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Abstract: Fault detection and classification in photovoltaic arrays are critical for increasing grid reliability and reducing the 

power losses. This paper assesses twelve machine learning classifiers for their effectiveness in detecting and classifying faults 

in Photovoltaic (PV) systems. Multiple validation methods were used for the algorithm evaluation, including K-fold, stratified 

K-fold, leave-one-out, and random split cross-validation approaches to ensure robust performance measures. The applied 

selection criterion of the top performing classifier are the accuracy, precision, recall, and computing efficiency. The utilized 

dataset, comprising samples with various fault kinds under diverse environmental conditions, received thorough preprocessing 

to enhance model training and assure generalizability. A large dataset of roughly 10,000 samples was utilized in this research 

for the model training and to run multiple random tests on new and unseen data. This dataset provides a fair representation of 

multiple fault types such as the healthy, Line to Line (LL), Line to Ground (LG), Partial Shading (PS), and Complete Shading 

faults (CS). The data preprocessing comprised normalization, handling of missing values by taking the average, and applying 

multiple statical analysis approaches to reduce the size of the features matrix and to improve the dependability of the model's 

predictions across varying operational circumstances. The results illustrate the best performance utilizing the optimized version 

of the Random Forest classifier, reaching an average fault detection accuracy of 100% and fault classification accuracy of 

94.7%, the hyperparameters of the classifier was optimized using Random Search Optimization algorithm(RSO). 

Keywords: Classifier, diagnosis, fault classification, fault detection, machine learning, optimization, photovoltaic, pv, random 

forest. 
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1. Introduction 

Since the oil crisis of the 1970s, the solar Photovoltaic 

(PV) industry has developed rapidly, especially in recent 

years. The additions to renewable capacity expanded by 

more than 45% in 2020 over 2019 and broke another 

record. According to the International Energy Agency 

(IEA), the high rate of renewable energy capacity 

expansions is reaching 280 GW in 2022, with solar PV 

counts for 60% of this rise [24]. This growth exceeds the 

annual capacity record of 2017-2019 by more than 50%, 

implying that renewables are accounting for 90% of all 

global power capacity expansions in 2022, a rate  

 
comparable to that of the semiconductor and computer 

industries. For the next several decades, the PV industry 

can maintain a double-digit annual growth. According 

to the solar roadmap published by the IEA [25], PV 

power will supply around 11% of worldwide energy 

consumption by 2050 and reduce 2.3 Gigatons (Gt) of 

CO2 emissions per year. 

However, PV power generation is affected by many 

factors that disturb the energy production process. These 

factors include the condition of the PV arrays and their 

wire connections, environmental conditions such as 

temperature and solar radiation, and faults that may 

occur during operation [39, 40]. Faults are one of the 
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major issues that increase grid susceptibility and power 

losses. Such faults can arise for a variety of reasons, 

including module faults at the manufacturing or 

installation level, faults on PV systems caused by 

external factors, and faults caused by internal 

component failures.  

To have a better understanding, PV faults might 

happen in the DC or AC stages, which form the power 

flow chain. DC stage faults can arise because of 

different reasons, including partial shading, hotspots, 

bypass diode failure, module cracks, maximum power 

point algorithm failure, and converter switching failure 

at the DC-DC converter level [26]. On the other hand, 

AC stage faults are the sort of faults that happen on the 

distribution side of the PV system, and they generally 

consist of inverter faults such as the open circuit 

switches, the short circuit switches, filter failure, and 

gating failure in the inverter, among other things [33]. 

These faults may cause incoherency in the PV system 

operation, the aging of PV arrays, and a lowering of the 

system efficiency [33, 39]. However, among these 

faults, Line-Line (LL) and Line-Ground (LG) faults 

have a disastrous impact on the entire system and are 

known to be the primary causes of catastrophic failures 

such as electrical fires [2, 38]. 

On the other hand, PV system installations 

worldwide adhere to the protection standards outlined in 

the National Electric Code (NEC) or the International 

Electro-Technical Commission (IEC) by employing 

Over-Current Protection Devices (OCPDs) and Ground 

Fault Protection Devices (GFPDs). Usually, OCPDs, 

such as fuses, and GFPDs are the conventional fault 

detection and protection methods that are used to protect 

PV components from large fault currents. However, it 

has been shown that OCPD and GFPD may not be able 

to clear or detect certain faults in PV arrays due to the 

non-linear characteristics of PV arrays, high fault 

impedances, PV current-limiting nature, PV grounding 

schemes, low irradiance conditions, or MPPT of PV 

inverters [15, 22, 39]. Such situations bring “blind 

spots” in the protection schemes, resulting in reduced 

system efficiency, accelerated system aging, DC arcs, 

and fire hazards such as the reported cases in [16]. 

Therefore, advances in the detection and classification 

of faults in the PV facilitate an improvement in the 

system's efficiency through a reduction in the 

downtimes and power losses realized by the early and 

accurate diagnosis of faults. Improved detection of 

faults increases safety by preventing potential hazards 

associated with undetected faults, like electrical fires or 

damage to equipment. Moreover, early identification of 

faults means a decrease in maintenance cost and an 

extension of the operating lifespan of the equipment. 

These combined advances enable steady and more 

efficient energy output, thus requiring more accurate 

fault detection and diagnostics to maintain high-

performance PV systems. The paper using advanced ML 

techniques to develop a robust framework for fault 

detection and classification. The specifications of 

overcoming the limitations of traditional methods are 

discussed in this paper. With its ability to draw upon a 

comprehensive dataset, including all types of samples 

for different kinds of faults under various environmental 

conditions, the goal is to increase the reliability and 

efficiency in the diagnosis of PV systems. The structure 

of this paper will form a base for a detailed discussion 

on the types of faults, the shortcomings associated with 

conventional methods of detection, and how one could 

apply the principles of machine learning to address 

them. The following sections will explain the 

methodology, data preparation, model training, and 

validation and conclude with the results of the 

comparative analysis of twelve ML classifiers. 

 The following subsections discuss the literature of 

faults in PV systems and the utilized fault monitoring 

techniques. 

1.1. Faults in PV Arrays 

Among the different types of faults that occurred during 

the operation of the PV array, Line-to-Line (LL), Line-

to-Ground (LG), and Arc faults were reported to be 

catastrophic. These faults might result in deep and long-

term failures, as well as the risk of electric fires. This 

section will discuss in detail the expected reasons for 

these faults, their effect on the electrical behavior of the 

PV array, and the challenges in detecting such faults. 

Figure 1 shows the different types of PV array faults. 

 

Figure 1. Schematic diagram of various types of faults in the PV 

array. 

1.1.1. Line to Line Faults (LL) 

This fault type, shown in Figure 1 (F1.a, and F1.b), is 

caused by an unintentional connection between two 

points in the same string or different strings, which will 

result in a low impedance current path between the 

connected points or create a reverse current through the 

affected strings. The amplitude of the fault is determined 

by the voltage difference between the connection points 

before the fault, where the fault current is directly 
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proportional to the potential difference between the two 

points. The OCPDs (fuses) are generally used to clear 

such types of faults once the fault current exceeds 156% 

of the string current, which, in turn, will be able to melt 

the OCPD and result in an open circuit [3]. However, 

under low irradiation, such as in cloudy weather or 

during the day-to-night or night-to-day transition, the 

amount of the faulty string current will be insufficient to 

melt the OCPD, and the fault may remain undetected. 

Furthermore, the inverter's MPPT may shift the 

operating point to a different position on the I–V curve, 

causing the fault current amplitude to drop. In addition, 

while the fault current is smaller than the melting 

threshold of the OCPD, the fault will remain undetected 

for an indefinite time, the MPPT will relocate the MPP 

to another position, and the PV array will appear to be 

operating normally but with less output power. In 

addition, the behavior of the PV array will be closer to 

the healthy case with the increase in the LL fault 

resistance [59]. 

On the other hand, the blocking diodes can be 

optionally utilized in the same PV configuration. 

Blocking diodes prevent the current from flowing in the 

reverse direction, which, in turn, will block the fault 

current (reverse current), i.e., it will not be detected by 

the OCPD. This behavior will increase the PV power [6] 

and will make the fault detection task challenging. 

However, any failure in the blocking diodes with the 

presence of undetected LL fault is dangerous, and it 

might cause an electric fire due to the high fault current 

[2, 38]. Moreover, the blocking diodes with the presence 

of the low fault resistance will cause different voltage 

peaks on the I-V characteristics curve, which would 

make it very similar to the I-V curve of the open circuit 

and partial shading faults [39]. 

1.1.2. Line to Ground Faults (LG) 

Usually, the PV arrays include different non-Current-

Carrying (NCC) parts during normal operation, such as 

the mounting racks, enclosures, module frames, etc. 

However, due to an accidental short circuit such as a 

contact between the junction box and the ground or 

water corrosion, etc., an electrical connection might be 

established between the NCC and the Current-Carrying 

Conductors (CCC) [20], which is known as the ground 

fault, shown in Figure 1 (F2.a, F2.b).  

Fault location and fault impedance are the main 

factors determining the magnitude of the fault current. 

Normally, the low fault impedance will generate a high 

fault current, which will be enough to trigger the Ground 

Fault Protection Device (GFPD), so the system will be 

protected. However, not all ground faults have low 

impedance, in which the GFPD will not be able to detect 

the fault due to the low amount of generated fault 

current, and the inverter will not be disconnected [48]. 

This fault type might result in fire hazards because of 

the formed DC arc if there is no proper way to clear the 

fault.  

There are two types of ground faults in PV arrays: the 

lower ground fault (Figure1, F2.a) and the upper ground 

fault (Figure 1, F2.b). The lower ground fault is in the 

last two modules in the string, so there will be a 

difference in voltage and uneven flow of current 

between the faulty and normal strings. The MPP of the 

array will be shifted gradually because of the fault, 

where the MPPT will detect the drop in the output power 

and shift the MPP by reducing the array voltage to 

optimize the output power. However, in the case of a 

lower ground fault, there will be no back-fed current to 

the faulty string which will be mismatched with the 

other strings and no longer be able to operate at its real 

MPP [33]. On the other hand, the upper ground fault 

happened in the upper PV modules, which will make a 

high fault current at low or no impedance, the faulty 

module will have a larger current than the other modules 

because of the fault current and the back-fed current. In 

this situation, the GFPD could be triggered and clear the 

faulty string by disconnecting the faulty path, so the 

negative CCC will not be grounded anymore. However, 

when the GFPD is unable to detect the fault, then the 

inverter’s MPPT will shift the MPP to reduce the power 

loss and fault current by reducing the array voltage. 

