 ↓ 7380 ↓ 64 1000 
zynq with 

DSP 
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9. Conclusions 

A road map to implement a DCNN of complex 

computations and memory demands in low cost FPGA 

is presented. Efficient compact hardware techniques are 

used to achieve this goal: One depthwise unit is 

alternatively used either in StdConv or SepConv. To 

minimize the access to the memory where the input 

channel data are stored, receptive fields’ pixels are 

caches to local registers. Multiplying weight with local 

operators of variant aperture add more flexibility to the 

proposed architecture and makes it available to be used 

with different types of layers. The designed processor 

can process multiple convolutional channels in parallel. 

A considerable reduction of memory storage and FPGA 

resources are achieved due to quantizing the weights to 

8-bits length of word. All these techniques led to 

achieve a very low consumption of hardware resources. 

The experiments that conducted on face recognition 

application show that an acceptable performance 

whether in the resulted accuracy or in the FPGA cost is 

achieved. The architecture can be flexibly reconfigured 

to be used for different DCNN models that used either 

StdConv or SepConv techniques. 

10. Future Works 

Further reduction on cost can be achieved using the 

pruning optimization technique. The weight, node, 

channel and filter pruning can reduce the DCNN 

parameters and memory demand and consequently 

reduce the overall inference time. This technique can be 

analyzed, then another tradeoff between cost and 

accuracy can be achieved. Also further investigation of 

the proposed methodology and architecture for either 

StdConv or SepConv can be applied to more datasets 

and deep models, and the results can then be compared 

and discussed. 
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