Moreover, high back-fed current in the faulty module 

might damage the cables and modules. The faulty string 

in this fault type will operate as a load at the beginning 

of the fault, then the MPPT will help in finding a new 

MPP for the string, which might generate power at a 

lower point.  

1.1.3. Partial Shading Faults (PS) 

Partial shading occurs in the PV arrays due to various 

reasons, such as the movement of clouds, dust, trees, 

snow, and more. This fault type causes an output power 

loss and might create a local heating problem (hotspot), 

which will affect the system’s safety and reliability, and 

might damage the PV generator at high temperatures 

(more than 150 °C) [6, 9]. Usually, the PV systems are 

protected against the hotspot effect by utilizing the 

bypass diodes, which are connected in parallel with the 

PV module at opposite polarity [16]. The MPP of the PV 

array will be reduced with the increase in the shading 

percentage, and different local and global MPP peaks 

will appear based on the number and percentage of the 

shaded modules. The inverter’s MPPT will push the 

system to continue working on the new global peak to 

guarantee more output power by reducing the output 

voltage, which might affect the inverter’s lifetime. In 

addition, at complete shading of the PV array (CS), there 

will be no local peaks, but the whole output power will 

be reduced. 

1.2. PV Fault Monitoring Techniques  

According to the literature, fault monitoring techniques 

can be divided into two categories: 
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1.2.1. Signal Processing-Based Methods 

These methods are based on sensing real-time data such 

as temperature and irradiance, and measuring the PV 

system data such as voltage, current, and power. These 

methods utilize a predefined threshold to help in 

comparing the measured data with the expected results 

[4, 5, 39, 54, 56], or by generating the faulty signal by 

further analysis of the system output using various 

signal processing techniques such as wavelet 

transformation and Fourier transformation, etc., [19, 27, 

37]. The advantage of this approach is its quick 

diagnosis and low computation time. On the other hand, 

the drawbacks include the need for some of them to 

update the threshold regularly to mitigate the influence 

of array aging, while others have a sophisticated 

structure to alter the threshold adaptively. Furthermore, 

many threshold approaches can only identify a limited 

number of PV fault types. In addition, models need to 

be updated constantly to account for changes in the way 

the system works due to seasonal changes or short-term 

environmental effects like low irradiance or different 

shading conditions, as in [13], where the diagnostics 

accuracy reached 98%. 

1.2.2. Artificial Intelligence-Based Methods and 

Hybrid Techniques 

Machine learning methods that demonstrated high fault 

detection accuracy under different fault types can be 

trained to differentiate between normal and faulty 

operating conditions by finding distinctive features or 

signatures in the signals [6, 8]. These methods use a 

large data sample to create fault detection and diagnosis 

models, taking advantage of current computer 

technology advancements. While signal processing 

methods rely on a pre-defined mathematical technique 

to analyze and interpret signals in PV systems, they may 

not be optimal for detecting faults under varying 

operating conditions or in complex systems. Machine 

learning-based algorithms, on the other hand, can learn 

from data and adapt to changing conditions, making 

them better suited for detecting failures in complex and 

dynamic systems like PV systems. Machine learning 

algorithms can examine massive datasets of PV system 

signals to detect trends and anomalies that indicate 

faults. Machine learning-based solutions also have the 

advantage of detecting previously unknown faults that 

may lack a clear signature or trend. By training a 

machine learning model on a collection of labeled data, 

the model can learn to recognize different kinds of 

faults. Furthermore, machine learning models can be 

tailored to detect faults with high accuracy while 

limiting false alarms, which can cause expensive 

maintenance and downtime, and lowering the overall 

efficiency of the system. The following Table 1 

summarizes the main differences between both 

techniques in PV fault detection and classification [19, 

20, 22, 35]. 

Table 1. Comparison of machine learning and signal processing 
techniques for fault detection and classification in PV arrays. 

Criteria Machine learning techniques Signal processing techniques 

Fault 
detection 

accuracy 

High accuracy, especially with 
complex and nonlinear 

relationships. 

Effective for detecting periodic 
and transient faults but may 

struggle with complex signals. 

Adaptability 
to changing 

conditions 

High adaptability; can learn 
and adjust to new patterns 

with sufficient training data.  

Limited adaptability; requires 
manual threshold adjustments 

for new conditions. 

Computing 

complexity 

Can be computationally 
intensive, especially for deep 

learning models. 

Generally low computational 
complexity, suitable for real-

time processing. 

Simplicity of 

use 

Requires significant expertise 
for model training, tuning, and 

deployment.  

Relatively simple to implement, 
but effectiveness depends on 

accurate threshold settings. 

Data 

requirements 

Requires large, high-quality 
datasets for training and 

validation. 

Can work with smaller datasets 
but may require detailed domain 

knowledge for setup. 

Real-time 

processing 

Challenging due to high 

computational demands; often 
requires powerful hardware.  

Suited for real-time applications 

due to lower computational 
needs. 

Maintenance 

Requires regular updates and 

retraining to incorporate new 
data and fault types. 

Minimal maintenance, primarily 

involves updating thresholds as 
needed. 

To date, various efforts have utilized ML techniques 

to build reliable and robust algorithms to overcome 

signal processing approach shortages. Artificial 

intelligence-based approaches such as probabilistic 

neural networks [1], random forest learning [14], 

stagewise additive modeling employing a multiclass 

exponential loss function based on a classification and 

regression tree [23], conventional neural networks [8, 

28], and Genetic algorithm [32], were utilized to 

diagnose faults in PV systems. Despite this, most of 

these studies were unable to offer an accurate model for 

recognizing fault patterns as they did not pay enough 

attention to the LL and LG faults at low mismatch or 

high impedance levels. However, some research works 

have attempted to address the stated issues using various 

machine learning classifiers, such as decision trees [61], 

kernel-based extreme learning machine algorithms [15], 

graph-based semi-supervised learning algorithms [58], 

fuzzy inference systems [51], and the two-stage Support 

Vector Machine (SVM) [52]. Harrou et al. [21] 

proposed a data-base procedure for monitoring the 

operating performance of a PV system using kernel-

based machine learning methods for fault detection, 

specifically Support Vector Regression (SVR) and 

Gaussian Process Regression (GPR). The procedures 

only require the availability of system measurements 

collected via sensors. The developed monitoring scheme 

based on kernel density estimation successfully detects 

and identifies different faults in a 20 MWp grid-

connected PV system. GPR-based monitoring 

procedures achieved better detection performance than 

SVRs for monitoring PV systems, and GPR-based KDE 

monitoring schemes outperform SVR-based schemes in 

all cases. Moreover, Taghezouit et al. [44] have 

suggested a monitoring method for photovoltaic 

systems based on parametric models and double 

exponentially smoothing. The method used empirical 

models to obtain residuals and detect faults, and a 

double exponentially smoothing scheme to sense faults 
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by examining the generated residuals. The flexibility of 

the approach is extended with a non-parametric 

detection threshold computed via kernel density 

estimation. The method is tested on several fault 

scenarios and shown to successfully trace faults using 

real data from a 9.54KWp photovoltaic system. Same 

Taghezouit et al. [43] have proposed a multivariate 

statistical monitoring of photovoltaic plant operation. 

This research proposed a simple and efficient 

monitoring methodology for detecting anomalies in 

PhotoVoltaic (PV) systems using a principal component 

analysis model and multivariate monitoring schemes. 

The research work aimed to design assumption-free 

principal component analysis-based schemes and 

proposed a nonparametric approach using kernel density 

estimation to set thresholds for decision statistics. Real 

measurements from an actual 9.54 KWP grid-connected 

PV system were used to illustrate the performance of the 

proposed approach, and six case studies were 

investigated to evaluate the fault detection capabilities 

of the proposed approach. The results highlighted the 

efficiency of the proposed method in monitoring a PV 

system and its greater flexibility when using non-

parametric detection thresholds. Moreover, Tyagi et al. 

[47] proposed a method to detect the faults in PV arrays 

by predicting the output power of the PV modules by 

three machine learning models, the average accuracy of 

the proposed method was around 85%.  

Nonetheless, these fault detection models have a 

multitude of challenges, such as the need for a large 

dataset in the learning process, low detection accuracy 

for faults with a low-percentage mismatch or high 

impedance, the unreliability in some of these methods 

because of the use of only one classifier, the absence of 

hyperparameters optimization methods that remarkably 

affect the classifier performance, the proposed PCA-

based anomaly detection approaches were suitable for 

one scale (time scale) and may not be suited for 

detecting anomalies at several scales, and the lack of 

comparison approaches to select the best classifier. 

Lately, Eskandari et al. [18], published a ML-based 

detection and classification method using a hierarchical 

classification technique. Different mismatches and 

resistance levels were applied, and the data was tested 

using three types of classifiers, namely: LR, NB, and 

SVM. However, this study was interested in detecting 

the LL and LG faults under different mismatch levels 

and temperature conditions, despite the partial shading 

effect. Different levels of classification were used, 

which caused the proposed algorithm to take even 

longer. Badr et al. [6] have suggested a two stage fault 

detection and diagnostics algorithm to detect and 

diagnose four types of faults in the PV system under 

different shading levels and temperature conditions, 

namely: LL, MPP, open circuit, and Arc faults. The 

proposed algorithm has compared the behavior of three 

ML classifiers: DT, KNN, and SVM. In addition, the 

optimal classifiers’ parameters were chosen based on 

the Bayesian optimization method. This study has 

developed two modules, fault detection, and fault 

diagnosis modules. The required parameters by the 

developed method include irradiance, temperature, 

voltage, and current. The accuracy of the proposed 

model was 100% for fault detection and 89.84% for the 

fault diagnosis models based on the SVM classifier 

utilizing the Cubic Kernel.  

From the previous studies, it can be noticed that the 

two-stage models are consuming more time in the 

detection and classification processes, in addition to the 

need for a method to differentiate between the faults 

caused by LL and LG faults. Therefore, this paper 

proposes a new and accurate machine learning-based 

fault detection and diagnosis tool. The proposed tool 

will be utilized to detect different major faults, namely: 

LL, LG, partial shading, and complete shading faults 

under different mismatches, fault resistances, and 

shading levels.  

Moreover, when a fault occurs in a PV system, the 

current will deviate from its expected behavior. By 

analyzing the current signals, it is possible to detect 

these deviations and identify the location and type of 

fault. Voltage and power signals are also important in 

fault detection, but they can be affected by factors such 

as temperature and weather conditions, or installation 

conditions [31], which can make it more difficult to 

identify faults. Furthermore, in PV systems, the current 

is typically measured using a shunt resistor or a Hall 

effect sensor, which is relatively simple and cost-

effective compared to measuring voltage and power. 

This makes current measurements a practical and 

reliable way to detect faults in PV systems. Therefore, 

the PV array current will be the only required input to 

the developed model. On the other hand, and to speed 

up the algorithm's response time, different statistical 

calculations will be applied on the model’s input, which 

will in turn extract the distinguishing features for each 

fault type under the applied environmental and technical 

conditions. The contribution of this work is to develop a 

novel and accurate machine learning-based-fault 

detection and diagnosis tool. The proposed tool can 

detect major faults in photovoltaic arrays, including LL, 

LG, Complete shading, and partial shading faults under 

different environmental and technical conditions. The 

model utilizing only the PV array current through 

various statistical calculations to extract the 

distinguishing features for each fault type, those features 

will be the input of the developed ML model instead of 

the current signal itself, which will speed up the 

proposed algorithm. Twelve machine learning 

classifiers will be applied, and the hyperparameters of 

the top-performing classifier will be optimized to 

provide the most efficient and precise results. The 

proposed tool offers significant potential for improving 

the performance and reliability of PV systems. The main 

contributions of this paper are summarized as follows:  
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 Studying the behavior of the PV arrays under 

different faults affecting the DC side of the PV 

system, including LL, LG, and partial shading faults 

with different irradiance, temperature, and mismatch 

conditions. This study will show the possible causes 

of these faults and their effect on the system’s 

performance. The complete shading that might 

happen temporarily because of clouds or snow will 

be distinguished from partial shading that happens 

permanently. 

 Develop a supervised machine learning model with 

only one data input, the array current, the developed 

model will test twelve different types of ML 

classifiers to choose the most efficient and top-

performing classifier in terms of speed and accuracy. 

The utilized classifiers include K-Nearest Neighbor 

classifier (KNN); Random Forest classifier (RF); 

Support Vector Machine classifier (SVM); Naive 

Bayes classifier (NB); Decision Tree classifier (DT); 

Gradient Boosting Classifier (GBC); Multi-layer 

Perceptron classifier (MLP); Gaussian Process 

classifier (GPC), Extra Trees Classifier (ETC), 

AdaBoost Classifier, Quadratic Discriminant 

Analysis (QDA), and stochastic gradient descent 

(SGD) classifier. 

 Optimize the accuracy and the processing time of the 

selected classifier by integrating the Random Search 

Optimization algorithm (RSO) to tune the 

hyperparameters of the top performing classifier, 

Random Forest Classifier (RFC), as it will be shown 

later. 

It is worth mentioning that the proposed fault detection 

and classification technique is based on several critical 

assumptions and limitations that would limit the real-life 

applicability; the assumptions of this research are briefly 

described next: 

 Firstly, it assumes a high-quality input signal free 

from significant noise or interference. Outliers or 

missing data can have substantial effects on the 

performance of machine learning models. Incomplete 

or noisy datasets might severely downgrade ML 

model performance and increase unreliable results in 

fault detection and diagnosis. 

 Besides, machine learning models need to be 

adequately trained with appropriately large and 

diverse datasets so that different fault conditions and 

normal operations can be correctly captured.  

  It is assuming that all the PV modules in the array 

are homogenous and working under similar 

conditions of irradiation, temperature, thermal stress, 

and humidity, it is assumed that they will degrade 

similarly over time. 

 Most ML models assume that different types of faults 

are independent-when one fault happens, it will not 

dramatically influence the detection of another.  

The limitations in the developed model can be 

summarized as follows:  

 The need for updating the ML models continuously 

to incorporate new scenarios of faults that may arise. 

During training, ML models are trained based on 

historical data, which, in general, represents known 

fault conditions. If the PV system undergoes a 

specific type of fault that the model has not seen in 

the training dataset, it could fail to identify correctly. 

 Machine learning models are susceptible to 

hyperparameters; therefore, they need to be very well 

tuned and optimized. 

 ML-based models’ efficiency is dependent on the 

quality of data preprocessing and feature extraction, 

where the selection of the most relevant attributes 

representing characteristics of the fault is highly 

affecting the accuracy of the model. 

This paper is organized as follows: Section 2 presents 

the modeling of the employed PV array and its 

characteristics. Section 3 explains different PV faults 

and investigates their effect on the PV array. Section 4 

explains the methods used for data acquisition and pre-

processing. In section 5, the developed ML-based fault 

detection and classification algorithm is presented. It 

also discusses different types of ML classifiers, their 

hyperparameters, and the integrated optimization 

technique. Simulation results and model evaluation are 

presented in section 6. The conclusions and 

recommendations are in section 7.  

2. Modeling of PV Array 

2.1. PV Cell Equivalent Circuit 

Because of the non-linear I-V characteristics of the solar 

cells, modeling them as a constant voltage or constant 

current source is not appropriate. To describe the 

electrical characteristics of solar cells, the one-diode and 

double-diode models are the most common. Figure 2 

illustrates the analogous circuits for the one-diode and 

the double-diode models [31, 59]. However, the one-

diode solar cell model has several advantages over the 

double-diode model, including the high accuracy for the 

steady-state and fault analysis at the system level, the 

availability of the data for most PV modules on the 

market, and the rapid responses in the simulation 

environment [36]. Therefore, the one-diode model will 

be used in this research to build the PV array. By 

incorporating the one-diode model into the simulations, 

realistic current-voltage (I-V) curves that reflect the 

actual performance of the PV system can be generated. 

These simulated I-V curves serve as the basis for 

creating the statistical characteristics necessary for 

training and validating the machine learning-based fault 

detection and classification algorithms [17].  
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a) the one-diode model. 

 

b) the double-diode model. 

Figure 2. PV cell equivalent circuit. 

2.2. Mathematical Representation 

The one-diode model and its I-V characteristic can be 

described by the following Equations [37, 56]: 

𝐼𝑃𝑉 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ 

where the Iph is the photocurrent (A), Id is the diode 

current (A), and Ish is the shunt current (A) and it can be 

represented as follows:  

𝐼𝑝ℎ = [𝐼𝑠𝑐,𝑆𝑇𝐶𝐾𝐼(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓)]
𝐺

𝐺𝑟𝑒𝑓
 

𝐼𝑑 = 𝐼𝑜 (𝑒
(
𝑉𝑑+𝐼𝑅𝑠
𝑎𝑉𝑡

)
− 1) 

𝐼𝑠ℎ =
𝑉𝑃𝑉 + 𝑅𝑠𝐼𝑃𝑉

𝑅𝑠ℎ
 

where Io is the diode reverse saturation current, and Vd 

is the diode voltage. Both parameters are represented in 

Equations (5) and (6).  

𝐼𝑜 =
𝐼𝑠𝑐,𝑆𝑇𝐶 + 𝐾𝐼(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓)

𝑒
(
𝑉𝑜𝑐,𝑇𝐶+𝐾𝑣(𝑇𝑐𝑒𝑙𝑙−𝑇𝑟𝑒𝑓)

𝑎𝑣𝑡
)
− 1

 

𝑉𝑑 = 𝑉𝑃𝑉 + 𝑅𝑠𝐼𝑃𝑉) 

where G (W/m2) is the solar irradiation, Gref (W/m2) is 

the illumination reference=1000W/m2, Tcell (oK) is the 

cell temperature, Tref (
oK) is the reference temperature, 

KI (A/oK) is the short-circuit current temperature, (a) is 

the diode ideality factor, Rs (Ω) is the PV series 

resistance, Rsh (Ω) is the PV shunt resistance, and Vt is 

the thermal voltage. However, the diode ideality factor 

represents the divergence of the diode from ideal 

behavior. It affects the recombination processes in PV 

cells, hence affects the I-V properties. The variation in 

the ideality factor can change the curvature of the I-V 

curve, and without being well accommodated into the 

model, making it harder to distinguish normal and 

different faulty conditions if not properly accounted in 

the model [41]. On the other hand, thermal voltage 

affects the voltage drop across the diode and is directly 

related to the temperature of the PV cells. Since the I-V 

curve moves with temperature and thermal voltage 

changes, the shifts can hide or mask the fault conditions, 

and that complicates the fault detection process [1]. 

In contrast, the solar module is several solar cells 

connected in series and parallel to provide the required 

output voltage and power. The characteristic equation for 

the equivalent circuit of the photovoltaic module 

arranged in Ns series and Np parallel cells is described as 

in the following Equation [45]:  

𝐼𝑀 = 𝑁𝑝𝐼𝑝ℎ −𝑁𝑝𝐼𝑜

(

 
 
 
 

𝑒(

 
 
𝑉𝑀

𝑁𝑠
+
𝐼𝑀𝑅𝑠
𝑁𝑝

𝐴𝑉𝑡

)

 
 

− 1

)

 
 
 
 

−

𝑁𝑝𝑉
𝑀

𝑁𝑠
+ 𝐼𝑀𝑅𝑠

𝑅𝑠ℎ
 

To first model the PV system under different operating 

conditions covering normal and faulty scenarios 

including Line-to-Line (LL) faults, Line-to-Ground 

(LG) faults, and partial shading faults, a full Simulink 

model with two parallel strings and three modules per 

string was created, as shown in Figure 3. 

Moreover, identical PV system setups and fault 

situations were applied on the built model using PSIMTM 

software to verify the SIMULINK model, as shown in 

Figure 4. Both models were exposed to the same 

environmental and technical parameters, such as the 

temperature and irradiance. The main metrics compared 

were the output power, current, and voltage at different 

PV system configurations. To assess the consistency 

between the two models, their output datasets were 

compared. As a result, high consistency was found in the 

Simulink and PSIM dataset analysis, with relatively 

little variations explained by simulation artefacts and 

model-specific subtleties. A sample results of the I-V 

curve from both models of the healthy setup under STC 

is shown in Figure 5, while the P-V curve generated by 

the same models is shown in Figure 6.  

On the other hand, to guarantee the precision and 

robustness of the developed model, the simulation data 

was cross-checked with the datasheets provided by 

different PV manufacturers. The comparison criteria are 

by matching the simulation parameters such as the 

Maximum Power Point (MPP), open-circuit voltage 

(Voc), short-circuit current (Isc), and temperature 

coefficients with the actual values listed in the 

datasheets. Through this comparison, the reliability of 

the developed model’s results was increased by ensuring 

that the simulation model faithfully captured the real-

world behavior of the PV components across a variety 

of environmental variables and fault situations. An 

example of simulation results for the PV module 

(KC130GT) is shown in Figure 7. 

 

 

 

 

 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Figure 3. SIMULINK model of the PV array. 

 

 

Figure 4. PSIM model of the PV array.

 

Figure 5. I-V curve of the designed model using MATLAB and 

PSIM. 

 

Figure 6. P-V curve of the designed model using MATLAB and 

PSIM. 

 

Figure 7. The I-V curve of the simulated module (KC130GT) under 

different irradiance levels. 

3. Data Acquisitions and Processing 

Machine learning will be used to address the above 

faults, and since the input and output are both known, 

the supervised machine learning technique will be 

utilized, where the output current of the PV array will be 

the model’s input, without the need for any other 

attributes or live measurements. A set of statistical 

milestones will be extracted from the current signature, 

which, in comparison with the PV voltage and power, 

can be easily measured, including the important features 

that are the best representatives of the PV situation. 

3.1. PV Data Generation 

Under different environmental and electric conditions, 

various cases will be simulated, as shown in Table 2. 

The designed PV model generates three types of row 

data, namely, current, voltage, and power. Moreover, 

wide range of variable parameters were considered, such 

as temperature, irradiance, number of shaded modules, 

and different levels of fault resistance to ensure the 

consistency of the proposed model with the variable 

environmental conditions shown in Table 2. It can be 

noticed from the table that the situations when the PV 

array experiences no fault are the “healthy and complete 

shading situations”, where the data are extracted at a 

varying temperature between 5°C and 50°C with 5°C 

increment, while the irradiance is varying between 

200W/m2 and 1000W/m2 with 200W/m2 increment. In 

addition, the generated data for different faults is 
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simulated under the same conditions of temperature and 

irradiance. Moreover, the LL and LG faults are studied 

under varying resistance between pure short circuit (0Ω) 

and 50Ω with 10Ω increment. In the partial shading 

case, a random distribution of the shading levels is 

considered, including a combination of one, two, and 

three partially shaded modules. However, it was noticed 

that the PV current carries the most important 

information about the health of the PV system. Part of 

the generated data will be used for ML training and 

testing, while the other part will be kept for algorithm 

validation and testing at a later stage. The collected PV 

current datasets are reformulated so that each dataset 

will be a combination of two parts; the attribute, which 

comprises the classification features, and the label 

(class), which is the status or category of the collected 

PV current. This class will be identified as a healthy 

condition or any other fault type from the faults of focus 

in this research. 

Table 2. Training data generation under different environmental and 

technical conditions. 

PV 

Status 

Temperature 

(°C) 
Irradiance (W/m2) 

Fault 

Resistance 

(Ω) 

Remarks 

Healthy [5:5:50] 1000 NA - 

Cloud 

shading 
[5:5:50] [200:200:800] NA - 

Partial 

shading 
[5:5:50] 

850 for all modules 

except modules 1.1 

(300) and 2.2 (500), 

2.3 (350) 

NA 

This case to be runs for 

module 1.1 alone, then 

1.1 and 2.2, then 1.1, 2.2 

and 2.3 together 

LL fault [5:10:50] [400:200:1000] [0:10:50] - 

LG fault [5:10:50] [400:200:1000] [0:10:50] - 

The utilized methodology in generating the current 

data for different situations of the PV array is shown in 

Figure 8, where RfLL, and RfLG are the LL and LG fault 

resistances, respectively. The flag “i” represents the 

column number where the newly generated current row 

will be saved. The outcome of this step will be the input 

to the data preprocessing and statistical analysis phase. 

As shown in the flowchart, the simulation parameters 

are first initialized. These parameters include 

temperature (T), irradiance (Ir), resistance values for 

line-to-line (RfLL) and line-to-ground (RfLG) faults, and 

a counter (i). The initial temperature is 5°C, the initial 

irradiance is 200 W/m², and both RfLL and RfLG are 

configured to 10Ω. The Simulation retrieves the PV 

current and stores it in the ith column of its dataset and 

increment the counter i. The simulation would then 

check whether the temperature is over 50°C or the 

irradiance is over 1000W/m², where they will be resetted 

to their initial conditions and the resistance values for 

the LL and LG faults will be increased by 10Ω. If the 

resistance value for RfLL exceeds 50Ω, the LL fault is 

cleared by setting RfLL to infinity, and similarly for the 

LG fault with RfLG. Once all faults are applied, the 

simulation proceeds to apply partial shading faults 

(PS_1M, PS_2M, PS_3M) and Complete Shading faults 

(CS), generating data for each fault situation. 

 

Figure 8. Data generation flowchart. 

3.2. Features Extraction 

The main goal of data processing and features extraction 

is to convert the raw data into a numerical feature 

without losing any important data from the original 

dataset. Different statistical calculations will be applied 

to the collected data to get the milestone features and 

reduce the data size, which in turn will speed up the 

algorithm and better visualize the PV faults. In addition, 

converting the row current into a statistical scalar will 

help in getting a meaningful input format and 

substituting any missing instance of data. Therefore, the 

model’s input will be the statistical features of each 

current signature instead of the current row itself. The 

applied statistical calculations include the maximum 

value, minimum Value, mean value, standard deviation, 

Root Mean Square (RMS), skewness, kurtosis, crest 

factor, and form factor. 

1) Peak value (Xp) 

The peak value of the current vector x including the 

observations xi(i=1to N) in a dataset made up of N scalar 

observations, is defined by:  

  𝑥𝑝    = max|𝑥𝑖| 

2) Minimum value  

The minimum value of the current vector x including the 

observations xi(i=1to N) in a dataset made up of N scalar 

observations, is defined by:  

𝑥𝑚𝑖𝑛    = 𝑚𝑖𝑛|𝑥𝑖| 

 

 

(8) 

(9) 
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3) Mean value (µ) 

The mean value of the current vector x including the 
observations xi(i=1to N) in a dataset made up of N scalar 
observations, is defined by:  

µ   =  
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

4) Standard Deviation (STD) 

The STD of the current vector x, including the 

observations xi(i=1to N) in a dataset made up of N scalar 

observations, is defined by:  

 𝜎 =  √
1

𝑁 − 1
∑|𝑥𝑖 − µ|2
𝑁

𝑖=1

  

5) Root Mean Square (RMS) 

The RMS of the current vector x including the 

observations xi(i=1to N)  in a dataset made up of N scalar 

observations is defined by:  

𝑥𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

  

6) Kurtosis 

Which is a measurement tool to describe the difference in 

the current vector distribution from the normal 

distribution. The faults might increase the value of the 

kurtosis because of the increase in the number of outliers 

in the current vector. The Kurtosis of the current vector x 

including the observations xi(i=1to N) in a dataset made 

up of N scalar observations, is defined by: 

      𝑥𝑘𝑢𝑟𝑡 = 

1
𝑁
∑ (𝑥𝑖 − µ)4𝑁
𝑖=1

[
1
𝑁
∑ (𝑥𝑖 − µ)2𝑁
𝑖=1 ]

2 

7) Skewness  

A measurement for the asymmetry of current waveform. 

In general, faults might affect the symmetrical 

distribution of the signal, i.e., the level of skewness will 

be increased based on the fault size and type. The 

skewness of the current vector x including the 

observations xi(i=1to N) in a dataset made up of N scalar 

observations, is defined by [32]:  
 

      𝑥𝑠𝑘𝑒𝑤 = 

1
𝑁
∑ (𝑥𝑖 − µ)3𝑁
𝑖=1

[
1
𝑁
∑ (𝑥𝑖 − µ)2𝑁
𝑖=1 ]

3
2

  

8) Form factor 

Is the ratio between the RMS value and the average value 

of the output current, the form factor will give an accurate 

measurement for the RMS value of the sinusoidal 

waveform, especially if there is any distortion in the 

signal, such as the distortion caused by faults. The form 

factor of the current signal x including the observations 

xi(i=1to N) in a dataset made up of N scalar observations, 

is defined by:  

    𝑥𝑓𝑜𝑟𝑚 = 
√1
𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1

1
𝑁
∑ 𝑥𝑖
𝑁
𝑖=1

  

9) Crest factor 

Which is the ratio between the peak value of the current 
and its effective value. It is represented by dividing the 
peak value of the current row (xp) by its RMS. Faults 
generally appear as a change in the peak of the current 
signal before appearing in the energy, which is 
represented by the root mean square of the signal. The 
crest factor provides an early warning of the faults once 
they develop in the PV system. The crest factor of the 
current signal x including the observations xi(i=1to N) in 
a dataset made up of N scalar observations, is defined by:  

   𝑥𝑐𝑟𝑒𝑠𝑡 =  
𝑥𝑝

√1
𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1

  

 

 

Figure 9. Statistical features matrix generation. 
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The flowchart in Figure 9 depicts the process of 

constructing a statistical characteristics matrix from PV 

current data under various fault scenarios using the 

developed algorithm. Initially, temperature, irradiance, 

and fault conditions are applied to the PV array to 

simulate several operational scenarios, including normal 

(healthy) and faulty states. The PV array, working under 

these controlled conditions, generates the current data 

that captures the electrical characteristics of the system. 

This data is then formatted into columns with labels 

corresponding to the operational condition of the system 

being Healthy, Complete Shading (CS), Line-to-Line 

(LL) faults, Line-to-Ground (LG) faults, and Partial 

Shading (PS) with 1, 2, or 3 shaded modules (PS_1M, 

PS_2M, PS_3M). Each column of data is subsequently 

analyzed to extract its statistical properties, which include 

maximum, minimum, mean, standard deviation, and 

other metrics. These extracted statistical features for each 

instance are reformatted into a row format, where each 

row includes the fault label and the eight statistical 

values.  

This reformatting guarantees that the data is organized 

in a structured manner, simplifying subsequent process. 

4. Machine Learning Based Fault Detection 

and Classification Algorithm 

Machine learning is a sub-area of artificial intelligence; 

it involves taking automatic decisions about the class of 

the input data based on the learned knowledge from the 

provided training dataset. Each dataset includes two 

parts; the attribute, which is the feature of the instance 

that determines its properties or classification, and the 

label, or the class to which each dataset belongs [9, 46, 

60]. In this research, the attributes are collected from the 

statistical analysis of the PV current, which is labeled 

based on the fault type as “normal behavior” (Healthy), 

or any of the targeted fault types, namely, Complete 

Shading (CS), Line to Line fault (LL), Line to Ground 

fault (LG), and Partial Shading with one, two, or three 

shaded modules (PS_1M, PS_2M, and PS_3M, 

respectively). The datasets are arranged in the feature 

matrix of dimension 𝑑𝑥(𝑛 + 1), where d represents the 

sequence number of different fault cases under various 

temperature, irradiance, and fault resistance levels. 

While each instance of the training row data is annotated 

in the form {y_i, xi_1, xi_2, …, xi_n}, where yi is the 

category label, i ∈ [1,d], d represents the number of 

rows, n represents the number of the used statistical 

features as listed in the previous section, and (n+1) 

represents the complete row data including both label 

and statistical features (number of columns.  

In general, machine learning is categorized into three 

main categories: 

1. Supervised learning, which uses a labeled dataset 

for training. 

2. Unsupervised learning, which uses unlabeled 

dataset. 

3. Semi-supervised learning, which is a combination of 

the two types, i.e., using both labeled and unlabeled 

data for training. 

However, since this is a classification algorithm where 

input and output are both known, the supervised 

machine learning method will be used.  

On the other hand, to allow the algorithm to directly 

retrieve the most up-to-date data from the PV array and 

to ensure a precise and rapid detection and classification 

of faults, Figure 10 illustrates the proposed position of 

the developed algorithm into the DC side of the PV 

system. This position is critical as it will perform 

continuous monitoring of the PV current on a regular 

basis. Moreover, the algorithm undertakes different 

critical jobs to ensure the system's operating integrity. 

First, the pre-processing of the current data, including 

cleaning of the data and removing any noise or 

anomalies that can bias the analysis, ensuring 

consistency by normalizing the data, and interpolating 

missing values to preserve a complete dataset. Once the 

data is pre-processed, the algorithm starts with the 

statistical analysis. The results of the statistical analysis 

will represent the attributes of the ML model to identify 

the health of the PV system by using the ML 

classification processes. By using the algorithm at the 

DC side, it ensures that any PV fault can be recognized 

as soon it occurs, allowing for rapid operations, 

therefore, the suggested method and position is crucial 

for ensuring the reliability and efficiency of the PV 

system for real-time analysis. 

 

Figure 10. Overview of the proposed fault detection and 

classification tool position. 

However, one significant challenge in the proposed 

system is data acquisition, which requires high-quality, 

consistent data from reliable sensors mounted across the 

PV array. Ensuring data quality and limiting noise are 

crucial for accurate model performance. For model 

deployment, the integration of machine learning 

algorithms into existing PV monitoring systems 

demands scalable computer resources and real-time data 

processing capabilities. Strategies such as leveraging 

edge computing and cloud-based platforms can promote 



RSO based Optimization of Random Forest Classifier for Fault Detection and Classification ...                                             647 

 

efficient model deployment. Maintenance is another key 

feature, as the model needs regular updates and 

retraining to include new data and respond to 

developing fault circumstances. Implementing 

automatic maintenance methods and continuous 

monitoring systems can assist sustain the model's 

effectiveness over time. These concerns are critical for 

transferring from a theoretical framework to real, robust 

applications in PV systems. 

The following subsections explain the flow of the 

algorithm. 

4.1. Dataset Splitting and Cross Validation 

In ML, there are different splitting methods, such as the 

holdout, cross validation (K-fold), stratified cross 

validation (sK-fold), and Leave-One-Out Cross 

Validation (LOOCV). The holdout is the basic method 

of data splitting and model validation, where the dataset 

is divided into two sets: the training set, which is what 

the model is trained on, and the testing set, which is used 

to test the performance of the model with unseen data. 

The cross-validation method, on the other hand, is a 

statistical approach used to measure the overall 

accuracy of the model based on the random splitting of 

the dataset into “K” groups or “Folds”, where one of the 

groups utilized for testing the model, while other “K-1” 

groups are for training. The process will be repeated 

until all the groups are used as testing sets, which means 

it allows the model to be trained on several portions of 

the dataset [30]. 

Stratified cross validation is comparable to K-fold 

cross-validation with a few minor differences. This 

method is based on the stratification principle, which is 

the process of reorganizing data to ensure that each fold 

or group is a good representation of the entire dataset. It 

is one of the finest ways for dealing with bias and 

variation. The leave one out cross-validation method 

requires creating a model for each dataset with one 

datapoint reserved from each dataset. The model is 

trained on the remaining dataset, and the process is 

repeated for all datapoints in the dataset, which means 

all datapoints are used to test the model. It is a 

computationally costly process, which makes it 

inappropriate for a large dataset, but it yields an accurate 

and unbiased measure of model performance. 

In this research, the four types of data splitting and 

model validation methods will be tested to choose the 

best splitting method in terms of accuracy and speed 

(time). In the Hold-out method, the datasets will be 

distributed into 80% for training and 20% for testing. 

On the other hand, different folds will be tested in K-

fold and sK-fold cross validation methods ranging from 

2 to 13 folds, and the best-performing number of folds 

for each of them will be selected and compared with 

other methods. The LOOCV method will be tested since 

the developed model is using the statistical dataset as its 

input, which will not be as large as the original current 

row.  

Figure 11 represents the general flowchart of data 

splitting. The process begins with a chosen subset of the 

training data for each tree which is used to generate 

individual trees inside an ensemble approach, such as a 

Random Forest algorithm. The method examines if the 

stopping condition holds for each tree based on 

parameters such as maximum tree depth or a minimum 

number of samples necessary to divide a node. If the 

stopping condition is not met, the process then builds 

the next split. The method proceeds to calculate the 

prediction error, which measures the difference between 

the expected and actual outputs. The algorithm 

compares this error against a predefined threshold. If the 

error is below the threshold, the process finishes, 

indicating that the tree has reached adequate precision. 

If the error exceeds the threshold, the procedure 

continues, and further splits are examined to increase 

the tree's accuracy. Moreover, the algorithm calculates 

a quality metric (such as Gini impurity or information 

gain) for each potential split point to quantify how well 

the split separates the data into distinct classes. The 

optimal split point, which maximizes the separation of 

the data into homogenous classes, is then picked. By 

iterating through these processes, the decision tree is 

formed in a manner that optimizes the splits at each 

node, boosting the model's capacity to effectively 

categorize input. This methodology assures that the 

final model is both accurate and efficient in detecting 

and categorizing defects in PV systems, ultimately 

contributing to increased reliability and performance. 

  

Figure 11. Data splitting general flowchart. 

4.2. ML Training and Classification 

The process of determining the class or category of a 
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new dataset is known as classification. In this study, 

twelve machine learning classifiers will be applied to 

detect and classify PV faults. However, different 

classifiers’ configurations result in a new ML model. 

The utilized classifiers include KNN; Random Forest 

classifier (RF); SVM classifier; Naive Bayes classifier 

(NB); DT classifier; Gradient Boosting classifier 

(GBC); Multi-layer Perceptron classifier (MLP); 

Gaussian Process classifier (GPC), Extra Trees 

Classifier (ETC), AdaBoost Classifier, Quadratic 

Discriminant Analysis (QDA), and Stochastic Gradient 

Descent (SGD) classifier. Table 3 compares the twelve 

classifiers based on the pros, cons, average speed, and 

the processing time for each one of the classifiers. 

 

Figure 12. ML Classifier selection and optimization process. 

The flowchart shown in Figure 12 illustrates the 

selection and optimization of the top-performing 

classifier. The process is initiated by importing the 

statistical characteristics of the PV current (features 

matrix), a total of twelve ML classifiers are then 

implemented to single out three top performers. The 

classifiers are evaluated utilizing four cross-validation 

approaches: Hold-out, K-fold, stratified K-fold (sK-

fold), and Leave-One-Out (LOOV). The results of the 

cross-validation methods are compared to select the top-

performing approach. The parameters of the selected 

classifier are then optimized with the assistance of three 

optimization techniques: Bayesian optimization, 

random search optimization, and grid search 

optimization. The results are compared, and the best-

performing classifier is chosen. The Parameters of the 

optimized classifier are then used on new and unseen 

data. 

Based on the classification accuracy results that will 

be shown in the later section, RFC has shown the 

highest accuracy, therefore, its structure and 

hyperparameters are explained in detail, while an 

optimization algorithm will be integrated to improve the 

performance of the classifier for PV fault detection and 

classification, as in the following subsections. 

1) Random Forest Classifier (RFC) 

The RF algorithm, originally proposed by Breiman [11], 

it is a broad category encompassing ensemble 

approaches that utilize classifiers based on trees. RF 

constructs a significant quantity of decision trees 

employing bagging, a meta-algorithm employed to 

enhance classification and regression models based on 

their stability and accuracy in classification. These 

decision trees are built from a sub-dataset derived from 

a distinct initial training set by using two-thirds of the 

original dataset for training and one-third for testing [34, 

36]. The utilization of bagging techniques in machine 

learning models effectively mitigates variation and 

concurrently mitigates the risk of overfitting. The 

process involves the random selection of cases from the 

initial training dataset, while the bootstrap sets are 

utilized to build each of the decision trees in the Random 

Forest (RF) algorithm. Each tree classifier is referred to 

as a component predictor. The Random Forest 

algorithm determines its judgments by aggregating the 

votes of individual predictors for each class, thereafter, 

picking the class with the highest number of votes as the 

winner [50]. 

The fundamental concept underlying RF 

classification is a process known as bootstrap sampling 

[40], which is employed to extract k samples from the 

original training set. Each sample has the same capacity 

as the original training set. Subsequently, k Decision 

Tree (DT) models are constructed for each of the k 

samples, resulting in k classification outcomes. 

Ultimately, based on the outcomes of the k classification 

process, a decision is made to assign a final 

classification to each individual record using a voting 

mechanism. 
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Table 3. A Comparison between the twelve classifiers used for PV fault detection and classification. 

Model Description Pros Cons 
Average 

speed 

Processing 

time 

Rule-based models 

(Signal processing 

models) 

Uses a set of rules based 
on a pre-defined thresholds 

to detect faults 

Simple and easy to implement, 

low computational cost 

Limited accuracy, highly dependent 
on the quality of input data and expert 

knowledge 

Fast Low 

ANNs 

Uses a multi-layered 

neural network to detect 
faults 

High accuracy, can learn complex 

patterns in data, and can handle 
non-linear relationships 

Can be computationally expensive 

and requires large amounts of training 
data 

Slow High 

Fuzzy logic-based 

models 

Uses fuzzy sets to capture 
the imprecision and 

uncertainty in data 

Robust to noise and can handle 

uncertain and vague information 

Difficult to implement and requires 
expert knowledge to define fuzzy 

rules 

Fast Low 

DL models 

 

Uses multiple layers of 
artificial neural networks 

to extract features from 

data and detect faults 

High accuracy, can learn complex 

patterns in data, and can handle 
large datasets 

Requires significant computational 

resources and large amounts of 
training data 

Slow High 

SVM 

Uses a hyperplane to 

separate data into fault and 

non-fault classes 

High accuracy, can handle non-

linear data, and can work with 

small datasets 

Limited interpretability and high 
computational cost 

Moderate Moderate 

RF 

Uses an ensemble of 

decision trees to detect 
faults 

High accuracy, can handle 
missing data and noisy features, 

and can provide feature 

importance information 

Can be overfit with noisy data and 

requires careful parameter tuning 
Fast Low 

GBC 
Uses an ensemble of weak 

models to detect faults 

High accuracy, can handle 

missing data and noisy features, 

and can provide feature 
importance information 

Can be overfit with noisy data and 

requires careful parameter tuning 
Slow High 

KNN 
Uses the distance between 

data points to detect faults 

Simple and easy to implement, 

can handle noisy data 

Computationally expensive for large 

datasets and can be sensitive to 
irrelevant features 

Fast 
Low to 

Moderate 

DT Classifier 

Uses a tree-like model of 

decisions and their 
possible consequences to 

detect faults 

Easy to interpret, can handle non-

linear data and can provide 

feature importance information 

Can be sensitive to noisy data and can 
be overfit with complex models 

Fast Low 

LR Classifiers 

Uses a linear model to 
estimate the probability of 

a fault occurring 

Simple and interpretable, can 
work with small datasets and can 

handle binary classification tasks 

Limited to linear relationships 

between features 
Fast Low 

GPC 

Uses Bayesian inference to 

model the underlying 
function and estimate the 

probability of a fault 

occurring 

Provides uncertainty estimates 
and can handle non-linear 

relationships between features 

Computationally expensive and 

requires careful parameter tuning 
Slow High 

NB classifier 

Uses probabilistic models 

based on Bayes' theorem 

to detect faults 

Simple and fast, can work with 

small datasets and handle 

irrelevant features 

Assumes independence between 

features and can be sensitive to 

outliers 

Fast Low 

MLP Classifier 

Uses a multi-layered 

artificial neural network to 

detect faults 

High accuracy, can handle non-

linear relationships and large 

datasets 

Requires significant computational 

resources and large amounts of 

training data 

Slow High 

ET classifier 

Uses an ensemble of 
decision trees to detect 

faults 

High accuracy, can handle 

missing data and noisy features, 

and can provide feature 

importance information 

Can be computationally expensive 

and requires careful parameter tuning 
Fast Low 

 

On the other hand, the sampling process in RF 

algorithm is random and involves replacement, resulting 

in certain duplication of samples within the training 

subset. This duplication is intended to prevent decision 

trees in the forest from generating local optimal 

solutions. Therefore, RF utilizes the bagging technique, 

which eliminates the need for an additional validation 

step. The internal validation is conducted by utilizing 

the testing samples, which consist of one-third of the 

original dataset. The samples are commonly referred to 

as the Out of Bag (OOB) samples. Therefore, the 

validation errors that arise from RF are commonly 

referred to as out of bag errors. A reduced OOB error 

rate is indicative of superior performance by the RF 

model. In general, errors of the RF algorithm typically 

revolve around two primary factors, the correlation 

between any pair of decision trees inside the forest, and 

the individual effectiveness of each decision tree. An 

increase in the association among trees within a RF 

might result in a more intricate structure, hence 

potentially leading to an elevation in the OOB error rate. 

On the other hand, as the strength of each decision tree 

increases, there is a corresponding decrease in the OOB 

error rate. Hence, it is imperative to optimize the RF 

parameters to achieve optimal strength and minimize 

correlation.  

Fortunately, it has been shown that adjusting the 

overall number of decision trees in the forest and the 

number of random features utilized to establish the 

optimal split at each node can enhance the performance 

of Random Forests. In general, the conventional 

practice is to set the number of random features in the 
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initial RF algorithm as the square root of the entire 

number of features. The selection of the number of trees 

in the forest can be determined by considering the OOB 

error rate. 

Moreover, different parameters need to be adjusted to 

construct an accurate model, such as the maximum 

number of samples, which is controls the sub-sample 

size; the number of estimators, which determines the 

number of trees; the criteria used to measure the quality 

of splitting, such as the “entropy” and “gini” functions; 

the maximum depth of the tree, which is the minimum 

sample split size; and the minimum number of samples 

required to split the internal node. In this research, a 

range of values will be assigned for each parameter to 

select the optimal parameters based on the classifier 

accuracy and processing time. The parameters’ range 

includes various number of estimators and the “entropy” 

and “gini” criteria, while the Random Search 

Optimization algorithm (RSO) will be integrated to 

achieve the optimal value for each parameter.  

2) Hyperparameters Optimization (HPO) 

The performance of the ML classifier is highly affected 

by its hyperparameters that are utilized in the training 

phase, such as the number of estimators, splitting 

criteria, splitting size, and much more. The manual 

isolating and tuning of some hyperparameters 

regardless of the effect of others will end up with a 

suboptimal solution, whereas all parameters are 

dependent on each other. Furthermore, the appropriate 

hyperparameters might differ tremendously amongst 

datasets. Therefore, automating the process of tuning 

these parameters would lessen the need for human effort 

while improving the performance of the proposed 

model. The process of hyperparameter optimization is 

based on finding a global D-dimensional optimum 

hyperparameter setting (x) that will return the best 

performance of the validation dataset while minimizing 

the validation error with learned weights (w) and in the 

least number of steps, as described in Equation (17) 

[57].  

  𝑓(𝑥∈ℝ𝐷
𝑚𝑖𝑛 𝑥,𝑤, 𝐼𝑣𝑎𝑙) 𝑠. 𝑡.     𝑤 = 𝑎𝑟𝑔  𝑓(𝑥, 𝑤, 𝐼𝑡𝑟𝑎𝑖𝑛)𝑤

𝑚𝑖𝑛  

where Itrain and Ival are the training and validation datasets, 

respectively. 

Global optimizations are preferred in the black-box 

functions, such as the phenomenon of this study. There 

are three black-box systematic approaches for tuning 

hyperparameters in ML, namely, Grid Search, Random 

Search, and Bayesian Optimization methods. Grid 

search is the most basic HPO method; it depends on a 

pre-defined range for each hyperparameter and is very 

efficient in low-dimensional space but suffers from the 

exponential increase in the search space with the 

increase in the number of parameters or the parameter 

range, which will increase the number of the required 

evaluations for the function [57]. RSO algorithm, on the 

other hand, is a simple alternative to grid search. It is 

based on proposing random search points from the 

hyperparameter space with easier parallelization, which 

can find a comparable hyperparameter setting to grid 

search in less time, particularly if the effects of some 

hyperparameters are more important than others. 

Random search has no assumptions about the ML 

algorithm being optimized, and with enough features, it 

can achieve settings that are equivalent or very close to 

optimum. 

In contrast, Bayesian optimization is the state-of-the-

art paradigm for the costly black-box functions; it is not 

directly targeting HPO but can be generally applied with 

the newly developed models and kernels based on an 

iterative process. It consists of two fundamental 

components: a probabilistic surrogate that fits all the 

target observations, and an acquisition function that 

determines which point to examine next based on the 

predictive distribution of the model [42]. 

However, it was shown in the literature that RSO is 

more efficient algorithm for tuning the hyperparameters 

of the ML classifiers in the case of not all parameters are 

equally important, such as the case of this study [10]. 

Therefore, RSO will be used for tuning the parameters 

of the best performing algorithm. The response time and 

accuracy of the optimized classifier will be compared 

with the default classifier, and the best-performing 

hyperparameter configuration will be chosen as the 

optimal hyperparameters of the proposed model. 

3) Random Search Optimization (RSO) 

RSO was initially conceptualized by Brooks [12].  The 

process involves multiple iterations of sampling from the 

feasible search space, and often following a uniform 

sampling distribution. Within the framework of RSO 

method, every candidate point is generated in a manner 

that is independent of other points. The update of the 

parameter’s value only occurs if the candidate point 

demonstrates improvement. The main goal of integrating 

RSO algorithm in this work is to determine the optimal 

value for each of the best performing classifier’s 

hyperparameters. This is achieved by iteratively 

exploring several random directions from the present 

point to identify a descent direction at each step. The 

distinguishing feature of the RSO algorithm is in its 

method of determining the descent direction dk−1 during 

the kth optimization update phase. The algorithm selects a 

specified quantity of random directions originating from 

Wk−1, assesses each potential update point, and selects the 

one that yields the lowest evaluation (if it is lower than 

the assessment of the current point), the updated direction 

of the parameter will be given by Equation (18) [49].  

𝑊𝑘 = 𝑊𝑘−1 + 𝑑𝑘−1 

During the kth iterations, a selection of P random 

directions is made to be tested. The candidate point 

(17) 

(19) 

(18) 
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(Wcandidate) to assess is generated by adding the Pth random 

direction dp to the preceding step Wk-1. Thus, Wcandidate 

may be expressed as:  

 𝑊𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝑊𝑘−1 + 𝑑𝑝      

Upon thorough review of all P candidate locations, the 

parameter’s point (s) that yields the most minimal 

evaluation will be selected, as denoted by Equation (20).  

 𝑠 = ARGMIN
𝑝=1…𝑝

𝑔(𝑊𝑘−1 + 𝑑𝑝)  

If the best point discovered possesses a lower evaluation 

value compared to the current point, denoted as 𝑊𝑘−1 +
 𝑑𝑠, the algorithm proceeds to transition to the new point, 

alternatively, additional set of P random directions can be 

explored, and the process will be repeated. 

On the other hand, the selection of a set of P random 

directions can be achieved by employing a certain 

distribution, such as Gaussian distribution, as utilized in 

this research. The primary concern associated with this 

approach pertains to the matter of consistency, as each of 

the potential orientations would possess varying lengths. 

To maintain consistency in the directions provided for 

random candidates, it is necessary to normalize them by 

adjusting their length to a uniform size, such as a length 

of one [53, 56]. However, the usage of unit-length 

directions implies that the norm of each direction vector 

is always equal to one (i.e., ∥d∥=1). Consequently, at 

each iteration of the algorithm, exactly one unit will be 

traversed, as indicated by the Equation [21]:  

‖𝑊𝑘 −𝑊𝑘−1‖ = ‖(𝑊𝑘−1 + 𝑑) −𝑊𝑘−1‖ = ‖𝑑‖ = 1  

The length of each step can be adjusted according to the 

assumed preference by incorporating a step length 

parameter (α) into each step, that is enabling a complete 

control over the distance covered by each step. This step 

of a more generic kind can be represented as follows:  

 𝑊𝑘 = 𝑊𝑘−1 +  𝛼  

The magnitude of this step is now precisely equivalent to 

the step length α. This can be demonstrated by the 

equation:  

‖𝑊𝑘 −𝑊𝑘−1‖ = ‖(𝑊𝑘−1 + 𝛼𝑑) −𝑊𝑘−1‖ = ‖𝛼𝑑‖ = 𝛼 

Therefore, at the kth iteration, P random directions of unit 

length are considered, each scaled by the step length (α). 

The direction that results in the largest decrease in the 

function value will be considered. The pseudo code of 

selecting the optimal value for each of the classifier’s 

parameters with integrating of RSO is shown in the 

following algorithm. 

Algorithm 1. The Pseudo Code of the Random Search Algorithm 

1: input: initial point wo, maximum number of steps K, 

number of steps K, number of random samples per step P, a 

length α. 

2: for k=1 : K 

          Compute P-unit length random directions {𝑑}𝑃=1
𝑃 , by 

sampling and              

          normalizing N dimensional Gaussian. 

3: find  𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑝=1…𝑝

𝑔(𝑊𝑘−1 + 𝛼𝑑𝑝) 

4: set 𝑑𝑘 = 𝑑𝑠 

5: form the new point 𝑊𝑘 = 𝑊𝑘−1 +  𝛼𝑑𝑘 

6: if 𝑔(𝑊𝑘) < 𝑔(𝑊𝑘−1) 

    𝑊𝑘−1
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒
←       𝑊𝑘 

 

7: output: history of weights {𝑊𝑘}𝑘=0
𝐾  

                   and corresponding function evaluations 

{𝑔(𝑊𝑘)}𝑘=0
𝐾  

4) RFC optimization using RSO  

As will be shown in the results section, RFC was 

showing the highest performance when applied on 

different PV current datasets, this classifier took less 

classification time compared to other classifiers and 

provided the highest classification accuracy with a high 

size dataset, and even with a missing part the data. To 

improve the performance of this classifier, its 

hyperparameters need to be studied, and their ranges 

need to be determined for the tuning stage. The 

hyperparameters that can be tuned for better 

performance include the Number of estimators 

(N_estimator), which is the number of decision trees 

that is mostly correlated with the dataset size. Criterion, 

which is the function of measuring the quality of data 

splits, including “gini”, and “entropy” functions. 

Maximum features, which is the maximum features for 

node splitting, its types are the “sqrt” and “log2”. In 

addition, there are another hyperparameters that can be 

tuned including Bootstrap, Minimum sample split, 

Minimum sample leaf, and maximum leaf node. RSO 

algorithm was integrated to find the optimal 

hyperparameters values for RFC [30]. A range of values 

were examined for each of the classifier’s 

hyperparameters. After each optimization round, a set 

of new and unseen data was used to evaluate the 

performance of the optimized classifier by measuring 

the prediction accuracy and processing time. The 

flowchart of optimizing the hyperparameters of RF 

classifier by integrating RSO algorithm is shown in 

Figure 13. 
  

 

Figure 13. Flowchart of the classification model using optimized 

RFC utilizing RSO algorithm. 

 

RSO Integration 

(20) 

(21) 

(22) 

(23) 
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4.3. Evaluation Metrics 

There are several measures that can be used to evaluate 

the performance of the tested classifiers [46]. Four of 

these measures will be utilized in this study: accuracy, 

precision, recall, and F1-score. Such measures are used 

to answer the question of how precise the prediction 

model will be. These measures are derived from the 

confusion matrix, which is a two-dimensional matrix (N 

x N) summarizing the performance of the multiclass 

classification algorithm by providing the number of 

correct and incorrect predictions, which will give a clear 

idea about the performance of the model and the type of 

errors. The columns of the confusion matrix represent the 

predicted classes, while the rows are the actual classes, as 

shown in Table 4, which shows the correct predictions 

(TPxy) and the misclassified cases (Exy) at a specific class 

(Ci). The multi-class confusion matrix includes four types 

of elements: the TP, which is the correctly predicted fault 

class; the True Negative (TN), which is the correctly 

predicted non-fault class; the False Positive (FP), which 

is the incorrectly predicted fault class; and the False 

Negative (FN), which is the incorrectly predicted non-

fault class.  

The four evaluation measures are derived from the 

confusion matrix, where the accuracy is the description 

of the correctly classified data over all predictions, i.e., 

the ratio between the true positives and true negatives to 

all predicted positive and negative cases.  

The precision is the description of how many positive 

predictions are correct; it is the ratio between the 

correctly classified observations TPs and all true and 

false positive predictions for a specific class (Ci). The 

Recall, on the other hand, is a metric of how many true 

positive cases are correctly predicted by the classifier 

over all positive cases in the matrix. Both precision and 

recall measures are combined in the F1-score measure, 

which provides a single metric weighting the two 

measures and doesn’t require knowing the total number 

of observations. The utilized metrics for the multiclass 

confusion matrix are defined in Table 5 [7, 31]. 

Table 4.  Multi-class classification problem confusion matrix. 

 
Predicted Classes 

C1 C2 … CN 

A
ct

u
a
l 

C
la
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es

 C1 TP11 E12 … E1N 

C2 E21 TP22 … E2N 

…
 

…
 

…
 … 

…
 

CN EN1 EN2 … TPNN 

Table 5.  Multi class confusion matrix performance metrics. 

Metric Formula 

Accuracy 𝐴𝑐𝑐 =  
∑ 𝑇𝑃(𝐶𝑖)
𝑁
𝑖=1 + ∑ 𝑇𝑁(𝐶𝑖)

𝑁
𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 

Precision (for class Ci) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑖) =  
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑃(𝐶𝑖)
 

Recall (for class Ci) 𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑖) =  
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑁(𝐶𝑖)
 

F1-score (for class Ci) 𝐹1 (𝐶𝑖) =  2𝑥
𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑖). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑖) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑖)
 

5. Results and Discussion 

The performance of the proposed method was evaluated 

under different conditions, as explained in Table 2. To 

investigate the behavior of the PV array under the 

provided fault conditions, the developed technique was 

applied to a PV array of two parallel strings with three 

modules each using a one-diode model, and each of them 

was equipped with a bypass diode. The I-V 

characteristics of the PV array were extracted using 

MATLAB/SIMULINKTM and validated by PSIMTM 

software. The electrical characteristics of the utilized PV 

module are shown in Table 6. The developed model was 

prepared and tested in five steps, as follows: 

5.1. Step 1: PV Faults Creation and Analysis 

For datasets generation, four different faults were 

generated, namely, LL, LG, PS, and CS. In the LL fault, 

where unintentional connection between two points in the 

same string or different strings were created. It was 

noticed that the inverter's MPPT may shift the operating 

point to a different position on the I–V curve, causing the 

fault current amplitude to drop, as shown in Figure 14, 

which depicts the effect of the LL fault on the behavior 

of the PV array with one faulty module under different 

resistance levels. The MPPT will relocate the MPP to 

another position, and the PV array will appear to be 

operating normally but with less output power. 

Moreover, the effect of the LL fault resistance can be seen 

in Figures 14 and 15, where the behavior of the PV array 

will be closer to the healthy case with the increase in the 

fault resistance. On the other hand, the blocking diodes 

can be optionally utilized in the same PV configuration, 

as shown in Figure 15. The blocking diodes will cause 

different voltage peaks on the I-V characteristics curve 

with the presence of a low fault resistance, which would 

make it very similar to the I-V curve of the open circuit 

and partial shading faults. 

Table 6.  Electrical characteristics of the utilized PV module. 

Parameters under STC Kyocera solar KC130GT 

Maximum Power (Pmax) 130W 

Maximum Power Voltage (Vmpp) 17.6V 

Maximum Power Current (Impp) 7.39A 

Open Circuit Voltage (Voc) 21.9V 

Short Circuit Current (Isc) 8.02A 

Temperature Coefficient of Voc －8.21×10-2 V/℃ 

Temperature Coefficient of Isc 3.18×10-3 A/℃ 
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Figure 14. I-V curve of the PV array without blocking diodes 

under different LL fault resistances in STC (25°C, 1000W/m2). 

 

Figure 15. I-V curve of the PV array with blocking diodes under 

different LL fault resistances in STC (25°C, 1000W/m2). 

In the LG fault, the MPP of the array will be shifted 
gradually from point “A” to point “B” after applying the 
fault, where the MPPT will detect the drop in the output 
power and shift the MPP by reducing the array voltage to 
optimize the output power, as shown in Figure 16. As can 
be noticed, in the case of a lower ground fault, there is no 
back-fed current to the faulty string which will be 
mismatched with the other strings and no longer be able 
to operate at its real MPP. On the other hand, the upper 
ground fault will generate a high fault current at low or 
no impedance, the faulty module will have a larger 
current than the other modules because of the fault 
current and the back-fed current. The inverter’s MPPT 
will shift the MPP from point “A” to point “C” to reduce 
the power loss and fault current by reducing the array 
voltage. Figure 17 is showing the effect of the resistance 
level and the blocking diodes on the behavior of the PV 
array. 

 

Figure 16.  I-V curve of the PV array under lower and upper ground 

fault. 

 

Figure 17. I-V curve of the faulty PV array with upper ground fault 

at different resistance levels with the presence of the blocking 

diodes. 

In the Partial shading fault, as shown in Figure 18, it 

can be noticed that the MPP of the PV array has reduced 

with increasing the partial shading percentage, and 

different local and global MPP peaks appeared based on 

the number and percentage of the shaded modules. The 

inverter’s MPPT has pushed the system to continue 

working on the new global peak to guarantee more output 

power by reducing the output voltage, which might affect 

the inverter’s lifetime. In addition, it can be observed that 

at complete shading of the PV array (CS), there will be 

no local peaks, but the whole output power was reduced. 

5.2. Step 2: Data Generation and Preparation 

The output current was generated from the PV array as 

explained in Table 2, and the statistical analysis of the 

generated current rows under different fault and 

environmental conditions shows a distinctive sign for 

each of the studied cases. The results of all cases as 

shown in will be collated together and separated 

randomly into two matrices; the first one is the feature 

matrix, which will be the input of the machine learning 

classifier for training and testing purposes, while the 

other matrix will be a new data matrix and unseen by the 

classifier before, it will be used to validate the developed 

model as a final step. Figure 19 visualizes the mean value 

of the statistical features in a line plot for each of the fault 

types, while Figure 20. depicts the boxplot of the current 

rows’ statistical features. As it can be noticed from the 

figure, the healthy class can be distinguished by the 

maximum, STD, and RMS features. Complete shading, 

which is the most competitive case compared to partial 

shading, can be distinguished by the crest factor, which 

got the lowest value. The LL and LG classes are also 

competitive, where the maximum, minimum, and 

skewness for most of the datapoints were very close, but 

they can be distinguished by the minimum and mean for 

the LL class, and the kurtosis and crest factor for the LG 

class. The partial shading classes have a common value 

for most of the statistical analysis, but it can be noticed 

Local peak because of 

the blocking diodes 
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that the PS_1M can be distinguished by the form factor, 

PS_2M can be distinguished by the skewness, and the 

PS_3M can be distinguished by the kurtosis. 
 

 

Figure 18. Power curve of the PV array under different shading 

conditions. 

 

Figure 19. Line graph for the average value of the statistical 

features. 

5.3. Step 3: Classifiers Training 

Twelve classifiers with their default hyperparameters 

were evaluated using four splitting and cross-validation 

methods as shown in Table 7. Eight classifiers have 

demonstrated a performance of greater than 85%, while 

five of them have achieved a performance of greater than 

90%. 
It can be noticed from the same table that the Gradient 

Boosting Classifier (GBC) yielded a high degree of 
accuracy with (91.6%) using K-fold cross validation 
method, while the Ada-Boost classifier scored (92.25%), 
whose scores were identical to those obtained with the 
sK-fold cross validation method. Moreover, the extra 
trees classifier achieved a score of (91.92%) using the 
LOOCV cross-validation method. However, The 
Random Forest Classifier (RFC) showed the highest 
performance utilizing the holdout splitting method; its 
accuracy was (93.2%), therefore, the holdout splitting 

validation method will be used in the optimization 
process along with the Random Forest classifier, which 
is the classifier with the best performance among all the 
other classifiers.  

5.4. Step 4: RFC Hyper Parameters 

Optimization using RSO  

In this research, the Random Search Optimization 

Algorithm was integrated to fine-tune the Random Forest 

classifier's hyperparameters. This method allowed for the 

efficient examination of a broad range of hyperparameter 

configurations, resulting in the optimization of the 

model's performance while minimizing the 

computational resources required for an exhaustive 

search. By randomly sampling the predefined search 

spaces for the RFC parameters: Criterion, Max features, 

and N_estimators, using a Gaussian distribution, the 

accuracy of the classifier was systematically enhanced, 

where the performance of the optimized model has 

increased from 93.2% to 94.7%. The estimated duration 

for the complete prediction of the PV array status was 

314ms. Table 8 shows a comparison between the scores 

of the default RFC and the optimized RFC according to 

the integration of RSO algorithm. Consequently, the 

developed fault detection and classification model will 

use the "Random Forest Classifier" as the top-performing 

classifier with the highest classification accuracy 

(94.7%), and prediction time of 314ms.   

The developed model used the holdout splitting 

method, and a random search optimization algorithm. 

The optimal values for RFC hyperparameters are the 

“entropy” criterion, 13 estimators, and Max features of 

log2. 

Table 7.  Twelve classifiers training accuracy results under four 
splitting methods. 

Classifier 

Accuracy (%) 

Holdout 

(Train-test-split) 
K-Fold sK-Fold LOOCV 

DT 88.1 88.2 87.87 87.87 

SVM 88.1 76.6 74.74 77.1 

NB 59.3 54.9 57.2 57.91 

RFC 93.2 91.2 91.92 91.25 

KNN 91.5 88.2 88.55 88.2 

GB 91.5 91.6 91.24 90.57 

MLP 48.3 30.7 46.1 46.8 

GP 36.7 34.0 36.37 36.36 

ET 90.0 64.3 91.44 91.92 

ABC 91.5 92.25 92.25 91.58 

QDA 80.0 44.74 88.93 89.56 

SGD 74.6 78.01 70.0 68.35 
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Figure 20. Boxplot of the processed data. 

Table 8.  Comparison between the accuracy scores of the default 
RFC and the optimized RFC. 

Classifier Parameters 
Accuracy 

score (%) 

Prediction 

time (ms) 

Default RFC Default parameters 93.2 419 

Optimized RFC 

using RSO 

Criterion: entropy Max features: 

log2 N_estimators: 13 
94.7 314 

5.5. Step 5: Real Test on Unseen Data 

To test the performance of the developed model based 

on the optimized RFC, new datasets were generated for 

different faults under random environmental and 

technical conditions as shown in Table 9. The new 

datasets included current rows resulting from healthy, 

faulty modules with LL and LG faults at different fault 

resistances, in addition to a partially shaded modules 

with one, two, and three shaded modules, and a 

completely shaded modules at random shading 

percentages. As it can be noticed from the confusion 

matrix depicted in Figure 21, the model was able to 

perfectly detect the fault in the unseen with a percentage 

of 100%, i.e., the healthy cases were classified as 

healthy all the time, and none of the faulty cases or 

completely shaded cases were classified as a healthy 

case. On the other hand, the average accuracy of the 

fault classification of unseen data was 96.64%.  The 

confusion matrix shows that the accuracy of detecting 

the LG, PS_1M, PS_2M, and PS_3M was 100%, the 

accuracy of detecting the LL fault was 94.7%, and the 

CS detection accuracy was 81.8%. The average 

precision for all faults was 95.5%, the average recall 

was 94.7%, and the average F1_Score was 94.5%. A 

sample of the tested data is shown in Table 10. 

 

 

Table 9.  Sample of testing data gendered  under various conditions 
for real test. 

PV Status(No. cases) 
Temperature 

(°C) 

Irradiance 

(W/m2) 

Fault 

Resistance 

(Ω) 

Healthy (3) 
Random between 

5 to50 
1000 NA 

Complete shading (9) 
Random between 

5 to50 

Random between 

200 and 800 
NA 

Partial Shading (18) 
Random between 

5 to50 

850 for all 

modules except 

modules 1.1 
(random) and 2.2 

(random), 2.3 

(random) 

NA 

LL fault (18) 
Random between 

5 to50 
Random between 

400 and 1000 

Random 

between 0 and 

50 

LG fault (9) 
Random between 

5 to50 
Random between 

400 and 1000 

Random 

between 0 and 

50 

 

Figure 21. The confusion matrix for the test on unseen data. 
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6. Conclusions 

This paper presented an accurate and fast-responding 

fault detection and classification model for the PV array 

using machine learning. The model can classify the PV 

system's health condition based on its output current. 

According to the developed model, the PV system will 

be classified as either healthy, completely shaded, faulty 

with LL or LG, and partially shaded with 1, 2, or 3 

modules. The model's input attributes included nine 

statistical features derived from the generated PV 

current. The proposed model has been tested under a 

variety of environmental and technical conditions. The 

study compared the performance of twelve ML 

classifiers. Four different cross-validation techniques 

were applied to the classifiers in use. The 

hyperparameters of the top-performing classifier were 

optimized using RSO algorithm.  The chosen classifier 

was nominated based on four performance metrics: 

accuracy, precision, F1 score, and recall score. A new 

set of unseen data generated under random 

environmental and technical conditions was used to test 

the performance of the proposed model. Using the 

optimized RFC, this model has achieved a performance 

of 100% for fault detection, 94.7% for fault 

classification of the training data, and 96.6% for fault 

classification of the testing on new unseen data. The 

average prediction time was 314 milliseconds. The 

holdout splitting method was used to improve the 

performance of the final model. The optimal parameters 

of the optimized RFC were the “entropy” criterion, 13 

estimators, and “max features of log2.” 

The proposed method included a few potential 

limitations and complexities to be considered, 

including: 

1. Signal quality: the accuracy of fault detection and 

classification depends heavily on the quality of the 

input signal. If the signal is noisy, incomplete, or 

contains outliers, it can negatively impact the 

performance of the statistical analysis and ML 

classification. 

2. Statistical analysis: the effectiveness of the statistical 

analysis methods utilized to extract features from the 

existing data plays a key role. While the statistical 

features considered for this study have proven 

beneficial, the selection procedure must be 

continually updated to adapt to varied fault scenarios 

and environmental variables. 

3. Model hyperparameters: each ML classifier has its 

own hyperparameters that must be tuned for optimal 

performance. 

The model performance is greatly dependent on the 

selection of hyperparameters. Optimization is a 

challenging procedure that can considerably influence 

the model capability to effectively detect and categorize 

problems. 

Table 10. Step 3: a sample of testing unseen data utilizing the developed model. 

Case 

No. 

Actual Class of 

Unseen data 

Predicted 

Class 
Case No. 

Actual Class of 

Unseen data 
Predicted Class 

1 Healthy Healthy 30 LL LL 

2 Healthy Healthy 31 LL LL 

3 Healthy Healthy 32 LL LL 

4 CS CS 33 LL LL 

5 CS CS 34 LL LL 

6 CS CS 35 LL LL 

7 CS CS 36 LL LL 

8 CS CS 37 LL LL 

9 CS CS 38 LL LL 

10 CS CS 39 LL LL 

11 CS CS 40 PS_1M PS_1M 

12 CS CS 41 PS_1M LL 

13 LG LG 42 PS_1M PS_1M 

14 LG LG 43 PS_1M PS_1M 

15 LG LG 44 PS_1M PS_1M 

16 LG LG 45 PS_1M PS_1M 

17 LG LG 46 PS_2M PS_2M 

18 LG LG 47 PS_2M CS 

19 LG LG 48 PS_2M PS_2M 

20 LG LG 49 PS_2M PS_2M 

21 LG LG 50 PS_2M PS_2M 

22 LL LL 51 PS_2M CS 

23 LL LL 52 PS_3M PS_3M 

24 LL LL 53 PS_3M PS_3M 

25 LL LL 54 PS_3M PS_3M 

26 LL LL 55 PS_3M PS_3M 

27 LL LL 56 PS_3M PS_3M 

28 LL LL 57 PS_3M PS_3M 

29 LL LL    
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